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Conversion Between Soil Texture Classification 
Systems Using the Random Forest Algorithm

Milan Cisty, Lubomir Celar and Peter Minaric
Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovakia.

ABSTR ACT: This study focuses on the reclassification of a soil texture system following a hybrid approach in which the conventional particle-size 
distribution (PSD) models are coupled with a random forest (RF) algorithm for achieving more generally applicable and precise outputs. The existing 
parametric PSD models that could be used for this purpose have various limitations; different models frequently show unequal degrees of precision in 
different soils or under different environments. The authors present in this article a novel ensemble modeling approach in which the existing PSD models 
are used as ensemble members. An improvement in precision was proved by better statistical indicators for the results obtained, and the article documents 
that the ensemble model worked better than any of its constituents (different existing parametric PSD models). This study is verified by using a soil dataset 
from Slovakia, which was originally labeled by a national texture classification system, which was then transformed to the USDA soil classification system. 
However, the methodology proposed could be used more generally, and the information provided is also applicable when dealing with the soil texture 
classification systems used in other countries.
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Introduction
The term soil texture indicates the distribution of soil particles 
(mineral grains) in soil according to their size (diameter). 
The range of individual soil particle diameters is classified into 
discrete intervals, which are also known as grain size frac-
tions or categories (for instance, labeled as sand, silt, or clay). 
There are many classification systems in the world, which dif-
fer according to the limits of the diameter sizes for each grain 
fraction or by the number of fractions.

The most preferred representation of such a classification 
is a grading curve. A grading curve is a cumulative function 
describing the relationship between the soil fraction percent-
ages and particle diameters, where the vertical axis (y-axis) 
defines the percentage of each fraction and the horizontal axis 
(x-axis) defines the soil particle sizes on a logarithmic scale. 
A point on the curve gives the percentage according to the 
weight of material smaller in size than the diameter at the 
given point on the graph’s x-axis.

Many environmental problems in which soil data serve 
as an input to simulation models are not restricted to national 
boundaries and therefore require international cooperation if 
solutions are to be found. The classification of soils accord-
ing to their texture is one of the basic methods used for a 
soil description. However, only a few countries use the same 
particle-size fractions in their classification systems for soil 

textures. Therefore, the transformation of particle-size texture 
descriptions between various systems is needed.1

Through a soil texture description, also known as a 
particle-size distribution (PSD), it is possible to predict various 
important soil properties (eg, saturated hydraulic conductivity, 
the soil water retention curve, available water capacity, ther-
mal conductivity, etc.). The so-called pedotransfer functions 
(PTFs) are often based on the sand, silt and clay fractions2–4 
of a particular classification system,5 eg, the USDA classifica-
tion system. Not all countries use this classification system; as 
a consequence, databases from these countries cannot provide 
us with the inputs for such computations or models. An exam-
ple of existing tools that have been developed for the above-
mentioned tasks is the Rosetta model, which was designed for 
PTF evaluations and is based on neural networks.6 This model 
works exclusively using the USDA classification system, so if 
the available data are not classified in this system, it is often 
desirable to accomplish a reclassification. Also, in other tasks, 
it is often necessary to carry out the transformation of tex-
tural classifications when data from different sources should 
be merged and used together.

The present study deals with a description of a texture 
system reclassification by the proposed model on a dataset 
from Slovakia, which was originally labeled by the National 
Classification System. However, the authors of the article 
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assume that the proposed methodology could be used more 
generally and that the information provided is also applicable 
when dealing with other soil texture classification systems and 
in other countries. Besides the classification systems that we 
studied in this article (the Kopecky classification system used 
in the Czech Republic and Slovakia and the USDA system), 
various other classification systems are commonly known in 
the soil scientific community, eg, the FAO soil texture classifi-
cation (also known as the European Soil map or HYPRES), the 
French “Aisne” soil texture classification, the French “GEPPA” 
soil texture classification, the German “Bodenartendiagramm” 
soil texture classification, the German “Standortserkundungs-
Anweisung” soil texture classification for forest soils, the 
German “Landwirtschaftliche Boden” soil texture classifica-
tion for arable soils, the UK Soil Survey of England and Wales 
texture classification, the Australian soil texture classification, 
the Belgian soil texture classification, etc.7

Some researchers have already proposed fitting the mea-
sured PSDs in various continuous parametric curves. When 
achieving such a relationship, it is possible to obtain a granu-
lar fraction’s percentage ratio in the sample under consider-
ation for any size of the particle’s diameter, which means that 
it is possible to get the values necessary for accomplishing a 
translation from one texture classification system to another. 
Several authors have conducted comparative studies on vari-
ous PSD models in order to determine the best model for the 
soil groups selected for their studies.7–10

The reported findings of the abovementioned works 
somewhat differ from each other, and there is no generally 
suitable PSD model available. In some of these models, there 
are also various optional parameters, the selection of which is 
based on a researcher’s know how. If this is not accomplished 
correctly, the results of the computations may be biased. 
As the transformation of a soil texture system is usually only 
a prerequisite for solving some subsequent tasks, this bias is 
propagated in the subsequent modeling or other work. There-
fore, for the sake of achieving more general and precise out-
puts while solving tasks dealing with transformations between 
various soil texture systems, the authors of the present article 
propose a hybrid approach, which has the potential for obtain-
ing improved results. Although the authors continue recom-
mending the use of the mentioned parametric PSD models 
in the proposed methodology, the final prediction is made by 
an ensemble machine learning algorithm based on regression 
trees, ie, the so-called random forest (RF) algorithm,11 which 
is built on top of the outputs of models that serve as ensemble 
members.

Materials and Methods
Description of the study area and available datasets. 

The area of interest—the Zahorska Lowland—is located in 
central Europe, more specifically in the western Slovak Repub-
lic. It is bounded by the river Morava in the west, and the 
Little Carpathians mountain range forms a natural boundary 

in the east. Most of the Zahorska Lowland is composed of 
Neogene sediments of a marine origin and younger Qua-
ternary sediments covering the surface of the plains, which 
are mainly represented by clayey sands, drift sands, and 
sandy clays.12 The main pedogenetic factors of the lowlands 
are azonal, such as the accumulation activity of streams and 
soil-disrupting floods along with soil erosion. The most wide-
spread soils in this area are chernozem, arenosol, and fluvial 
soils on the fluvial plains of river Morava. An intense accu-
mulation process of organic soil matter can be observed in the 
chernozems; therefore, they are appropriate for a large number 
of different plant species.

On the contrary, arenosols are soils at an early stage of 
development, and they contain almost no continuous vegeta-
tion on their surface, due to which the organic matter content 
is very low. They are suitable for growing crops with lower 
demands such as rye. Fluvisols are periodically disrupted by 
floods. Their profile is often constantly loaded with new layers 
of flood sediment (sludge).12

Classification systems used in this study. Among the 
various soil classification systems based on the soil texture, 
the ones most used in the Slovak Republic are as follows:

1.	 The Kopecky texture classification system, which dis-
tinguishes four categories of particle classes. The first 
category (clay) contains particles with diameter less 
than 0.01 mm, the second category (silt) particles whose 
diameter is limited to an interval of 0.01–0.05 mm, the 
third category (powder sand) particles with diameter 
0.05–0.1  mm, and the fourth category (sand) particles 
with sizes in the interval 0.1–2.0 mm.

2.	 A well-known classification very frequently used (also 
in Slovakia) is the USDA classification system, which is 
based on the classification of soils according to the per-
centage of clay (up to 0.002 mm), silt (0.002–0.05 mm), 
and sand (0.05–2 mm) particles. The visual representa-
tion of the USDA classification is a triangular classifica-
tion diagram. Within this diagram, 12 basic grain classes 
are marked (clay, silty clay, sandy clay, sandy clay loam, 
clay loam, silty clay loam, sand, loamy sand, sandy loam, 
loam, silt loam, and silt) in which it is possible to classify 
the samples.

A comparison of these two classification systems clearly 
shows various amounts of fractions in each of them and the 
discordant limits for each fraction. Namely, the fraction of 
clay particles in the USDA classification system ranges up to a 
value of 0.002 mm, while the Kopecky classification sets this 
limit at 0.01 mm. When solving various tasks for which it is 
necessary to have soil texture data in the USDA classification 
(eg, the mentioned example with the application of the Rosetta 
model), datasets using the Kopecky classification system are 
not compatible, which can be a problem. As we have already 
mentioned, there are many different texture classification 
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systems in the world. Hence, similar situations could arise 
more often, and the methodology which the authors would 
like to propose in this article may be generally useful.

Description of the datasets used. Two datasets were 
used in this article:

1.	 Data A—data for which the whole grading curve is 
available on the basis of which it is possible to calcu-
late the PSD values for both the Kopecky and USDA 
classifications.

2.	 Data B—data with only texture grain intervals under the 
Kopecky classification are available.

Dataset A. The samples were taken from the Zahorska 
Lowland.13 The number of samples was 43. They were air-
dried and sieved; textural and other analyses were performed. 
After these analyses were accomplished, the dataset contained 
the following parameters: grain curve, reduced bulk density 
ρd, and the points of the drying branches of the water reten-
tion curve. Additionally, the data for each sample also contain 
the volume of humus in the soil, the value of the saturated 
hydraulic conductivity K, and the geographic coordinates 
of the individual samples. Dataset A was recently obtained, 
and for each sample, a complete grading curve from which 
the readings of the percentages of the Kopecky and USDA 
classifications were made is also available. Because textural 
information for both classifications (Kopecky and USDA) is 
available for this dataset, these data were used to create and 
verify a model that serves for converting the soil textural 
description from the Kopecky classification to the USDA 
classification system.

Dataset B. This dataset contains data obtained from a pre-
vious work that was conducted in the area of the Zahorska 
Lowland in Slovakia. A total of 140 soil samples were taken 
from the various localities in this area, but the exact geographic 
location was not recorded when the samples were taken.14

The soil samples were evaluated by similar laboratory 
methods as in the previous dataset. The soil samples were 
air-dried and sieved for a physical analysis. A particle-size 
analysis according to four grain categories was performed 
using Cassagrande’s methods. Category I means the per-
centages of the clay (diameter  ,  0.01  mm), category II 
those of silt (0.01–0.05 mm), category III those of fine sand 
(0.05–0.1 mm), and category IV those of sand (0.1–2.0 mm). 
The dry bulk density, particle density, porosity, and saturated 
hydraulic conductivity were also measured for the soil samples. 
The points of the drying branches of the PTFs for the pres-
sure head values of -2.5, -56, -209, -558, -976 and -3060 cm 
were estimated using an overpressure equipment (set for pF-
determination with ceramic plates). As they were in a suffi-
ciently large quantity, these data served later (not in this work) 
for the derivation of the PTFs by using a data-driven model.

PSD models and their fitting. The nine parametric 
models of PSD involved in this study were evaluated and 

compared in order to derive the PSD functions. The models 
were developed by using an optimization procedure in order 
to choose the most suitable set of parameters of each model. 
The models chosen are the Fredlund models with three and 
four parameters (FR3, FR4), the Weibull model with three 
parameters (WB3), the Andersson model with four parameters 
(AND4), the van Genuchten model with three parameters 
(VG3), two Gompertz models (GP2, GP4), and a logarith-
mical (LG) and an exponential (EXP) model. These models 
were previously applied in various works, eg, in Zhao et al,15 
for determining the hydrological properties of soils adjacent 
to dams constructed in China. The parts of the models were 
chosen according to the results obtained by Botula et al.7

In the FR3 Fredlund model, three parameters needed 
to be optimized16 ie, a, b, and c, and it uses the predefined 
parameters df  =  0.001  mm and dm (df  =  0.0001  mm is a 
parameter related to the amount of fine particles in a soil and 
dm is the diameter of the minimum allowable particle size). 
The FR4 model contains four parameters, ie, a, b, c, and df, 
which should be found by the optimization procedure and 
the predefined parameter dm. The WB3 model with three 
parameters, ie, a, b, and c (and two predefined parameters: 
dmin  =  0.002  mm and dmax  =  2.0  mm), was previously used 
in Refs. 17 and 18 for the creation of PSD curves of several 
diverse soils. AND4 is a four-parameter model (parameters a, 
b, c, e) developed by Jauhiainen,19 based on an original theory 
of textural and water retention soil properties presented by 
Andersson.20 The VG2 and VG3 models were proposed by 
Haverkamp and Parlange2 on the basis of van Genuchten’s 
original soil water retention curve model (developed in 1980). 
The VG3 model was subsequently developed from the first 
derived VG2 version with two parameters, when the mutual 
relation m  =  1  -  1/n was used. VG3 considers both fitting 
parameters m and n as different and independent of each other 
and uses three additional parameters (a, b, and c). The GP2 
and GP4 models are two forms of the Gompertz model with 
two and four parameters (a, b) and (a, b, c and e). Their curves 
present specific cases of a logistic curve, which is more general 
than the normal one. The equation of this curve constitutes an 
asymmetric closed form. Both models were previously used for 
extracting PSD curves by Silva et al21 for soils in Brazil and 
by Nemes8 for soils in Germany and the Netherlands. The soil 
particles expressed in these models follow the Gompertz dis-
tribution. Finally, the logarithmic model and EXP model 
contain two parameters—LG parameters a and b and EXP 
parameters c and b.

All the models listed were used for determining the 
PSD functions by the optimization method. The L-BFGS-B  
method used box constraints, which means that for each vari-
able (the model’s parameter), a lower bound and an upper 
bound are given. This method is a limited-memory modifica-
tion of the quasi-Newton method.22 It was implemented in 
R language.23 The purpose of this optimization was to pre-
dict the points of the grain curve by each model as closely 
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as possible to the observed data by searching for the proper 
parameters of the model. The problem to be solved should be 
defined by the objective function, which in this article is pro-
posed to have the following form:

	
( )( )=

 −  ∑
2

compact act
1

Minimize . /n

d d d dd
W F F F

�
(1)

where Wd are the weights assigned to the grain diameters, 
by which it is possible to stress the precision of fitting of the 
particular points of the grain curve; n is the number of grain 
diameters; Fd

act is the actual (measured) percentage of the 
material with a diameter d or the smallest one in the sample; 
and Fd

comp is the percentage computed by the corresponding 
equation of the particular model from Table 1. This objective 
function is proposed to be minimized. In the case of an ideal 
model, the value of the objective function is zero.

Description and tuning of the RF model. The usual 
process for finding the best model for obtaining a proper theo-
retical parametric PSD function means applying more meth-
ods, eg, the models from Table 1, comparing their predictive 

ability with the help of the observed data and some statistical 
goodness-of-fit indicator, and then finally choosing the best 
performing model. However, there is usually no best para-
metric model that is superior under all circumstances. Vari-
ous parametric models frequently show different degrees of 
precision in different soils and different environments, so 
the application of a single parametric model often leads to a 
functional relationship that could be more precise in one part 
of a textural domain but less suitable in other parts. One of 
the possible solutions of this problem is the application of the 
ensemble methodology, which uses the best features of vari-
ous parametric models for achieving more general results from 
fitting the data to the actual values measured. Moreover, as 
was proved in this study, such a meta-model usually has the 
capability to fix systematic errors, if they are produced by the 
individual models (underestimation, overestimation, multipli-
cative error, etc.).

The goal of the ensemble methodology is to com-
bine the outputs of several models in order to improve the 
generalizability/robustness that could be obtained from any of 
the constituent models. The nine parametric models described 
hereinbefore were used for obtaining the parametric PSD 

Table 1. PSD models used in this study.

NAME MODEL PARAMETERS

Fredlund (FR3)

( )
( )

7

ln 1
1 1

ln 1ln exp 1

f

cb
f

m

d
d

F d
da
dd
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a, b, c,

df = 0.001 mm, 

dm = 0.0001 mm

Fredlund (FR4)

( )
( )

7

ln 1
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f

cb
f

m

d
d

F d
da
dd
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a, b, c, df,

dm = 0.0001 mm

Weibull (WB3)
( ) ( ) ( ){ }

( ) ( )
= + − − −

= − −min max min

1 1 exp

where /

bF d c c aD

D d d d d

a, b, c,

dmin = 0.002 mm

dmax = 2 mm

Andersson (AND4)
( )   = +     

log dF d a barctg c
e

a, b, c, e

Van Genuchten (VG3)
( )( ) 1 / , 

where  and  are independent to each other

cbF d a d

b c

−
 = + 

a, b, c

Gompertz (GP2) ( ) ( )( )exp expF d a d b = − − − 
a, b

Gompertz (GP4) ( ) ( )( ) = + − − − exp expF d c e a d b a, b, c, e

Logarithmic (LG) ( ) = +lnF d a d b a, b

Exponential (EXP) ( ) −= bF d cd c, b
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curves selected for the present study. The outputs of these 
parametric models are inputs for the ensemble model, namely, 
a data-driven model based on the RF algorithm, which 
means that a stacking type of ensemble was used. Stacking 
introduces the concept of (1) base models (PSD models) and  
(2) a meta-model, which computes the final results and 
replaces the averaging procedure used, eg, in bagging. In such 
a way, stacking tries to learn which base models are more reli-
able than others, using the mentioned meta-model (RFs in the 
solved task) to discover how best to combine the output of the 
base models to achieve the final results. The results of the base 
models are de facto new data for the learning problem, and an 
RF algorithm is used to solve this problem.

The RF algorithm consists of a set of regression trees (in 
this study, the authors are addressing a regression problem; it 
could also be populated with classification trees in the case of 
studying a classification problem). The resulting RF prediction 
is an average of the values of these many tree outputs, each one 
of which is grown on a bootstrap sample of the training data. 
The user chooses the number of trees that will be in the RF 
ensemble. A bootstrap sample means that each tree is trained 
using a sample obtained by randomly drawing N cases with 
replacements from the original dataset, where N is the number 
of variables in that dataset. With each of these bootstrapped 
training sets, a different tree is obtained. For the regression, 
the values predicted by each tree are averaged to obtain the 
RF prediction. More details and a more mathematically based 
explanation of the RF algorithm could be found in Breiman.11

Optimization of the RF model. Data-driven models 
must be optimized to obtain reliable results that are as pre-
cise as possible. The optimization of the model mainly means 
finding the optimal model parameters. An RF has three tun-
able parameters: ntree (the number of trees to grow), mtry 
(the number of variables randomly sampled as candidates at 
each tree split), and nodesize (the minimum size of the termi-
nal nodes), which has the main effect on the final precision of 
the model. Two concepts are applied in this work for tuning 
an RF: grid search and repeated cross-validation.

The grid search is designed in the optimization process 
to choose the values for each parameter of the model by con-
secutively picking them from a grid of predefined values and 
then calculating with these parameters. The best combination 
of the parameters is chosen from that iteration in which the 
highest degree of precision of the model was achieved.

This precision is evaluated as an average value of more 
runs of the so-called cross-validation process. The so-called 
repeated cross-validation is used in the present article.18 
In this process, the initial step consists of randomly dividing 
the training data into several approximately equal-sized data-
sets called folds. The training process uses all the folds except 
one as the inputs to the model, and the one unused fold is 
used as the validating data. This process runs as many times as 
the number of folds created with each combination of param-
eters. Repeated cross-validation means that the initial random 

splitting of the training data into folds is repeated more than 
once. This repetition is applied to obtain a more general-
ized evaluation of the model. The precision of the model in 
each iteration of the grid search is in fact the average value 
of the assessed statistic (eg, root mean square error (RMSE)) 
from all runs of the model with one set of parameters, eg, if 
there are two repetitions and five folds, the resulting statistic 
is the average value from 10 values.

This tuning concept involves two purposes in this study: 
(1) finding the best parameters of the RF algorithm and  
(2) estimating the precision of the proposed model, which 
could be expected for future data.

Results and Discussion
Fitting of the parametric PSD functions. When deal-

ing with the transformation of a soil texture classification from 
the Kopecky system to the USDA classification, it is only nec-
essary to extrapolate one point of the PSD, ie, to find the grain 
curve value for a soil particle diameter of 0.002 mm. Other 
USDA fractions could be derived from the Kopecky classi-
fication system by basic arithmetic operations. Nevertheless, 
from a more general point of view, when it is necessary to deal 
with other classification systems, and more points or different 
points of a grain curve are needed to be modeled, the method-
ology is the same as proposed in this article for this one point. 
Moreover, in previous works, when finding the percentages 
of unknown fractions in a soil sample, interpolation problems 
were mainly solved.7,15 In this work, it is necessary to solve the 
extrapolation problem on the left tail of a PSD distribution, 
which is more complicated, so the methodology will surely be 
suitable while solving relatively easier interpolation problems.

Figure 1 shows the results of fitting various PSD functions 
to the soil texture data measured by the approach described in 
the “Materials and methods” section. As can be seen from the 
graphic representation on the left side of the correlation matrix 
and the correlation coefficients on its right side, the majority of 
models work quite well. This is especially apparent in the last 
column of the correlation matrix, where the correlation of the 
model with the measured data is evaluated. The results are sim-
ilar to those that have been obtained in other works.7,15 Addi-
tional statistical coefficients, which serve for an evaluation of 
the model’s fitting, are available in Table 2. These coefficients 
assess the correspondence between measured and computed 
values. The statistics used are mean error (ME), mean absolute 
error (MAE), mean squared error (MSE), RMSE, the percent 
bias between simulated and observed values (PBIAS%), and 
the Pearson correlation coefficient (r).

Figure 2 shows an evaluation of the best models for vari-
ous soils by their absolute errors. In every sample of the data 
(dataset A), the model with the lowest error, while predicting 
the grain curve point of 0.002 mm needed for translation to 
the USDA classification, is indicated by the color key. As can 
be seen, there is no single best model that could be preferred, 
either for a whole set of data samples or for samples of various 
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Figure 1. Correlation matrix of PSD models and measured data (in the clay column).

Table 2. Goodness-of-fit measures for the PSD models.

AND4 EXP FR3 FR4 GP2 GP4 LE LG VG2 VG3 WB3

ME -0.023 0.044 -0.004 -0.0002 0.069 0.055 0.044 -0.064 -0.138 -0.043 -0.105

MAE 0.055 0.058 0.036 0.033 0.070 0.061 0.058 0.088 0.139 0.050 0.137

MSE 0.010 0.006 0.002 0.002 0.007 0.006 0.006 0.010 0.034 0.007 0.037

RMSE 0.100 0.076 0.047 0.042 0.081 0.074 0.076 0.099 0.185 0.081 0.192

PBIAS% -12.8 24.2 -2.4 -0.1 38.0 30.2 24.2 -35.1 -75.7 -23.7 -57.9

R 0.790 0.967 0.907 0.926 0.966 0.944 0.967 0.964 0.261 0.784 -0.477

soil types. This means that the proposed ensemble methodol-
ogy, which is a combination of all the successful models, could 
be useful in this task.

As can be seen in Table 2, some models are not suitable 
for extrapolation problems regarding PSD fitting, so they were 
excluded from the final ensemble modeling. This inappropriate-
ness for extrapolation is especially clear for the Weibull model. 
This is the case not only in the study presented but also could 
be considered as a general result. It can be explained by the 
following: Besides the empirical results, which were obtained 
by the computational experiment accomplished in this work 
and evaluated in Table 2, an important issue for this model 
is that parameter dmin should be set to represent the minimal 
diameters of the soil particles, which are assumed to be present 
in the sample. However, in the case of the left tail extrapola-
tion, this is the unknown information for which one is search-
ing, so it cannot be correctly set in advance. The second model 
that was excluded from the final modeling was the LG model, 

because negative values of the clay content were computed by 
this model for some samples. This means that the results of the 
seven models finally served as inputs to the ensemble modeling.

According to the statistical values in Table 2, evalua-
tions of the results by various statistical coefficients differ, eg, 
the EXP model is evaluated as the best model by the cor-
relation coefficient (r), but the FR4 model is evaluated as the 
best model by the RMSE. Various goodness-of-fit statistics 
evaluate different aspects of fitting, eg, the emphasis of one is 
more from a perspective of the variances and other statistics 
capture the bias better. For example, although it is possible to 
see in Figure 1 that the best correlation coefficient is for the 
EXP model, its prediction has multiplicative errors, which are 
not evident if one is only using an evaluation by the correlation 
coefficient (see Fig. 1, left side).

In this article, the authors propose a methodology inspired 
by the idea of ensemble learning, in which the RF algorithm 
is built on the top of the predictions computed by various 
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Figure 2. Evaluation of the PSD fittings for various USDA soil types.

parametric PSD models (they are inputs to the RF) and the 
optimal final result is obtained with this ensemble.

Fitting of the RF algorithm. While producing the final 
model for fitting the PSD, there are two basic tasks that are nec-
essary to deal with: (1) to find the optimal model (eg, the optimal 
parameters of the RF algorithm that are suitable for the task to 
be solved) and (2) to evaluate the model’s expected performance. 
The predicted values of the USDA clay fractions in the seven 
PSD models derived from the dataset A were used for the mod-
el’s calibration or so-called training. This dataset is used because 
in the training phase of data-driven modeling, it is necessary to 
know not only the input data (Kopecky grain fractions) but also 
the measured outputs (USDA clay fractions), which are known 
in this case as mentioned in the descriptions of dataset.

The basic problem with the training dataset in this task 
is that it is relatively small (43 samples). The usual, so-called 
validation set approach, which involves randomly dividing 
the available set of samples into two parts, ie, a training set 
and a validation or hold-out set,18 is not appropriate to apply 
here. Instead of this method, the authors used the repeated 
cross-validation approach described in the “Materials and 
methods” section of this article. Through the know-how of 
the data mining community as expressed in various books and 
papers,18 fivefold cross-validation was principally used with 
two repetitions. The resulting RF model is based on the best 
parameters obtained from the cross-validation evaluations. 
The expected precision of the model is computed by using the 
computed and observed data from the folds held out in each 
iteration of the cross-validation.

The fitted RF model has the following parameters: 
500  trees, four variables randomly sampled as candidates at 
each tree split, and terminal nodes with a minimum size of 
5. As has already been stated in the “Materials and methods” 

section, the purpose of the cross-validation was not only to 
find these optimal parameters but also to evaluate the precision  
of the proposed model, which could be expected for future data. 
The precision using regression coefficient r was evaluated for 
the ensemble model of the soil texture transformation from the 
Kopecky to the USDA classification as 0.971 and using RMSE 
as 0.0343. When these values are compared with the results of 
the individual models of the ensemble model (see Table 2), it 
can be seen that no model achieved such a degree of precision; 
hence, the usefulness of the ensemble approach for this study 
was verified.

Some data-driven models, such as artificial neural net-
works, have often been criticized because of their black box 
character. It is true that these models are generally not meant 
to be descriptive and are usually not well-suited for inferences. 
Because of this, the authors used RF model in this work, as 
it not only generates very accurate estimates and is consid-
ered to be one of the most effective data-driven algorithms 
but also offers some information that helps understanding 
the modeled task. The RF model also included the ability to 
measure the importance or influence of each of its variable.11 
For each tree, the MSE on the out-of-bag portion of the 
data is recorded. Then the same is done after permuting each 
predictor variable. The differences between the two are then 
averaged over all the trees, and in such a way, the importance 
of the variable is obtained (eg, a decrease in accuracy after 
the permuting of the variables over all the trees is measured). 
The  importance of each variable of the proposed ensemble 
model (eg, the predicted values by the 10 parametric PSD 
models) is scaled from 0 to 100 and displayed in Figure 3. 
With this evaluation, it is possible to see which model is 
more important and useful for the final prediction. The most 
important ones are the EXP model and the Gompertz model 
with two parameters. Although the authors would like to 
underscore the general usefulness of the proposed method-
ology, it has to be said that in the case of the other tasks, 
especially in the case of interpolation problems, other models 
may have a greater impact on the ensemble model. This result 
allows us to assume that in the context of ensemble modeling, 
the correlation coefficient is more important for the model 
selection than the other statistical measures that evaluate 

Figure 3. Importance of individual PSD models in the final RF ensemble.
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errors (such as MSE, RMSE, etc.), because these error coef-
ficients are better, for instance, for both Fredlund models 
(see Table 2). This is true only in the context of ensemble 
modeling; otherwise, the Fredlund models should be chosen 
(when one is deciding only between the individual models 
for the final modeling). This could be explained by the better 
ability of the ensemble to repair systematic errors than the 
individual inaccuracies. Surprisingly, the Andersson model, 
which is not the most accurate one, plays quite an impor-
tant role in the final ensemble. This is due to the fact that 
the Andersson model has a small degree of correlation with 
both of the best models (Fig. 2), so this means it is differ-
ent. An efficient ensemble should be composed of predictors 
that are not only sufficiently accurate but also dissimilar, in 
the sense that the predicted errors occur in different regions 
of the input space.24 Obviously, combining several identical 
models results in no gain in precision. From the evaluation 
in Figure 3, it can be seen that the ensemble mechanism is 
also capable of excluding a model if it is redundant (the Van 
Genuchten model in our case).

The authors would like to emphasize the following practi-
cal aspect about ensemble modeling. According to the so-called 
no free lunch theorem, it is never clear in advance which PSD 
model best suits a particular task. For this reason, it is usu-
ally necessary to try more models. On the basis of the results 
of this article, it could be said that when more PSD models 
are already fitted, instead of selecting and using only the best 
one, it is better to compose an ensemble prediction based on 
all of these already fitted PSD models (or on the basis of a 
subset of these models). Forming an ensemble usually brings 
an improvement in precision as has also been confirmed in the 
case study in this article, and ensemble prediction is relatively 
easy to accomplish when the fitted models for a particular task 
are already available.

Conclusion
In this work, the authors investigated whether an ensemble 
paradigm could bring some improvement in the soil texture 
transformation task, when the existing PSD models are used as 
ensemble members. This paradigm was verified by using a soil 
dataset from Slovakia; however, the methodology proposed is 
also appropriate when dealing with soil texture classification 
systems used in other countries. An improvement in precision 
was demonstrated in the mentioned case study, and it is docu-
mented in the article that the ensemble model worked better 
than any of its constituents. The precision was evaluated by a 
regression coefficient for the ensemble model of the soil texture 
transformation from the Kopecky to the USDA classification 
as 0.971 (very close to 1). When these values are compared 
with the results of the individual parametric PSD models of 
the ensemble model (see Table 2), which could eventually be 
used separately for such a transformation, it can be seen that no 
model achieved such a degree of precision as the proposed RF 
ensemble. The results should also be verified in the future on 

other datasets and for the transformation of other classification 
systems. However, in this work, the extrapolation problem was 
solved (the computed margin of the target distribution is on the 
left tail of the original PSD distribution), which is quite com-
plicated, so the authors assume that the proposed methodology 
will generally have even better results when solving easier and 
more frequent interpolation problems, eg, when the computed 
margin of a target distribution is between two known soil tex-
ture margins of the original distribution.
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