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Introduction
Landslides are a complex hazard that occur on highlands or 
mountain slopes, conditioned by several topographical aspects 
related to soil properties, geological structure, lithology and cli-
matic conditions, slope morphology, soil cover, and water flow 
(Margottini et al., 2013). The landslide triggers are commonly 
rainfall (Y. Liu, Xu, et  al., 2021), earthquakes (Pang et  al., 
2022), deforestation (García-Ruiz et  al., 2017), and human 
activity that changes the effect of topography (Li et al., 2020).

Landslides cause serious impacts that threaten humans 
(Hakim et al., 2022; Panahi et al., 2020), and damages to natu-
ral resources. Thus, landslide hazard assessment has become a 
task of interest for decision-making by government entities 
and municipal and/or urban planning departments.

In general, in regions where urban developments, residential 
areas, and service infrastructure coincide with mountainous 
terrain, the risk tends to be high for the population and the 
economic costs may include relocation of communities, recon-
struction of structures, and restoration of the quality of water 
sources. In many developing countries, where land occupation 
has generally been carried out without adequate planning and 
in a disorderly manner, the growth of urban areas occurs in 
landslide-prone zones.

Susceptibility mapping for landslide prediction is a GIS-
based method involving correlation of previous landslides with 
possible driving factors to identify areas at risk of landslides 
(Hakim et  al., 2022; Hakim & Lee, 2020). In recent years, 
studies of landslide susceptibility mapping have employed vari-
ous probabilistic and statistical methods (A. Saha & Saha, 
2020; Silalahi et al., 2019). Given the complexity of landslide 
prediction, many researchers have turned their attention to 
using hybrid ensemble approaches that combine machine 
learning methods with metaheuristic algorithms ( Jaafari et al., 
2019) or ensemble learning techniques (Bui et al., 2019; B. T. 
Pham et al., 2019).

Currently, landslide susceptibility maps allow the identifica-
tion of areas prone to the occurrence of a mass removal event 
where the potential damage to people and infrastructure must 
be reduced or controlled, however, the accuracy of these 
approaches varies according to the quality of the data, the 
model approaches used, and the landslide inventories.

The purpose of this study is to articulate the statistical 
approach of the landslide conditioning factors, Machine 
Learning Algorithms (MLA) and GIS, evaluating a flexible 
and agile methodology to estimate the landslide susceptibility 
defining areas prone to the landslide occurrence incorporating 
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the interpretability criteria by mean of SHAP values approach. 
The MLA were validated in a case study in the “La Liboriana” 
River basin, located in the Municipality of Salgar (Antioquia) 
in the Colombian mountains Andes where Landslide 
Susceptibility Maps (LSMs) were obtained. The results can be 
used for mapping regional landslides to develop strategies to 
minimize the loss of human lives, infrastructure, and natural 
environment.

Antecedents
Due to the high levels of landslides, a great dynamic has been 
generated worldwide in the study of the associated phenomena 
in an attempt to understand the physical and economic aspects 
related to mass movements (Hidalgo & Vega, 2021). The 
United Nations Office for Disaster Risk Reduction (CRED 
and UNDRR, 2021) reports that in 2020 the average annual 
economic losses were higher than those of the last two decades, 
which amount to US$ 151.6 billion, in addition to an increase 
in the phenomena triggered by weather conditions.

In comparison to the previous two decades, 2020 was 
higher than the annual average in terms of number of recorded 
events and the annual average of economic losses, which is 
US$ 151.6 billion. There were considerably fewer deaths 
compared to the annual average of 61,709 and fewer people 
directly affected compared to the annual average of 201.3 
million people. However, in 2020 there were 26% more storms 
than the annual average of 102 events, 23% more floods than 
the annual average of 163 events, and 18% more flood deaths 
than the annual average of 5,233 deaths (CRED and 
UNDRR, 2021).

Landslides cause loss of human life every year. Laccase and 
Nadim (2009) report that at least 17% of all natural hazard 
deaths worldwide are caused by landslides. Human losses 
derived by landslides occur predominantly in developing 
countries. In contrast, developed countries such as the United 
States and Japan report few human losses, but high annual 
economic losses, estimated between 1 and 6 billion dollars 
(Ospina-Gutiérrez & Aristizábal-Giraldo, 2021). It is esti-
mated that the direct and indirect costs of mass movements 

can be significant in terms of gross domestic product (GDP), 
even in developed countries (Figure 1).

In the case of Colombia, in the period from 2006 to 2014, 
21,594 emergencies due to natural events were reported in the 
country, an average of 2,399 events per year. Of these, 14,641 
(67.8%) were concentrated in the period from 2011 to 2014. As 
a result of the events that occurred, 3,181 people were reported 
dead in Antioquia, with 586 deaths (414 of them due to floods 
and landslides).

According to data from the Information System of Mass 
Movements (SIMMA, in Spanish) of the Colombian 
Geological Service (SGC, in Spanish), in the period between 
1900 and 2018 at least 30,730 landslides have occurred in 
Colombia, which have left a balance of 31,198 fatalities and 
economic losses of USD$ 654 million (Ospina-Gutiérrez & 
Aristizábal-Giraldo, 2021). According to the DESINVENTAR 
database, 10,438 landslides have been recorded in Colombia 
between 1921 and 2020, leaving almost 7,313 dead and disas-
trous results for the country's economic system.

Figure 2 shows a summary of records of the 
DESINVENTAR database up to 2019 in the Department of 
Antioquia. According to the data reported, landslides occur 
more frequently between the months of May to July and 
September to November, which coincide with the hydrogeo-
logical characterization of the study area. In total, 1,566 events 
were reported, which show that the areas with the highest 
occurrence are located in the southwest (462 records) and east 
(358 records) zones excluding the Aburrá Valley.

Landslide Susceptibility Assessment (LSA)
Landslide susceptibility is the landslide probability of occur-
rence in a specific area, based on local terrain conditions by 
interaction of landslide conditioning factors (LCF). Usually, 
information about landslide magnitude is not available. LSA 
permits to identify areas potentially affected without consider-
ing the time lapse which a landslide might occur, or its magni-
tude. Commonly, LSA is based on statistical relationships 
between past landslides and LCF. Future landslides will occur 
under the conditions that led to past landslides.

Figure 1.  Impacts of landslides in terms of gross domestic product (GDP).
Source. Hidalgo and Vega (2021).

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 17 Nov 2024
Terms of Use: https://bioone.org/terms-of-use



Vega et al.	 3

In recent years, GIS and remote sensing data have been used 
to conduct many studies of disasters in mountain regions. 
Several researchers have built their methodology analyzing 
data of past landslides, and tested it through unknown land-
slides events. Different methodologies have been applied to 
spatially assess landslide susceptibility assessment (LSA). The 
main methods can be divided into qualitative (known as 
knowledge-driven or heuristic) or quantitative (data-driven 
and physically-based) methods (Lima et al., 2022). Their appli-
cability and limitations can be found in literature. The first 
methods are based on the expert judgment, and usually involve 
qualitative terms to represent the susceptibility zoning. The 
quantitative methods establish numerical relationships between 
LCF and landslide occurrence (Marjanović et al., 2019).

The knowledge-driven or heuristic approach considers a 
direct mapping methodology establishing a direct relationship 
between the occurrence of landslides and the LCF using a 
landslide inventory at regional scale. This category may include 
the subjective geomorphological method, Analytic Hierarchy 
Process (AHP), Fuzzy Logic, Weighted Overlay, among others 
(Ali et  al., 2021; Kaur et  al., 2023; Q. B. Pham et  al., 2021; 
Sahana & Sajjad, 2017; Sur & Singh, 2019).

The deterministic approach is based on slope stability 
methods. It is generally only applicable in relatively homoge-
neous terrain conditions throughout the study area and the 
types of landslides are known. It requires a high degree of sim-
plification of the intrinsic variables to be used at local scale. 
This category includes geotechnical methods such as the 
Newmark´s Method (Infinite Slope), Bishop's Method, 
Morgenstern Price Method, among others. Various studies 
have used deterministic models, as the Transient Rainfall 
Infiltration and Grid-Based Regional Slope-Stability 
(TRIGRS) model (Ma et  al., 2021; Marin et  al., 2021), 

Shallow Slope Stability (SHALSTAB) model (Pradhan & 
Kim, 2015), Stability Index MAPping (SINMAP) model 
(Michel et al., 2014), and Steady-State Infinite Slope Method 
(SSIS) (Si et al., 2020).

Finally, the data-driven or statistical approach is an indirect 
susceptibility methodology. It involves statistical analysis of the 
combinations of variables that led to landslide occurrence in the 
past. All possible intrinsic variables or LCF are entered and crossed 
into a GIS for analysis with a landslide inventory in a bivariate or 
multivariate way at regional scale (Dahal et al., 2012). This cate-
gory also includes evaluation methods such as Frequency Ratio, 
Evidence of Weights, Linear and Logistic Regressions, among 
others. These statistical models have their own advantages and 
disadvantages and they have been widely used for LSA, but no 
agreement has reached to select the best method for landslide sus-
ceptibility analysis (Sahana & Sajjad, 2017; Zhang et al., 2020). 
Machine Learning Algorithms (MLA) are included in this cate-
gory, but this is yet a topic of debate (Merghadi et al., 2020).

Machine Learning (ML) corresponds to a subset of a large 
discipline called artificial intelligence, which seeks to emulate 
human behavior through computer algorithms. ML uses statis-
tical methods to train machines from data, that is, from experi-
ences. Specifically on the topic of LSA using MLA, progress 
has been made since the early 2000s (Merghadi et al., 2020). 
MLA have been applied to solve geotechnical engineering 
problems widely in recent years, mainly because MLA are 
based on historical data, and they are more objective than the 
expert system methods. Moreover, they do not need more 
detailed mechanical parameters compared with the mechanical 
model methods (Y. Liu et al., 2019).

The MLA with the earliest development corresponds to 
Logistic Regression (LR), Artificial Neural Networks (ANN), 
Support Vector Machine (SVM), and Decision Trees (DT) 

Figure 2.  Landslides records for the Department of Antioquia.
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(Bragagnolo et  al., 2020; Dou et  al., 2019; Nhu et  al., 2020; 
Sahin, 2020; Sun et al., 2020; Wang et al., 2015). Moreover, in 
recent years, development has focused on bagging methods, 
including the very popular Random Forest (RF), boosting 
methods such as AdaBoost and XGBoost (Bui et  al., 2019; 
Chen et al., 2020; Huang et al., 2020; Q. B. Pham et al., 2021; 
Sahin, 2020).

MLA have been increasingly used in LSA as a result of the 
fact that they can learn the association between landslide 
occurrences and LCF without the requirements and assump-
tions for a statistical model. It has been observed that the pre-
dictive power of conventional statistical methods is relatively 
low. The conventional statistical methods cannot accurately 
analyze the complex interrelationships between different caus-
ative factors. Due to accuracy and very high predictive capabil-
ity, MLA are getting more importance and attention in spatial 
analysis of landslides.

With the development of ensemble learning, bagging, and 
boosting methods are increasingly being used for classification 
and regression (Chen et al., 2020). In this study, seven super-
vised MLA were employed. Two regression algorithms 
(Logistic Regressions) and five decision tree algorithms: 
RPART, CTREE, RF, Ranger, XGBoost, briefly described 
below.

The binary logistic regression algorithm seeks to study the 
relationship between a dichotomous response variable (i.e., it 
takes only two possible outcomes presence/absence) and one or 
more explanatory variables, which can be of both qualitative 
and/or quantitative nature (Hosmer et al., 2013). Two logistic 
regression algorithms were used, the conventional stepwise 
selection method and the other where the Least Absolute 
Shrinkage Selector Operator (LASSO) method is used which 
imposes a penalty on the regression coefficients and selects 
variables (Tibshirani, 1996).

RPART is a supervised learning algorithm where a classifi-
cation tree is obtained if the response variable is dichotomous 
(discrete) or a regression tree if the response variable is con-
tinuous. Initially this algorithm finds the explanatory variable 
that best divides the data into groups based on a rule. Then, for 
each of the partitions, the process is repeated. This process is 
done recursively until it is impossible to find a better partition. 
A relevant feature of this algorithm is that a variable used to 
separate the data is not used afterwards (Therneau & Atkinson, 
1997). Since the resulting tree is very large and becomes tedi-
ous to interpret, pruning techniques are used to reduce its size 
(Strobl et al., 2009).

CTREE are a special type of decision trees where the choice 
of variables is made by assessing whether there is an association 
between the response variable and each of the explanatory vari-
ables. If the null hypothesis of independence is not rejected for 
the whole set of hypotheses, the recursive process is stopped. 
Otherwise, the level of association of each set of significant 
tests is quantified, allowing new splits in the tree to be 

generated sequentially (Hothorn et al., 2006). One difference 
of this algorithm with the other decision tree algorithms is that 
no pruning is done for its statistical support.

Random Forest (RF) is an ensemble of decision trees, which 
are then combined into a single robust model (Breiman, 2001). 
RF uses a technique called bagging to build and train the 
ensemble of decision trees, allowing to reduce variance prob-
lems, prediction bias and overfitting when working with large 
amounts of data. One of the advantages of this classification 
algorithm is that it can handle many input variables and iden-
tify the most significant ones (dimensionality reduction) (Liaw 
& Wiener, 2002).

The Ranger algorithm is a fast implementation of the RF 
algorithm, particularly for handling high dimensional data 
(Wright & Ziegler, 2017). The XGBoost is a supervised MLA 
(Chen & Guestrin, 2016). The main idea of this algorithm is to 
generate multiple decision trees sequentially (boosting) where 
each one takes the results of the previous one and thus to gen-
erate an increasingly robust model with better predictive power. 
This process is repeated until the best possible model is 
obtained (Y. C. Chang et al., 2018).

Some of the aforementioned MLA have an internal struc-
ture that causes difficulty in explaining and interpreting their 
results, except those of a linear nature known as glass-box mod-
els. To address and solve the black-box issue of some MLA, as 
tree-based ensembles, kernel-based models, and neural net-
works, at both global and local levels, it is necessary to build 
eXplainable Artificial Intelligence (XAI) based solution. This 
approach provides an identification of the LCF influencing 
mainly effective classification of landslide susceptibility. 
Interpretable MLA can overcome the limitations of complex 
MLA in interpreting landslide susceptibility, and in fact, cur-
rently, few studies use the SHAP method to interpret the sus-
ceptibility of rainfall-induced shallow landslides (Zhou et al., 
2022).

Methodology
Study area

Figure 3 shows the area corresponding to the case study in the 
“La Liboriana” River basin, located in the municipality of Salgar, 
in the southwest of the Department of Antioquia, western 
branch of the Colombian Andes. This basin joins El Barroso 
River basin, and both drain water into Cauca River, one of the 
most important rivers in the country (Hidalgo & Vega, 2021).

The study basin presents geomorphological, geological, and 
weather conditions that make it particularly susceptible to 
landslides and flash floods. The area with slope gradients 
exceeding 30° accounts for 67% of the total area. It has a humid 
tropical climate with a mean annual temperature of 22 °C. The 
rainfall regime is dominated by high interannual and intrasea-
sonal variability with a mean annual rainfall of 3,073 mm; and 
monthly rainfall distributions show evident seasonal patterns 
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with two rainy seasons (peaks in May and October) (Ruiz 
Vásquez & Aristizábal, 2018).

The geomorphology of the basin exhibits in the upper part 
a mountain region with a rugged morphology and very steep 
forested hillslopes. In the middle and lower zones, grasslands 
(pastures) and coffee plantations have already substituted for-
est. The basin exhibits grazing areas and urban development 
near the riverbanks. Geologically, it is composed predomi-
nantly by a Cretaceous sedimentary rock formation and an 
intrusive Miocene body. These rocks have been severely weath-
ered in situ under the humid tropical climate forming well-
developed saprolite and residual soils (Ruiz Vásquez & 
Aristizábal, 2018).

LSA using machine learning algorithms

Seven supervised MLA were employed, two regression algo-
rithms (Logistic) and five decision tree algorithms (Recursive 
Partitioning and Regression Trees [RPART], Conditional 
Inference Trees [CTREE], Random Forest [RF], Ranger, and 
Extreme Gradient Boosting Algorithm [XGBoost]). The 
LSMs were produced for each MLA. The LSA study was 
developed considering five phases: data processing, feature 
selection, dataset splitting and resampling, evaluation of the 
susceptibility, and comparison of the performance of the algo-
rithms, as shown in Figure 4.

Data processing and landslide conditioning factors.  Several Land-
slide Conditioning Factors (LCF) have been employed in lit-
erature to produce the landslide susceptibility maps. Slope, 

aspect, lithology, plan curvature, and drainage density are most 
extensively used. Initially, data was processed in SAGA GIS 
7.7 (http://www.saga-gis.org) software and then collected on 
16 LCF which can be grouped into categories as terrain, geo-
logical, hydrological, and coverage factors. The factors consid-
ered in the study are shown in Table 1 and then briefly 
described. All LCF layers were stacked into a geographic data-
base in raster format, using ArcGIS 10.8 version (https://desk-
top.arcgis.com).

Additionally, a summary of the descriptive statistics for the 
chosen LCF is shown in Table 2. For the qualitative LCF, the 
absolute frequency and percentage of each of the categories are 
presented while for the quantitative, six descriptive statistics are 
presented, minimum (Min), quartile 1 (Q1), median (Median), 
mean (Mean), quartile 3 (Q3), and maximum (Max).

Frequency Ratio (FR) which considers the effects of condi-
tioning factors on landslide occurrence (Z. Chang et al., 2020) 
was determined. FR values were calculated as the ratio between 
the percentage of landslides and the percentage of class of each 
LCF. An FR value greater than 1.0, indicates a higher correla-
tion between landslide and conditioning factors; whereas an 
FR value that is lower than 1.0, suggests a lower effect on 
landslide.

A landslide inventory documented in Ruiz Vásquez and 
Aristizábal (2018) for the study basin was used. This landslide 
inventory was obtained from a multi-temporal analysis of sat-
ellite images and aerial photographs, showing a landslide area 
covering approximately 0.6 km2 corresponding to 1% of the 
basin.

Figure 3.  Location of the study area.
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Feature selection.  Statistical methods of correlation and multi-
collinearity analysis were used. The variance inflation index 
(VIF) and the tolerance (TOL) were analyzed. VIF focuses on 
the standard error variations of LCF, which implies the lower 
the standard error, the lower the multicollinearity risk, which in 
turn means the increased likelihood that robust results should 
be obtained using this LCF (Merghadi et al., 2020). LCF with 
a VIF value less than 5 were used in modeling. LCF with high 
correlation or multicollinearity were excluded from the train-
ing phase of MLA, as they may generate noise in the modeling 
through erroneous system analysis.

For LCF selection according to relative importance, a Relief 
F Method provided in WEKA open source (https://www.
cs.waikato.ac.nz/ml/weka) was used. This method calculates a 
weight value (average merit) for each variable to quantify its 
relevance (Dang et al., 2020). Features with the weights exceed-
ing a certain threshold are selected for analysis. Factors assigned 
zero weight have no contribution to landslide occurrence and 
therefore, must be removed from further analysis (Hong et al., 
2018). This study applied a cross-validation strategy, a standard 
random 5-fold cross-validation for Relief-F attribute selection 
method.

Split and resampling dataset.  For the purposes of the training 
and validation stages of the MLA, a usual 70/30 split was 

adopted (Achour & Pourghasemi, 2020; S. Saha et al., 2021). 
In order to balance the input dataset, over sampling techniques 
can be used to increase the minority class, that is, the landslide 
class, and for this purpose, the method SMOTE (Synthetic 
Minority Over sampling TEchnique) (Qing et al., 2020) was 
implemented under the R Studio environment (http://www.
rstudio.com). This method is an oversampling technique that 
creates synthetic minority class data points to balance the data-
set using a K-nearest neighbor algorithm.

Selection of the best performance MLA.  An alternative method 
for evaluating and determining the statistical significance of 
systematic pairwise differences between the MLA is the Wil-
coxon signed-rank test. This non-parametric test, as described 
by Dou et al. (2019) and Merghadi et al. (2020), was employed 
with a significance level of α = 5%. The test is based on a null 
hypothesis that assumes an equality between models only if the 
p-value is greater than 0.05. Rejecting the null hypothesis indi-
cates statistically significant difference in performance between 
a pair of models, thereby establishing its reliability.

Once it has been identified that the models used showed 
statistically significant differences, seven statistical metrics 
were used to measure performance and validate the trained 
MLA. These metrics are widely used in the machine learning 
literature and are briefly described below. Five metrics were 

Figure 4.  Adopted methodology for landslide susceptibility assessment (LSA).

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 17 Nov 2024
Terms of Use: https://bioone.org/terms-of-use

https://www.cs.waikato.ac.nz/ml/weka
https://www.cs.waikato.ac.nz/ml/weka
http://www.rstudio.com
http://www.rstudio.com


Vega et al.	 7
Ta

b
le

 1
. 

D
at

as
et

 o
f L

an
ds

lid
e 

C
on

di
tio

ni
ng

 F
ac

to
rs

.

D
at

a
 t

y
pe


C

o
n

di
t

io
n

in
g

 fac



tor


D

at
a

 source








C
lass




C
lass




 %
La

n
dslide







 %
F

re


q
ue


n

c
y

 ra
t

io

1.
 T

er
ra

in
E

le
va

tio
n 

(m
)

12
.5

 m
 D

T
M

 o
bt

ai
ne

d 
fr

om
 A

LO
S

 
P

A
LS

A
R

 d
at

a 
(h

tt
ps

://
as

f.a
la

sk
a.

ed
u)

0
–1

,3
0

0
0.

55
0.

70
1.

27

1,
3

0
0

–1
,5

0
0

6.
05

2.
32

0.
3

8

1,
50

0
–1

,8
0

0
20

.5
1

9.
37

0.
46

1,
80

0
–

2,
0

0
0

19
.1

5
17

.5
7

0.
92

2,
0

0
0

–
2,

50
0

37
.0

2
26

.6
3

0.
72

2,
50

0
–

3,
0

0
0

12
.5

0
20

.9
0

1.
67

3,
0

0
0

–
3,

50
0

3.
72

22
.3

7
6.

01

>
3,

50
0

0.
50

0.
15

0.
3

0

S
lo

pe
 (

o )
O

bt
ai

ne
d 

fr
om

 D
T

M
0

–
5

1.
54

0.
0

8
0.

05

5
–1

5
9.

54
3.

48
0.

3
6

15
–

3
0

40
.6

5
3

4.
4

4
0.

85

3
0

–
45

43
.1

5
50

.7
0

1.
17

>
45

5.
12

11
.3

0
2.

21

A
sp

ec
t

O
bt

ai
ne

d 
fr

om
 D

T
M

F
la

t
0.

18
0.

0
0

0.
0

0

N
or

th
15

.5
9

16
.0

2
1.

03

N
or

th
ea

st
14

.6
1

15
.7

9
1.

0
8

E
as

t
16

.9
4

21
.2

1
1.

25

S
ou

th
ea

st
16

.6
1

9.
4

4
0.

57

S
ou

th
13

.2
3

9.
60

0.
73

S
ou

th
w

es
t

9.
04

4.
6

4
0.

51

W
es

t
5.

55
7.

66
1.

3
8

N
or

th
w

es
t

8.
25

15
.6

3
1.

89

C
ur

va
tu

re
O

bt
ai

ne
d 

fr
om

 D
T

M
<

−
5

1.
15

1.
16

1.
01

−
5 

to
 0

56
.8

6
54

.7
2

0.
9

6

0
–1

14
.4

5
16

.4
9

1.
14

>
1

27
.5

4
27

.6
3

1.
0

0

(c
on
tin
ue
d)

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 17 Nov 2024
Terms of Use: https://bioone.org/terms-of-use



8	 Air, Soil and Water Research ﻿

D
at

a
 t

y
pe


C

o
n

di
t

io
n

in
g

 fac



tor


D

at
a

 source








C
lass




C
lass




 %
La

n
dslide







 %
F

re


q
ue


n

c
y

 ra
t

io

L
an

df
or

m
s

O
bt

ai
ne

d 
fr

om
 D

T
M

C
an

yo
ns

, d
ee

pl
y 

in
ci

se
d 

st
re

am
s

6.
0

8
3.

6
4

0.
6

0

M
id

sl
op

e 
dr

ai
na

ge
s,

 s
ha

llo
w

 v
al

le
ys

7.
9

6
5.

03
0.

63

U
pl

an
d 

dr
ai

na
ge

s,
 h

ea
dw

at
er

s
0.

57
0.

77
1.

35

U
-s

ha
pe

 v
al

le
ys

14
.0

7
7.

43
0.

53

P
la

in
s

0.
29

0.
0

0
0.

0
0

O
pe

n 
sl

op
es

43
.9

5
48

.2
2

1.
10

U
pp

er
 s

lo
pe

s,
 m

es
as

11
.4

9
17

.9
6

1.
56

Lo
ca

l r
id

ge
s/

hi
lls

 in
 v

al
le

ys
0.

58
0.

39
0.

67

M
id

sl
op

e 
ri

dg
es

, s
m

al
l h

ill
s 

in
 p

la
in

s
8.

47
10

.8
4

1.
28

M
t. 

To
ps

, h
ig

h 
ri

dg
es

6.
53

5.
73

0.
88

Te
rr

ai
n 

ru
gg

ed
ne

ss
 

in
de

x
O

bt
ai

ne
d 

fr
om

 D
T

M
<

3
20

.6
5

9.
83

0.
48

3
–

6
57

.2
7

55
.8

8
0.

98

6
–

9
19

.1
7

26
.2

4
1.

37

9
–1

2
2.

07
4.

57
2.

21

>
12

0.
83

3.
48

4.
19

2.
 D

ra
in

ag
e

D
ra

in
ag

e 
de

ns
ity

 (
km

/
km

2 )
E

xt
ra

ct
ed

 s
tr

ea
m

 n
et

w
or

k 
(R

eg
io

na
l 

A
ut

on
om

ou
s 

C
or

po
ra

tio
n 

of
 C

en
tr

al
 

A
nt

io
qu

ia
)

0
–

2
65

.6
7

69
.8

6
1.

0
6

2–
4

15
.8

5
17

.0
4

1.
0

8

4
–

6
10

.9
3

10
.4

5
0.

9
6

6
–

8
7.

55
2.

65
0.

35

>
8

9.
61

3.
86

0.
40

3.
 S

oi
l

S
oi

l d
ep

th
 (

m
)

C
al

cu
la

te
d 

ba
se

d 
on

 (
B

ot
er

o 
et

 a
l..

 
20

15
)

0.
2–

0.
3

9.
99

13
.6

2
1.

3
6

0.
3

–
0.

5
3.

4
4

5.
11

1.
49

Ta
b

le
 1

. (
C

on
tin

ue
d)

(c
on
tin
ue
d)

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 17 Nov 2024
Terms of Use: https://bioone.org/terms-of-use



Vega et al.	 9

D
at

a
 t

y
pe


C

o
n

di
t

io
n

in
g

 fac



tor


D

at
a

 source








C
lass




C
lass




 %
La

n
dslide







 %
F

re


q
ue


n

c
y

 ra
t

io

0.
5

–
0.

8
9.

41
11

.6
1

1.
23

0.
8

–1
.0

9.
7

11
.8

4
1.

22

1.
0

–1
.5

31
.9

6
29

.4
9

0.
92

1.
5

–
2.

0
23

.3
2

21
.0

5
0.

9
0

2.
0

–
2.

5
12

.1
7

7.
28

0.
6

0

S
oi

l t
yp

e
G

en
er

at
ed

 fr
om

 li
th

ol
og

ic
al

 u
ni

ts
S

ilt
y 

cl
ay

94
.3

6
98

.4
5

1.
0

4

S
ilt

y 
sa

nd
5.

62
1.

55
0.

28

S
an

dy
 s

ilt
0.

02
0.

0
0

0.
0

0

4.
 G

eo
lo

gi
ca

l
Li

th
ol

og
yb

D
ig

iti
ze

d 
fr

om
 1

:1
0

0,
0

0
0 

ge
ol

og
y 

m
ap

s 
(C

ol
om

bi
an

 In
st

itu
te

 o
f G

eo
lo

gy
 

an
d 

M
in

in
g)

K
aa

92
.0

1
85

.4
5

0.
93

Q
ar

5.
62

1.
55

0.
28

Tc
f

0.
02

0.
0

0
0.

0
0

Td
t

2.
35

13
.0

0
5.

53

5.
 C

ov
er

ag
e

L
an

dc
ov

er
E

xt
ra

ct
ed

 fr
om

 1
:1

0
0,

0
0

0 
la

nd
 C

ov
er

 
m

ap
 2

0
05

–
20

09
 (

C
ol

om
bi

an
 In

st
itu

te
 

of
 H

yd
ro

lo
gy

. M
et

eo
ro

lo
gy

 a
nd

 
E

nv
iro

nm
en

ta
l S

tu
di

es
)

W
ee

dy
 p

as
tu

re
s

9.
85

3.
33

0.
3

4

C
on

tin
uo

us
 u

rb
an

 z
on

e
0.

56
0.

0
0

0.
0

0

M
os

ai
c 

of
 p

as
tu

re
s 

an
d 

cr
op

s
7.

18
1.

16
0.

16

C
le

an
 p

as
tu

re
s

9.
3

6
14

.0
9

1.
51

C
of

fe
e 

cr
op

3.
48

6.
19

1.
78

M
os

ai
c 

of
 c

ro
ps

 w
ith

 n
at

ur
al

 s
pa

ce
s

8.
28

3.
56

0.
43

F
ra

gm
en

te
d 

fo
re

st
 w

ith
 p

as
tu

re
s 

an
d 

cr
op

s
0.

0
9

0.
0

0
0.

0
0

S
ec

on
da

ry
 v

eg
et

at
io

n 
or

 in
 tr

an
si

tio
n

27
.5

9
39

.6
3

1.
4

4

G
al

le
ry

 fo
re

st
 a

nd
 r

ip
ar

ia
n

1.
29

1.
32

1.
02

P
as

tu
re

 m
os

ai
c 

w
ith

 n
at

ur
al

 s
pa

ce
s

6.
0

8
1.

93
0.

32

C
ro

p 
m

os
ai

c
2.

0
9

0.
85

0.
41

M
os

ai
c 

of
 c

ro
ps

. P
as

tu
re

s 
an

d 
na

tu
ra

l 
sp

ac
es

2.
37

0.
0

0
0.

0
0

D
en

se
 fo

re
st

 u
nd

er
 th

e 
m

ai
nl

an
d

4.
76

5.
73

1.
20

D
en

se
 h

ig
hl

an
d 

fo
re

st
17

.0
0

22
.2

1
1.

31

Ta
b

le
 1

. (
C

on
tin

ue
d)

(c
on
tin
ue
d)

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 17 Nov 2024
Terms of Use: https://bioone.org/terms-of-use



10	 Air, Soil and Water Research ﻿

D
at

a
 t

y
pe


C

o
n

di
t

io
n

in
g

 fac



tor


D

at
a

 source








C
lass




C
lass




 %
La

n
dslide







 %
F

re


q
ue


n

c
y

 ra
t

io

N
D

V
I

E
xt

ra
ct

ed
 fr

om
 a

 L
an

ds
at

 8
 O

LI
 

se
ns

or
 im

ag
e 

(1
1/

01
/2

01
5.

 p
at

h 
9 

ro
w

 
56

) 
(h

tt
ps

://
ea

rt
he

xp
lo

re
r.u

sg
s.

go
v)

<
0.

2
3.

39
13

.0
0

3.
83

0.
2–

0.
3

5.
88

24
.8

5
4.

23

0.
3

–
0.

4
27

.9
8

28
.7

9
1.

03

0.
4

–
0.

5
50

.0
9

3
0.

88
0.

62

>
0.

5
12

.6
6

2.
48

0.
20

6.
 H

yd
ro

lo
gi

ca
l

S
tr

ea
m

 p
ow

er
 in

de
x 

(×
10

6 )
C

al
cu

la
te

d 
us

in
g 

D
T

M
0

–1
0

99
.7

3
99

.9
2

1.
0

0

10
0

–
3

0
0.

16
0.

0
8

0.
50

3
0

–7
0

0.
0

9
0.

0
0

0.
0

0

>
70

0.
02

0.
0

0
0.

0
0

S
ed

im
en

t t
ra

ns
po

rt
 in

de
x 

(×
10

3 )
C

al
cu

la
te

d 
us

in
g 

D
T

M
0

–1
86

.9
0

86
.1

5
0.

99

1–
9

12
.4

0
13

.1
6

1.
0

6

9
–1

8
0.

49
0.

54
1.

10

18
–

40
0.

18
0.

0
8

0.
4

4

>
40

0.
03

0.
0

8
2.

67

To
po

gr
ap

hi
c 

w
et

ne
ss

 
in

de
x

C
al

cu
la

te
d 

us
in

g 
D

T
M

>
10

83
.6

0
63

.0
8

0.
75

10
–1

2
12

.2
7

3
0.

03
2.

4
5

12
–1

5
3.

26
6.

11
1.

87

>
15

0.
88

0.
77

0.
88

A
nt

ec
ed

en
t r

ai
nf

al
l i

nd
ex

 
(m

m
)

C
al

cu
la

te
d 

us
in

g 
IM

E
R

G
 r

ai
nf

al
l d

at
a 

ba
se

d 
on

 (
K

ir
sc

hb
au

m
 &

 S
ta

nl
ey

, 
20

18
)

>
9

13
.3

1
16

.7
2

1.
26

9
–1

3
14

.4
0

26
.8

6
1.

87

>
13

72
.2

8
56

.4
2

0.
78

bK
aa

: I
nt

er
st

ra
tifi

ca
tio

ns
 o

f t
he

 s
ha

le
s,

 s
ilt

st
on

es
, m

ud
st

on
es

, s
an

ds
to

ne
s,

 c
he

rt
s,

 a
nd

 p
ol

ym
ic

tic
 c

on
gl

om
er

at
es

; Q
ar

: A
llu

vi
al

 d
ep

os
its

; T
cf

: G
ra

no
di

or
ite

 b
at

ho
lit

h;
 T

dt
: P

yr
ox

en
e 

di
or

iti
c 

st
oc

k.
 [A

Q
: 3

]

Ta
b

le
 1

. (
C

on
tin

ue
d)

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 17 Nov 2024
Terms of Use: https://bioone.org/terms-of-use



Vega et al.	 11

Table 2.  Statistical Description of Most Significant LCF.

Response variable Classes Frequency (%)  

Landslide occurrence (0) No 374,682 (99.66%)  

(1) Yes 1,292 (0.34%)  

LCF VIF TOL

Landforms (1) Canyons, deeply, incised streams 1.22
 
 
 
 
 
 
 
 
 

0.81

(2) Midslope drainages, shallow valleys 29,951 (7.97%)

(3) Upland drainages, headwaters 2,143 (0.57%)

(4) U-shape valleys 52,952 (14.08%)

(5) Plains 1,104 (0.29%)

(6) Open slopes 165,337 (43.98%)

(7) Upper slopes, mesas 43,169 (11.48%)

(8) Local ridges/hills in valleys 2,200 (0.59%)

(9) Midslope ridges, small hills in plains 31,831 (8.47%)

(10) Mountain tops, high ridges 24,395 (6.49%)

Soil type (1) Silty clay 354,790 (94.37%) 2.41 0.41

(2) Silty sand 21,184 (5.63%)

Landcover (1) Weedy pastures 37,082 (9.86%) 1.13 0.88

(2) Continuous urban zone 2,124 (0.56%)

(3) Mosaic of pastures and crops 26,991 (7.18%)

(4) Clean pastures 35,199 (9.36%)

(5) Coffee crop 13,108 (3.49%)

(6) Mosaic of crops with natural spaces 31,115 (8.28%)

(7) Fragmented forest with pastures and crops 319 (0.08%)

(8) Secondary vegetation or in transition 103,777 (27.60%)

(9) Gallery forest and riparian 4,870 (1.30%)

(10) Pasture mosaic with natural spaces 22,890 (6.09%)

(11) Crop mosaic 7,848 (2.09%)

(12) Mosaic of crops, pastures, and natural 
spaces

8,929 (2.37%)

(13) Dense forest under the mainland 17,855 (4.75%)

(14) Dense highland forest 63,867 (16.99%)

  Min Q1 Q2 Mean Q3 Max  

TWI 5.85 8.91 9.83 10.17 10.89 33.60 1.21 0.82

NDVI 0.04 0.37 0.43 0.41 0.47 0.61 1.29 0.77

TRI 0.00 3.29 4.54 4.68 5.81 42.04 2.16 0.46

Curvature −46.08 −1.28 0.00 −0.25 0.64 31.36 4.39 0.22

Elevation 1,238 1,776 2,036 2,093 2,351 3,724 1.44 0.69

Note. The value between parenthesis in the class column corresponds to coding of categorical variables.
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calculated based on the binary confusion matrix (Agarwal, 
2020; Ahamad et  al., 2020). To do this, first the following 
measures were calculated, True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN). Then, the 
following performance metrics were calculated:

	 Precision =
TP

TP+FP( ) 	 (1)

	 Recall=
TP

TP+FN( ) 	 (2)

	 Specificity =
TN

TN+FP( ) 	 (3)

	 Accuracy=
TP+TN

TP+TN+FP+FN

( )
( )

	 (4)

	 F1-Score=
2 Precision Recall

Precision+Recall

× ×( )
( )

	 (5)

Another statistical metric used was Area Under Curve (AUC) 
of the Receiver Operating Characteristic (ROC). The AUC 
ranges from 0 to 1 and represents the predictive performance of 
the model (Fawcett, 2006). There are five categories to under-
stand this value with respect to the level of accuracy: excellent 
(0.9–1.0), good (0.8–0.9), fair (0.7–0.8), poor (0.6–0.7), and fail 
(0.5–0.6) (Das & Lepcha, 2019; Rasyid et al., 2016). In addi-
tion, the probability-based log loss classification metric was also 
calculated and used to compare the performance of MLA.

These metrics were calculated for each of the fitted algo-
rithms. The choice of the best algorithm to explain the occur-
rence of a possible landslide was carried out by comparing and 
counting the number of metrics in favor of each algorithm. The 
MLA used in this study were implemented using R software 
(R Core Team, 2022). They are all part of the “alookr” package. 
For description of this package see https://CRAN.R-project.
org/package=alookr.

Interpretation of MLA output with SHAP method.  In this work, 
the SHapley Additive exPlanations (SHAP) approach was 
adopted to understand the MLA output. This method is a 
game theoretic approach to explain the output of any MLA. It 
provides a unified framework to interpret predictions through 
calculating the Shapley values that provide the coherence of 
the explanations (Inan & Rahman, 2023; Kavzoglu et  al., 
2021). The SHAP method allows local interpretation using the 
Shapley value for each feature in a single sample to show the 
contribution of each feature to the predicted value. The SHAP 
method can be consistent by aggregating local explanations 
into global explanations and by separating single-factor effects 
from interaction effects (Zhou et al., 2022).

Results and Discussion
Statistical description of most significant LCF

A multicollinearity analysis was performed. Then, the Relief-F 
attribute selection method for most significance LCF was used. 
LCF with average merit (AM) values less than or equal to zero 
were not considered in the MLA training process since they 
were not statistically significant in explaining the response 
variable. Figure 5 shows the significant LCF and their respec-
tive AM, indicating their relative importance for explaining the 
landslide occurrence. These results were obtained using a 
standard random 5-fold cross-validation with Relief-F method. 
All these values are positive, and indicate that NDVI has the 
highest AM, followed by the factors Elevation, Curvature, and 
TWI. Landcover and Soil Type have the lowest AM values. 
Table 2 shows the values of the tolerance and variance inflation 
factor for multicollinearity diagnosis. All the conditioning fac-
tors previously selected by the Relief-F method have a toler-
ance greater than 0.2 and a VIF less than 5, indicating that 
there are no multicollinearity problems among the LCF.

Spatial distribution of most significant LCF and 
frequency ratio

Figure 6 shows the spatial distribution of the chosen LCF for 
modeling and its value ranges. In general terms it can be 
noticed that the spatial distribution of the elevation factor 
shows the altimetric variation of the study area, showing a defi-
nite pattern with a marked trend of increasing low values from 
the east to higher values in the west. In addition, it is observed 
that most of the landslides have occurred at higher elevations. 
In fact, it can be noticed that the greatest occurrence of land-
slides in the basin corresponds to the elevation range between 
3,000 and 3,500 m.a.s.l., where there are landforms with gradi-
ents of slopes greater than 45°.

The curvature convex and straight (plan) present the greater 
frequency ratio (FR), due to this formation is favorable for 
landslide initiation according to used landslide inventory. High 
values of Terrain Ruggedness Index (TRI) were present in the 
landslide zone where predominantly silty clay soils exist formed 
from pyroxene dioritic stocks. The greater frequency ratio in 

Figure 5.  Average merit of landslide conditioning factors considered.
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Figure 6.  Spatial distribution of landslide conditioning factors used in modeling.
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NDVI is presented in the range values of 0.2 to 0.3 indicating 
that the landslides occurred in areas where bare soil or non-
healthy low vegetation were present. Moderate values of 
Topographic Wetness Index (TWI) were present in the area 
affected by landslides. Areas of coffee crops and secondary veg-
etation were commonly affected by the landslide history in the 
study area which was reflected in its FR values.

Performance of MLA

Since the original used dataset presents balancing problems in 
terms of the variable landslide occurrence (0.34% landslide 
records, 99.66% non-landslide records), before applying the 
seven MLA to the training dataset, the SMOTE resampling 
method was applied to them, creating synthetic samples of the 
minority class using a k-nearest neighbor algorithm.

On the other hand, according to the results of the Wilcoxon 
test, the null hypothesis is rejected, concluding the existence of 
statistically significant differences between all the MLA pairs 
considered. Once it has been identified, different metrics for 
each algorithm used to measure their performance were calcu-
lated using the test dataset. The validation metrics used, and 
their results are shown in Table 3. The values of the validation 
metric highlighted in bold in Table 3, identify the best per-
forming algorithm on that metric. According to these results 
the best performing algorithm for predicting landslide suscep-
tibility in the study area considering the adopted LCF is the 
RF algorithm (AUC = 0.95).

The AUC values for each model are shown in Table 3. This 
assessment method was used previously by several authors 
(Hong et al., 2019; Ozer et al., 2020; Rahali, 2019) to check the 
model performance, and in this work, the ROC curves were 
also used for the same purpose. The RF method yields the best 
classification accuracy, and RPART yields the worst perfor-
mance (AUC = 0.72). All MLA employed in the present study 
provide acceptable results.

Regarding the results of the other models (Figure 7), the Logit 
(Figure 7d) and Lasso (Figure 7e) models, which are based on 
regressions, present similarities in terms of their landslide 

prediction capacity, showing differences of the order of 10% in all 
the validation metrics. Regarding the models based on decision 
trees, XGBoost (Figure 7a), Ranger (Figure 7c), and CTREE 
(Figure 7f ), the spatial distribution of the predicted values of 
landslide susceptibility do not differ much and show similarities 
in terms of the spatial patterns of each landslide susceptibility 
class, except for the RPART model (Figure 7b), in which there is 
a clear predominance of the “Low” landslide susceptibility class in 
almost the entire basin that differs spatially with the other mod-
els, even in terms of predictive ability using the AUC indicator 
(Table 3). Compared to the other models, RPART model per-
formed very poorly, indicating that this model is unsuitable for 
landslide susceptibility mapping in the study area.

According to Huang and Zhao (2018), two main steps 
should be followed in order to create a landslide susceptibility 
map: Generate the landslide susceptibility values, and then 
reclassify them. The method used to reclassify these values 
depends on the histogram values (Natural breaks, equal inter-
vals, standard deviation, among others). The landslides maps 
were obtained using the results of the models, which were cat-
egorized in five classes: very low, low, moderate, high, and very 
high classes, using natural break values distribution.

Regarding other studies in the same area with other kinds of 
methodologies and LCF used, it can be mentioned that Ruiz 
Vásquez and Aristizábal (2018) obtained an AUC = 0.69 using 
a multivariate statistical logistic regression analysis. Marin et al. 
(2021) obtained a performance of the models close to 
AUC = 0.80 for the total basin, and an AUC = 0.56 for the 
upper part of the basin using deterministic models (TRIGRS 
model). Hidalgo and Vega (2021) obtained an AUC = 0.56 
using the EPADYM model to calculate the failure probability 
and factor of safety under seismic and static conditions. Finally, 
Vega and Hidalgo, (2023) obtained AUC values of 0.95, 0.86 
and 0.60 using SVM model, fuzzy gamma model and TRIGRS 
model respectively, for the landslide-event hazard mapping 
using the records of May 18, 2015. In other regions with simi-
lar topographic conditions with intense rainfall have been car-
ried out studies where the efficiency of MLA was better than 
the deterministic models, as the case reported in Z. Liu, Gilbert, 

Table 3.  Performances Indicators (Metrics) for MLA Considered. 

Performance Indicator Logistic RPART CTREE Random Forest Ranger XGBoost Lasso

Accuracy 0.83 0.89 0.86 0.90 0.91 0.88 0.88

Precision 0.01 0.02 0.01 0.03 0.03 0.02 0.01

Recall 0.53 0.51 0.50 0.89 0.81 0.58 0.46

Sensitivity 0.53 0.51 0.50 0.89 0.81 0.58 0.46

Specificity 0.84 0.89 0.86 0.90 0.91 0.88 0.88

F1 Score 0.02 0.03 0.02 0.06 0.06 0.03 0.03

LogLoss 0.45 0.42 0.39 0.29 0.30 0.33 0.47

AUC 0.77 0.72 0.80 0.95 0.93 0.82 0.77
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et al. (2021), where the accuracy was about 82% against accura-
cies above 90% using RF algorithm.

RF algorithm has better accuracy in prediction compared to 
linear models. But it cannot be interpreted, so it is often con-
sidered as a black-box model. In this work, an interpretable 
algorithm, SHAP method, is explored for the interpretation of 
LSA models and the determination of predominant LCF. 
Figure 8a shows the LSM of the study basin obtained using the 
RF model. The global prediction results are reasonable to the 
statistical analysis of different landslide susceptibility classes. 

The very low susceptibility class covers about more than half of 
the study area (62.4%; 36.7 km2) and low class 23.2%; 
(13.6 km2). The areas with moderate and high susceptibility 
classes cover 7.6% (4.5 km2) and 4.3% (2.5 km2) of the study 
area respectively. Finally, very high landslide susceptibility class 
covers 2.4% (1.4 km2) of the basin, almost doubling the area of 
landslide registered in the basin according to landslide inven-
tory used.

Finally, the distribution of landslides in the different sus-
ceptibility classes was statistically considered and an analysis of 

Figure 7.  Landslide susceptibility maps using: (a) XGBoost, (b) RPART, (c) Ranger, (d) Logit, (e) Lasso, and (f) CTREE.
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landslide density in the five susceptibility classes was per-
formed. In order to assess whether the generated landslide sus-
ceptibility map meets the requirements, two principles are 
used: First, an ideal landslide susceptibility map has landslide 
density values that increase from lower to higher susceptibility 
class (Pradhan & Kim, 2016). Finally, the high-risk areas 
should account for a small percentage of the total area (Huang 
& Zhao, 2018). Figure 8b shows the frequency ratio and land-
slide densities for all classes. Indeed, the very high class has the 

highest landslide density (LD = 0.08) and landslide frequency 
ratio (FR = 22.6). Additionally, according to Figure 8c, more 
than 85% of the events recorded in the inventory occur in this 
class, according to the values determined with the RF model.

In order to provide global interpretability to the output of 
RF model, SHAP method was conducted. According to the 
SHAP values obtained for the test dataset, Elevation and 
NDVI are the most significant factors for predicting the occur-
rence of landslides based on SHAP values heatmap (Figure 9). 

Figure 8.  Landslide susceptibility map using random forest (RF).

Figure 9.  SHAP values heatmap for RF model output.
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In fact, almost 40% of the dataset has high SHAP values (red 
color) in both conditioning factors, associated to landslide 
occurrences while approximately in a 50%, the combination of 
low SHAP values (blue color) in all LCF is associated to non-
occurrence of landslide. The remaining 10%, corresponds to a 
combination of medium SHAP values of all LCF which lead 
to landslide occurrence. The obtained SHAP values are conse-
quents with the results of the mean decrease Gini values calcu-
lated previously (Figure 10), where both Elevation and NDVI 
has the higher importance.

Regarding to the magnitude of each LCF and its influence 
in RF model output, in Figure 11, it can be noticed that the 
higher impact on RF model predictions is related to high val-
ues of Elevation and low values of NDVI, which is very con-
sistent with the analysis carried out in section 5.2 about spatial 
distribution of most significant LCF and frequency ratio. High 
Elevation values in the basin are related to steepest zones prone 
to landslide occurrence. Low NDVI values are related to a bare 
soil and poor vegetation areas, very susceptible to infiltration 
process with the consequent loss of slope stability. The remain-
ing LCF do not present a remarkable impact on RF model 
predictions.

On the other hand, and as illustration of an example of local 
interpretability, in Figure 12, it is shown the SHAP values 
waterfall of a landslide scar pixel (cyan color) in the upper part 

of study basin, which was correctly classified as landslide with 
RF model. Again, in this case Elevation and NDVI have the 
most effect on prediction, whose values are in the conditioning 
factor class with higher frequency ratio (Table 2). Additionally, 
the values of Soil Type and Landform in this pixel, correspond 
to silty clay soils and open steep slopes prone to occurrence of 
landslides. The remain LCF have no major relevance on RF 
model output.

Conclusions
Landslides are one of the most widespread and complex natu-
ral geodynamics phenomena. In frequently affected regions by 
landslide, such as tropical mountainous regions, an increase in 
the number of landslides studies have been shown with the 
impulse of researchers and regional and local planners. 
Nowadays, MLA have been applied for landslide susceptibility 
mapping, making valuable progress. Model algorithm accuracy 
and diversification have improved susceptibility mapping, par-
ticularly with the rapid growth of computer technology and the 
popularization of GIS techniques.

Relief-F method enabled the detection of potential LCF 
that could adversely impact the MLA performance, as well as 
the understanding of LCF that could contribute to the model 
performance. The LCF representing the terrain characteristics 
of the study basin were considered very important. Conversely, 
geologic factors were found to be the least effective factor.

In this study, the landslide susceptibility maps were pro-
duced by applying seven different MLA (RF, XGBoost, 
RPART, Ranger, Logit, Lasso, CTREE). According to some 
performance metrics, all MLA showed good performance. 
However, the RF method yields the best classification accuracy 
with an AUC= 0.95, RPART yields the worst performance 
with an AUC = 0.72. Based on surface comparison analysis, the 
most representative results were provided by RF and conse-
quently, RF is the most appropriate approach for landslide sus-
ceptibility assessment.

SHAP method provide both global and local interpretability 
to MLA. According to this method, most influent LCF on land-
slide susceptibility probabilities were determined. Results 

Figure 10.  Contribution of LCF in RF model output: (a) mean SHAP values and (b) Gini values.

Figure 11.  SHAP values plot for RF model output.
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revealed that the Elevation and NDVI had the highest positive 
contribution, while Soil Type and Curvature had no major 
implications. In addition, it is worth mentioning that terrain and 
coverage factors had a significant contribution to the landslide 
occurrences in the study basin, considering that four out of the 
eight LCF modeled, were the most influential factors on land-
slide phenomena (Elevation, NDVI, Landcover, and Landforms).

Landslide susceptibility analysis is vital for identifying zones 
of future landslide occurrence and the proper estimation of 
landslide-induced risk. In this sense, MLA are efficient and can 
help to predict disaster risk and decrease disaster costs. The 
results of a landslide susceptibility analysis using MLA hold 
immense potential in the field of regional landslide mapping, 
facilitating the development of effective strategies aimed at 
minimizing the devastating impacts on human lives, infrastruc-
ture, and the natural environment. By leveraging these findings, 
proactive measures can be devised to safeguard vulnerable areas, 
mitigate risks, and ensure the safety and well-being of commu-
nities. Nevertheless, to fulfill this purpose, interpretation, and 
explanation of the results of such MLA is required for its cor-
rect implementation. Therefore, methods such as SHAP values 
are used to address this issue in decision making processes based 
on learning algorithms, providing more abundant and relevant 
information for landslide risk management.
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