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Research Article

Nonvolant Small Mammal (Rodentia
and Didelphimorphia) Assemblages
Structure in Areas Under Mining
Impact in the Brazilian Amazon

Ana Carla Rodrigues1,2 , Hugo Cardoso de Moura Costa3,
Michel Barros Faria4, and Fabiano Rodrigues de Melo5

Abstract

Tropical forests are the most biodiverse ecosystems on Earth. Unfortunately, they are often degraded by large enterprises that

convert large areas of continuous forest into forest mosaics or into deforested areas in order to seek economic development

through infrastructure construction. This study evaluates how the assemblage of nonvolant small mammals is structured after

the implementation of a bauxite mining in the Saracá-Taquera National Forest, Pará, Brazil. We tested the hypothesis that the

clearings for bauxite mining produce an edge effect over the small mammal assemblage and that the size of the deforested area

increases the impact’s magnitude. Data collection took place through live traps from 2010 to 2012, totaling an effort of 56,220

trap nights in both impacted and pristine areas. Generalized Linear Models revealed that the size of the mined area was the

main predictor explaining species impoverishment in impacted areas. Multivariate Permutational Analysis of Variance and

Multivariate Dispersion Permutation Analysis revealed differences in species composition between impacted and nonimpacted

sites and that these differences are due to species turnover. We recommended that concessions for land use should be

rethought, especially in protected areas and when major areas are subjected to a new economic exploitation cycle.
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Tropical forests are the most biodiverse ecosystems in

the world (W. Laurance, 2002). However, human activ-

ities such as large enterprises pursuing economic devel-

opment by mining, road construction, agriculture, and

hydropower have converted large areas of continuous

forest into forest mosaics with irregular sizes and

shapes, inserted into a matrix of habitat usually unsuit-

able for biodiversity (Benchimol & Peres, 2015;

Cochrane & Laurance, 2002; Ewers & Didham, 2007;

Ferreira et al., 2014; W. F. Laurance et al., 2002).

This recent transformation of natural landscapes can

be the main cause of increasing species extinction rates

even in protected areas ((PAs) (Benchimol & Peres, 2015;

Henle et al., 1996)), although the extinction debt is

poorly understood (Rangel, 2012) and the time lag of

occupancy after a disturbance is also very unclear and

poorly known (Metzger et al., 2009; Sales et al., 2015).
In this scenario, the creation and implementation of

PAs is the main strategy to prevent or diminish the

impacts of the expansion of anthropogenic activities on

forests (Nolte et al., 2013; Walker et al., 2009). In Brazil,
National Forests are a category of PAs for which the main
purpose is to promote the sustainable use of its natural
resources in an attempt to combine economic development
and biodiversity conservation being logging and mining
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concessions the most frequent activities (Brasil, 2000;
Richardson & Peres, 2016).

During ore extraction processes, such as bauxite
mining, the area is deforested, and the surface layers of
the soil are completely removed (Knowles & Parrotta,
1995), which hinders natural regeneration after exploita-
tion (Parrotta et al., 1997). The remaining forest, adjacent
to mining areas, is exposed to a variety of impacts that
disrupt the biotic and abiotic environmental conditions
and can extend by several meters into the forest. These
impacts change the structure and function of the natural
assemblages and include the edge effect (Murcia, 1995;
Pfeifer et al., 2017), fire susceptibility (Barlow et al.,
2006; Cochrane & Laurance, 2008; W. Laurance, 2002),
increased accessibility to hunters, invasion of opportunis-
tic species, and even extinction of endemic species
(Benchimol & Peres, 2015; Palmeirim et al., 2018;
Santos-Filho et al., 2012).

Nonvolant small mammals are represented by the
orders Didelphimorphia and Rodentia. This group of spe-
cies strongly influences the structuring and maintenance
of forest’s species community structure, as they act as seed
dispersers and predators and are primary prey for mam-
malian meso-carnivores, snakes, and birds of prey
(Brewer & Rejmánek, 1999; Crooks & Soul�e, 1999;
Palomares et al., 1995; Rogers & Caro, 1998; Slade &
Swihart, 1983); therefore, changes in species richness,
abundance, and composition of nonvolant small mam-
mals assemblage are also reflected in trophic chains with
consequences for many ecosystem dynamics. In addition,
several nonvolant small mammal species are sensitive to
environmental impacts and are considered to be good
bioindicators, mainly because they possess small home
ranges, and both low locomotion and dispersal ability
to move between remaining forest patches (Bonvicino
et al., 2009; Eisenberg & Redford, 1999; Forero-Medina
& Vieira, 2009; Paglia et al., 2012; Prevedello et al., 2011;
Santos-Filho et al., 2012).

In this study, we evaluate how the assemblage of
nonvolant small mammals are structured after the conse-
quences of extensive clear cutting for bauxite mining activ-
ities within a National Forest in the Brazilian Amazon. We
tested the hypothesis that the distance from the forest edge
and the size of the deforested area affects negatively the
number of small-mammal species, and that species com-
position changes from impacted to nonimpacted sites.

Materials and Methods

Study Area

The study was carried out in the Saracá-Taquera
National Forest (hereafter STNF; 01�200–01�550 S to
56�000–57�150 W), a Federal Protected Area located in
the municipality of Oriximiná, State of Pará, on the right

bank of the Trombetas River (Figure 1). The region
presents a warm and humid Equatorial climate; mean
annual temperature is 26 �C. The terrain has steep pla-
teaus and slopes around it, with a maximum altitude of
140m, and sand banks through which run streams
(Knowles & Parrotta, 1995; MMA, 2001; Parrotta,
1995). Since 1979, STNF is under concession to a private
company for bauxite mining. This activity includes
deforestation of native areas located in plateaus and,
after the depletion of mines, reforestation with seedlings
of native species (Knowles & Parrotta, 1995) (Figure 1).

Data Collection

The study was carried out in the areas adjacent to the
deforestation resulting from the mining activity of bauxite
extraction. The impacted sites and their respective defor-
ested sizes were the following: Almeidas (702.32 ha),
Aviso (1,140.06 ha), Papagaio (418.31 ha), Periquito
(369.84 ha), and Saracá (1,134.62 ha). For comparison,
we studied continuous forests sites, used as a control,
which were not impacted by the mining: Bela Cruz,
Greig, and Monte Branco sites (Figure 1).

In the impacted sites, we installed two sets of sample
units adjacent to the deforested plateaus, whereas in the
nonimpacted sites, four sets of sampling unit were
installed since the plateaus were not deforested. Each
sample set was formed by four parallel sampling lines
of 350m each. The lines were placed at a distance of
50m, 100m, 250m, and 500m from the forest edge of
impacted sites and in the continuous forest in nonim-
pacted sites (Figure 2). In each parallel line, we installed
six pitfall traps, consisting of buckets of 64 liters spaced
50m from one another and connected by a plastic
canvas of 60 cm in height. At the end of each pitfall
sequence, 10 live traps were distributed in pairs with
15m between each pair of traps. Each pair consisted of
both a Sherman (430� 125� 145mm) and a Tomahawk
(450� 210� 210mm) traps. The traps were placed alter-
nately on the ground and suspended to capture the max-
imum number of species with different habits (Pardini,
2004; Umetsu et al., 2006).

All live-catch traps were baited with small portions of
an attractant made of banana, peanut powder, corn
meal, and sardines. The traps were checked daily, and
the baits were replaced to maintain their attractiveness
(Pardini, 2004; Pardini et al., 2005; Umetsu & Pardini,
2007). The live-catch traps and the pitfalls remained
open for six consecutive nights at each site. Field surveys
were conducted during both rainy and dry seasons of the
years 2010 and 2011 and during the rainy season of 2012,
totaling five field surveys at Almeidas, Aviso, Bela Cruz,
Monte Branco, Papagaio, Periquito, and Saracá, where-
as, at Greig, data were collected during the dry season of
2011 and during the rainy season of 2012.
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Voucher individuals of each species and those uniden-

tified in the field were euthanized using the usual techni-

ques of preservation of biological material (Auricchio,

2002), the others were tagged (Fish and Small Animal

Tag, size 1; National Band and Tag Co., Newport,

Kentucky) and released at the same capture location.

Animal manipulation and marking followed ASM

guidelines (Gannon et al., 2007) and was authorized by

the Chico Mendes Institute of Biodiversity (ICMBIO;

MMA/ICMBio license No. 009/2010, MMA/ICMBio

license No. 010/2012, renov. 9A/2010). The collected

animals were deposited in the scientific collection of

the Cap~ao da Imbuia Natural History Museum,

Curitiba, Paraná, Brazil.

Data Analysis

All analyses were carried out in program R version 3.5.3

(R Core Team, 2015). Using package iNEXT (Hsieh

et al., 2016), we evaluated sample completeness and

compared the number of species between impacted and

nonimpacted sites using sample size rarefaction

(interpolation) and prediction of Hill numbers by
extrapolating the number of individuals twice.

We performed Generalized Linear Model using a
Poisson distribution to assess the relationship between
nonvolant small mammals’ species richness in impacted
sites, distance to edge, and the size of the deforested area
(Bolker et al., 2009). Principal Coordinates Analysis
(PCoA) was used to depict variation in assemblage
structure between the nonimpacted and impacted sites.
To test the differences in species composition between
impacted and nonimpacted sites, we used a Multivariate
Permutational Analysis of Variance (PerMANOVA).
PCoA and PerMANOVA were performed using a
Bray Curtis similarity distance matrix (Anderson,
2001). We also used a Multivariate Dispersion
Permutation Analysis (PERMDISP) (Anderson, 2006)
to look for differences in group’s heterogeneity. Prior
to these analyses, we standardized our data set to species
abundance/1,000 trap nights when our sampling effort
differed between impacted and nonimpacted sites.
PerMANOVA and PERMDISP were performed using
the vegan package (Oksanen et al., 2015). Finally, to
verify if the dissimilarity (b-diversity) between impacted

Figure 1. Saracá-Taquera National Forest in Oriximiná, Pará, Brazil. Background colors represent elevation, with reddish and green
shades indicating high and low elevation, respectively. Map inset shows geographic location of each surveyed site, dark-gray, gray, and
purple color represents nonimpacted sites, whereas impacted sites are represented by orange, violet, pink, light-pink, and blue colors.
Yellow dots represent the location of each sampling set.
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and nonimpacted was driven by species substitution

(turnover) or loss of species (nestedness), we calculated
b-diversity using the Jaccard presence–absence coeffi-

cient. If multiple-site b-diversity calculations based on
Jaccard coefficient were sensitive to sample size, we cal-

culated b-diversity values for all sites using a resampling
procedure. We took 999 random samples from each site

to have comparable measures of turnover and nestedness
components. This analysis was performed using Betapart

package (Baselga & Orme, 2012).

Results

On the basis of 56,220 trap nights, we captured 662
individuals from 18 species, 10 belonging to the order

Rodentia and 8 belonging to the order Didelphimorphia
(Table 1). Extrapolated curves indicated that we cap-

tured 99% of the estimated species richness for the
study area; however, these did not reveal differences in
species richness between impacted and nonimpacted sites

(Figure 3).
The Generalized Linear Model indicated that the size

of the deforested area for mining activities has a negative

relationship with number of species (b¼�0.510,
p¼ 0.003; Figure 4). Contrary to our predictions, edge
distance was not a significant explanatory variable in

impacted sites (b¼�0.082, p¼ 0.379).

PCoA ordination revealed strong differences between

sample clusters formed by the impacted and nonim-
pacted sites (Figure 5), which was further confirmed by
permutation tests (PerMANOVA, R2¼ 0.27, F¼ 2.234,

p¼ 0.042; PERMDISP, F¼ 0.0, p¼ 0.981). Total
Jaccard dissimilarity between surveyed sites was 63%
due to species turnover and only 11% due to nestedness;

pairwise comparison between impacted and nonim-
pacted sites revealed 22% of total dissimilarity was due
to species substitution.

Discussion

This study showed that the deforested area required for
mining activities decreases the number of nonvolant

small mammal’s species in impacted sites. This corrobo-
rates previous studies which demonstrated that by
increasing the deforested area, the magnitude of

mining activity’s negative impacts on forest biodiversity
are amplified (Delciellos et al., 2015; Pardini et al., 2005,
2010; Pinotti et al., 2015; Umetsu et al., 2008). Even

when not located in a fragmented environment, we
found that the size of the deforested area caused species
loss; however, the extent of the environmental costs of
this activity beyond its operational limits are still uncer-

tain (Deikumah et al., 2014; Metzger et al., 2009;
Schueler et al., 2011).

100 m 50 m250 m500 m

Impacted site

Continuous forest

Non-impacted site

Continuous forest

A

B

50 m150 m250 m

Figure 2. Schematic representation of sampling units used to assess nonvolant small mammals at Saracá-Taquera National Forest,
Oriximiná, Pará, Brazil. (A) Sampling design used in impacted sites; white circle represent deforested site by mining activities, and black
lines represent parallel trap lines at 50 m, 100 m, 250 m, and 500 m from forest edge. (B) Sampling design used at non-impacted sites; black
lines represent trap lines at 50 m, 150 m, and 250 m from each other.
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No consequences of the edge effect on nonvolant small

mammals were detected. This is probably because the

remaining area is still large continuous forest (Delciellos

et al., 2015), considering the consequences of the edge

effect are aggravated by site area, the impact level,

the degree of isolation, the size and the shape of the

matrix, adjacent area quality, and forest fragmentation
level (Delciellos et al., 2015; Ewers & Didham, 2006;
Prevedello et al., 2013; Prevedello & Vieira, 2010).
As these factors are not characteristic of the studied
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Figure 3. Species accumulation curves of nonvolant small mam-
mals at Saracá-Taquera National Forest, Oriximiná, Pará, Brazil.
Extrapolated samples are represented by dotted lines, impacted
and nonimpacted sites are represented by red and green curves,
respectively, and shaded area represents the 95% confidence
interval.
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Figure 4. Relation between nonvolant small mammals’ number of
species and the size of deforested areas in impacted sites by bauxite
mining at the Saracá-Taquera National Forest, Oriximiná, Pará, Brazil.

Table 1. Nonvolant small mammal species captured in impacted and non-impacted sites by bauxite mining at Saracá-Taquera National
Forest, Oriximiná-Pará.

Impacted sites Nonimpacted sites

Total Almeidas Aviso Papagaio Periquito Saracá

Bela

Cruz Greig

Monte

Branco

Order Didelphimorphia

Caluromys philander 6 0 3 1 0 0 1 0 1

Didelphis albiventris 2 0 0 0 0 0 0 0 2

Didelphis marsupialis 29 0 0 10 2 6 0 1 10

Gracilinanus emiliae 1 0 0 0 0 0 1 0 0

Marmosa demerarae 165 18 35 15 8 12 15 39 23

Marmosops parvidens 176 3 17 19 13 6 25 63 30

Monodelphis arlindoi 77 5 1 16 5 0 16 25 9

Metachirus nudicaudatus 29 3 4 0 4 9 0 0 9

Order Rodentia

Euryoryzomys macconnelli 8 0 0 2 1 0 0 5 0

Guerlinguetus sp. 4 1 2 0 0 0 1 0 0

Hylaeamys megacephalus 30 0 0 11 4 0 3 12 0

Isothrix pagurus 2 1 0 0 1 0 0 0 0

Mesomys hispidus 7 0 0 1 0 0 0 1 5

Nectomys rattus 3 0 0 1 2 0 0 0 0

Oecomys bicolor 27 4 1 3 2 0 7 5 5

Proechimys cuvieri 70 3 1 11 6 5 11 24 9

Rhipidomys nitela 13 0 1 3 2 1 2 0 4

Zygodontomys brevicauda 13 0 0 0 2 0 1 9 1

Total individuals 662 38 65 93 52 39 83 184 108

Number of species 18 8 9 12 13 6 11 10 12
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areas, the absence of these aggravating factors may have

neutralized larger impacts. However, De Ara�ujo and
Espırito-Santo Filho (2012) and De Ara�ujo et al. (2014)

used the same areas in their studies and found edge effects

for galling insects, with greater species richness near the

edge of the forest. This can be explained by the different

ways in which taxonomic groups respond to changes

caused by the edge effect (Pfeifer et al., 2017).
Our study revealed that most of the species dissimilarity

was due to species turnover highlighting a high diversity

and heterogeneity even at a local scale. This makes the

impacts of deforestation more severe since each location

was unique in terms of species composition. In this way,
forest changes can mean, in the long term, irreplaceable

species losses as mining progresses, because there may be

unique species in each site, which can result in local extinc-

tions (Kerr & Currie, 1995; Rangel, 2012). Therefore, the

unprecedented Brazilian government attempts to reclas-

sify, downsize, and to open PAs for mining exploitation
is a threat to the Amazon and its biodiversity (De

Marques & Peres, 2015; Schueler et al., 2011) as the

strengthening of forest reserves are critical in trying to

reduce and mitigate species losses and changes in assembly

structure (Metzger et al., 2009; Nolte et al., 2013).

Conservation Implications

The sustainable exploitation of natural resources within

of Brazilian National Forests is permitted by law (Brazil,

2000). However, this study has shown that there are del-

eterious effects of biodiversity in areas adjacent to

mining within the boundaries of the STNF. In this con-
text, we emphasize that for the conservation of tropical
forests, it is necessary to analyze and rethink land use
concessions, especially within PAs such as National
Forests, the main objective of which is to protect biodi-
versity against the devastating anthropic processes that
are largely neglected by Brazilian environmental policy.
Currently, PAs in Brazil face major problems with a
misguided policy, a consequence of aggressive economic
development that puts at risk the delicate functionalities
in the different existing PA’s categories, weakening
them. Bills for further opening, reduction, and even
elimination of PAs for future mining operations are
lacking in planning to mitigate any damage and have
problematic consequences that disrupt the Amazon
biome (De Marques & Peres, 2015; Ferreira et al.,
2014; W. F. Laurance et al., 2001). Contrary to what
happens with Brazilian environmental policy, it is neces-
sary to strengthen PAs to reduce environmental changes,
which are fundamental to both conservation of the
world’s largest tropical forest and human well-being.
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and STCP Engineering projects.

ORCID iD

Ana Carla Rodrigues https://orcid.org/0000-0002-7687-

1502

References

Anderson, M. J. (2001). A new method for non-parametric

multivariate analysis of variance. Austral Ecology, 26(1),

32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Anderson, M. J. (2006). Distance-based tests for homogeneity

of multivariate dispersions. Biometrics, 62(1), 245–253.

https://doi.org/10.1111/j.1541-0420.2005.00440.x

−0.2

−0.1

0.0

0.1

0.2

−0.50 −0.25 0.00 0.25
PCOA1

PC
O

A2

Figure 5. Principal Coordinates Analysis (PCoA) ordination of
nonvolant small mammals’ composition in impacted (red circles)
and non-impacted (green circles) sites by bauxite mining at the
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