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Introduction
Levels of chronic disease have increased over the past several 
decades; some have done so dramatically. Environmental pol-
lutants, including herbicides and byproducts from industrial 
chemical processes, have been implicated as possibly being 
responsible for some portion of this increase. To provide a few 
examples: exposures to environmental pollutants have been 
linked to diabetes, cancer, and cardiovascular, neurodegen-
erative, respiratory, renal, autoimmune, and other diseases;1 
polychlorinated biphenyls impact immune suppression, car-
diovascular disease, liver disease, diabetes, and changes in 
thyroid and reproductive function;2 chlorophenols and related 
compounds, which include chlorophenoxy herbicides and 
dioxins, are associated with genotoxicity and carcinogenicity;3 
and several ecologic studies show that chlorophenoxy herbi-
cide use in Minnesota, Montana, North Dakota, and South 
Dakota influences human mortality rates due to cancer, acute 
myocardial infarction, diabetes, and renal disease, as well as 
rates of birth anomalies.4–8

The large number of diverse diseases associated with 
exposure to environmental pollutants suggests perturbation 
of a basic biological pathway underlying the mechanism. 
However, current methodological approaches have not fully 
explored these associations for several reasons. Conducting 
research involving such environmental exposures is difficult 

because these exposures (1) are often ill defined, (2) occur at 
low doses, and (3) may involve multiple chemicals. Therefore, 
linking specific environmental exposures to effects by use of 
the traditional toxicological model, which is based on expo-
sure to a single agent at different doses, is rather challenging.  
It has been suggested that a series of transdisciplinary, mutually 
complementary studies at different levels (ecosystem, popula-
tion, individual, and molecular) can address these problems.9 
A single study based on one of these levels cannot fully define 
the exposure–effect link. In addition, simultaneous or multiple 
exposures over time may cause subjects to become increasingly 
susceptible. This acquired susceptibility due to cumulative 
exposures needs to be accounted for in studies attempting to 
link environmental exposures and effects.10 Results from a 
recent study on environmental perchlorate exposure identified 
a pattern of biomarker associations that linked perturbation of 
iron homeostasis with adverse biological activity.11 Additional 
investigation suggests that other environmental exposures 
have this same capability.12 In the current paper, we examine 
further evidence that perturbation of iron homeostasis may 
be a widespread mechanistic pathway for adverse biological 
effects following exposure to environmental pollutants 
(Fig. 1). We selected several environmental pollutants based 
on their human exposure levels, in order to examine if current 
knowledge justifies this concept.

Effects of Environmental Pollutants on Cellular Iron  
Homeostasis and Ultimate Links to Human Disease

Dina M. Schreinemachers and Andrew J. Ghio
Environmental Public Health Division, NHEERL/ORD/US Environmental Protection Agency, Durham, NC, USA.

Abstract: Chronic disease has increased in the past several decades, and environmental pollutants have been implicated. The magnitude and variety of 
diseases may indicate the malfunctioning of some basic mechanisms underlying human health. Environmental pollutants demonstrate a capability to com-
plex iron through electronegative functional groups containing oxygen, nitrogen, or sulfur. Cellular exposure to the chemical or its metabolite may cause a 
loss of requisite functional iron from intracellular sites. The cell is compelled to acquire further iron critical to its survival by activation of iron-responsive 
proteins and increasing iron import. Iron homeostasis in the exposed cells is altered due to a new equilibrium being established between iron-requiring 
cells and the inappropriate chelator (the pollutant or its catabolite). Following exposure to environmental pollutants, the perturbation of functional iron 
homeostasis may be the mechanism leading to adverse biological effects. Understanding the mechanism may lead to intervention methods for this major 
public health concern.

keywords: environmental pollution, iron, ferritin, transferrin receptor

Citation: Schreinemachers and Ghio. Effects of Environmental Pollutants on Cellular 
Iron Homeostasis and Ultimate Links to Human Disease. Environmental Health Insights 
2016:10 35–43 doi: 10.4137/EHI.S36225.

TYPE: Commentary

Received: October 08, 2015. ReSubmitted: January 20, 2016. Accepted for 
publication: January 21, 2016.

Academic editor: Timothy Kelley, Editor in Chief

Peer Review: Five peer reviewers contributed to the peer review report. Reviewers’ 
reports totaled 1403 words, excluding any confidential comments to the academic editor.

Funding: Authors disclose no external funding sources.

Competing Interests: Authors disclose no potential conflicts of interest.

Correspondence: schreinemachers.dina@epa.gov; ghio.andy@epa.gov

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is 
an open-access article distributed under the terms of the Creative Commons CC-BY-NC 
3.0 License.

�Paper subject to independent expert single-blind peer review. All editorial decisions 
made by independent academic editor. Upon submission manuscript was subject to 
anti-plagiarism scanning. Prior to publication all authors have given signed confirmation 
of agreement to article publication and compliance with all applicable ethical and legal 
requirements, including the accuracy of author and contributor information, disclosure of 
competing interests and funding sources, compliance with ethical requirements relating 
to human and animal study participants, and compliance with any copyright requirements 
of third parties. This journal is a member of the Committee on Publication Ethics (COPE).

�Published by Libertas Academica. Learn more about this journal.

Downloaded From: https://bioone.org/journals/Environmental-Health-Insights on 14 Aug 2024
Terms of Use: https://bioone.org/terms-of-use

http://www.la-press.com/journal-environmental-health-insights-j110
http://www.la-press.com
http://dx.doi.org/10.4137/EHI.S36225
http://www.la-press.com
http://www.la-press.com/journal-environmental-health-insights-j110


Schreinemachers and Ghio

36 Environmental Health Insights 2016:10

Iron Homeostasis
Iron is an essential micronutrient required for virtually every 
aspect of normal cell function. The ability of this metal to inter-
act with O2, reflecting a favorable oxidation–reduction poten-
tial, and its abundance in nature have led to its evolutionary 
selection for a wide range of biological functions. However, 
these properties of iron which prove so useful for catalysis 
also make it a threat to life via generation of reactive oxygen 
species. While living systems must have iron to survive, iron-
catalyzed generation of superoxide (O2

−), hydrogen peroxide 
(H2O2), and hydroxyl radical (·OH) presents a potential for 
oxidative stress. Such reactivity mandates that iron acquisition 
and distribution be tightly regulated. Consequently, living 
systems have evolved strategies to regulate the procurement 
of adequate iron for cellular function and homeostasis without 
major damage to biological macromolecules.

Cellular iron homeostasis is maintained by a coordi-
nated expression of proteins involved in the import, export, 
storage, and utilization of this metal.13 Posttranscriptional 
control mediated by iron-regulatory proteins (IRPs) is essen-
tial.14–17 The IRP binds to cis-acting mRNA motifs termed 
iron-responsive elements (IREs) to regulate the expression 
of proteins involved in iron homeostasis. This includes stabi-
lizing the mRNA of the divalent metal transport 1 importer 
(DMT1) and transferrin receptor 1 (TfR1) to promote trans-
lation and increase their expression while suppressing the syn-
thesis of the storage protein ferritin.18–20 IRP1, the cytosolic 
counterpart of mitochondrial aconitase, is a bifunctional 
protein that, through [4Fe-4S] cluster assembly/disassembly, 
shifts from the aconitase to the IRP1 form in response to the 
intracellular iron concentrations.21 Accordingly, iron levels 
regulate RNA-binding capacity of IRP.
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Figure 1. Normally, a homeostasis of iron (designated by the small red dots) exists in a cell with the metal present at a concentration sufficient to meet 
structural and metabolic requirements; this includes the nucleus and mitochondria (designated by the blue circular and gray ovoid structures, respectively) 
(A). Introduction of an environmental chemical (designated by the yellow spherical structures) disrupts iron homeostasis as it, or a catabolic product, 
complexes the available iron, causing a functional deficiency of the metal in the cell (B). In response to a reduction in intracellular iron, the cell generates 
superoxide as a ferrireductant and upregulates importers (eg, DMT1) in an attempt to reacquire requisite metal (C). In addition, the complex of the 
environmental chemical with the iron may support electron transport, and oxidant generation may directly result from the reactions of this product with the 
available reductant and hydrogen peroxide (C). Oxidative stress activates cell signaling and transcription factors and will provoke a release of mediators 
initiating inflammation, fibrosis, and apoptosis (C). If the cell is effective in altering its iron homeostasis by increasing iron delivery, some portion of the 
metal will be stored in the protein ferritin (designated by the brown rectangular structures) (D). The result is an adequate level of metal available to the cell, 
including the environmental chemical, for continued survival and function.
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Perturbation of Iron Homeostasis by Environmental 
Pollutants
Environmental pollutants demonstrate a capability to complex 
iron, especially if their chemical structure includes a double 
bond and/or electronegative functional groups containing an 
oxygen, nitrogen, or sulfur atom, capable of sharing electrons. 
Complexes of iron sharing at least two binding sites with the 
ligand are termed chelates. The attribute of iron complexation 
by environmental pollutants may reflect their original pur-
pose, such as disruption of normal iron homeostasis (eg, the 
effectiveness of a pesticide can be explained by its capability 
to complex iron and diminish its availability to pests). Com-
plex formation results from a reaction between available cel-
lular iron and either the chemical itself or a metabolic product. 
Many of these compounds, employed in the environment to 
restrict the growth or presence of specific pests, are pheno-
lic compounds, while others are metabolized to phenols via 
cytochrome P450 following ingestion and inhalation. Phe-
nolic compounds demonstrate a significant capability for iron 
chelation.22,23 In mammals, for example, dioxins are metabo-
lized by cytochrome P450 to hydroxyphenol, which will com-
plex intracellular sources of iron.24 Accordingly, exposure to 
either the environmental pollutant or a catabolic product, fol-
lowed by iron complexation, can cause an immediate loss of 
functional iron from normal intracellular sites. Iron is critical 
to the function of cells. This is especially true for mitochon-
dria as this organelle is central to the metabolism of cellular 
iron.25 Exposure to the pollutant or its catabolite, followed by 
its appropriation of iron, will challenge mitochondrial func-
tion. The cell is compelled to acquire further metal critical to 
its survival. IRPs are activated and changes in iron import are 
the result (eg, altered expression of DMT1 and TfR1 follows 
exposure to these pollutants). Therefore, while the immedi-
ate outcome of the exposure to an environmental pollutant 
or a catabolic product is a cellular deficiency of functional 
iron, iron homeostasis will be altered in response, resulting 
in increased import and accumulation of iron. A new equi-
librium will be established between the cell sites requiring 
iron (eg, mitochondria) and the inappropriate chelator (ie, the 
environmental pollutant or its catabolite) in order to allow for 
continued survival. At the level of the cell and the tissue, these 
changes in iron homeostasis can be supported by alternations 
in either RNA or protein activity of IRP, DMT1, ferritin, and 
transferrin receptor. In a human being, this new equilibrium 
can be reflected by elevated concentrations of ferritin and 
lower transferrin-bound iron levels in the blood.

The response of the cell to environmental chemicals with 
elevation in the expression of proteins involved in iron import, 
storage, and export does not appear to be consistent with the 
model of reciprocal effects mediated via the IRE.26 However, 
the response of normal cells, tissues, and living systems to 
either an absolute iron deficiency or a true overload is unlikely 
to be relevant in the response to an exposure to an inappro-
priate chelator such as an environmental chemical. When an 

inappropriate chelator in a cell complexes endogenous iron 
and initiates the loss of metal from the host, either the cells 
will increase iron import or apoptosis will occur. As total iron 
in the cells is increased due to import, and some form of intra-
cellular equilibrium must be maintained, storage of iron in 
ferritin will also be elevated. This is not a static response but 
one which will continue for as long as the inappropriate chela-
tor (ie, the environmental chemical) persists in the cell.27–30

An example of these effects has been observed in asso-
ciation with exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin 
(2,3,7,8-TCDD).31 As a result of the central role of IRPs in 
the control of iron metabolism, their modulation by 2,3,7,8-
TCDD leads to changes in their expression profile such as 
alterations of cellular levels of transferrin receptor and ferritin. 
Elevations in intracellular iron following dioxin exposures can 
be observed in mammalian cells.32 Animals treated with a 
single dose of 2,3,7,8-TCDD showed an increase of 41%–67% 
in iron absorption, reflecting immediate alterations in the 
metabolism of this metal.33 The major effect of the dioxin was 
demonstrated to be on the transfer of iron from the mucosa 
into the bloodstream rather than on the uptake of iron from 
the gut lumen. Elevated liver iron content was shown in ani-
mals treated with 2,3,7,8-TCDD, which further supports the 
capability of this chemical to disrupt iron homeostasis and 
affect iron accumulation.34 The catabolism of some herbicides 
to phenolic compounds is comparable with the catabolism of 
other aromatic hydrocarbons with regard to their capacity to 
complex iron, and accordingly disrupts iron homeostasis. Ben-
zene is metabolized by cytochrome P450 to catechol, hydro-
quinone, 1,2,4-benzenetriol, and p-benzoquinone;35,36 these 
compounds are recognized to have the capability to complex 
iron.37 Naphthoquinones are similarly metabolized by cyto-
chrome P450 to phenolic compounds and demonstrate an iron-
chelating ability.38 Finally, benzo(a)pyrene is hydroxylated to 
phenols, which are predicted to affect iron homeostasis.39,40

A related aromatic compound (and a phenol as well) is 
doxorubicin, an antineoplastic medication (an anthracycline 
antitumor antibiotic). Exposure to doxorubicin disrupts iron 
homeostasis and increases heart iron concentrations.41 At the  
cellular level, exposure to this compound increases iron 
import by affecting the transferrin receptor42 and elevating 
ferritin levels,43 comparable with aromatic hydrocarbons used 
as herbicides. Effects of this anthracycline on cell iron homeo-
stasis can be reversed through a provision of excess metal.44 
Clofibrate (2-[4-chlorophenoxy]-2-methylpropionic acid ethyl 
ester) is another related aromatic hydrocarbon that was previ-
ously employed as a lipid-lowering agent. Clofibrate is not a 
phenolic compound but does have an oxygen-containing func-
tional group (phenoxy) with a capacity to interact with cyto-
chrome P450 and to complex iron. Similar to environmental 
pollutants, clofibrate exposure alters iron homeostasis through 
a differential regulation of IRPs.45 Exposure to clofibrate 
reduces hepatic iron efflux, thereby increasing cell iron concen-
trations in the liver. A clinical trial initiated in the mid-1960s, 

Downloaded From: https://bioone.org/journals/Environmental-Health-Insights on 14 Aug 2024
Terms of Use: https://bioone.org/terms-of-use

http://www.la-press.com
http://www.la-press.com/journal-environmental-health-insights-j110


Schreinemachers and Ghio

38 Environmental Health Insights 2016:10

showed that subjects treated with clofibrate had a 25% reduc-
tion of nonfatal myocardial infarction. However, overall mor-
tality was significantly increased based on diverse causes of 
death, which included cancer.46 The structure of clofibrate is 
related to that of the herbicides 2,4-dichlorophenoxyacetic 
acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid, which 
similarly have been associated with elevations in cancer inci-
dence.47 Some environmental pollutants without either phenol 
groups or modification by cytochromes can form complexes 
with iron. The herbicide glyphosate (N-(phosphonomethyl)
glycine) forms complexes with iron in the soil, resulting in 
decreased iron concentrations in leaves and seeds and inhi-
bition of ferric reductase activity in the treated plant.48,49 It 
has been suggested that glyphosate-treated crops may have 
decreased nutritional levels. In human beings, glyphosate 
chelates iron and other metals and is thought to be associated 
with disease.50 The environmental pollutant perchlorate has 
been observed to be associated with reduced serum iron in 
human beings. Complexation of iron by perchlorate may be 
the likely mechanism.11

Subjects are exposed to many environmental chemicals 
identified in blood and urine, which may have the capabil-
ity to complex cellular iron. However, their strength to com-
plex iron, which may be based on their chemical structure, 
is often unknown and will have to be determined by labo-
ratory studies. Some chemicals may be strong iron chela-
tors, eg, dioxin and perchlorate, while others may be weak 
chelators. However, they all may contribute to perturbation 
of iron homeostasis resulting in decreased serum iron levels. 
We propose that a subject’s serum iron level may be a repre-
sentative biomarker for cumulative exposure to environmental 
iron-chelating chemicals.

Regarding the fate of the inappropriate iron chelates, 
further investigation is required. Complexation of the cell 
cation by the compound will alter its properties of solubility, 
thus making prediction of its export from the cell difficult. In 
addition, it is unclear that such complexation is permanent. 
A dynamic exchange of iron and other cations is anticipated 
between the chelator and host.

Oxidative Stress after Exposure to Environmental 
Pollutants
Pathophysiological effects, including inflammation, fibrosis, 
and cancer, following exposures to xenobiotic agents, have 
been associated with oxidant damage to macromolecules such 
as lipids, proteins, and DNA.51 Oxidative stress is a commonly 
described mechanistic feature of the toxicity of environmental 
pollutants.52 Exposure to 2,4-D initiates oxidative stress in rat 
erythrocytes.53 Similarly, proteins (eg, glutathione) and their 
enzyme activities (eg, glutathione reductase, and superoxide 
dismutase) involved in oxidant generation and antioxidant 
function in red blood cells can be impacted by exposures to 
2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and its metabo-
lite 2,4,5-trichlorophenol (2,4,5-TCP).54 In an animal model 

involving subacute exposure to 2,4-D, tissue malondialde-
hyde levels, antioxidant enzyme (ie, catalase and superoxide 
dismutase) activities, and serum uric acid concentrations all 
reflected increased oxidative stress.55 In another animal model, 
polychlorinated biphenyl exposure increased the levels of 
superoxide dismutase and heme oxygenase and concentrations 
of oxidatively modified lipids and proteins, reflecting an oxi-
dative challenge and resulting in oxidant-mediated injury.56

Oxidative stress is frequently associated with disruption 
of iron homeostasis. A relationship between oxidant genera-
tion and disruption of iron homeostasis following exposures 
to environmental pollutants can result through two potential 
pathways. First, the environmental pollutant or a catabolic 
product can be postulated to complex with iron and function 
as a Fenton’s reagent catalyzing electron exchange and oxi-
dant production.57 Excess iron associated with the exposure is 
subsequently toxic because the complexed ferrous iron reacts 
with the available hydrogen peroxides and lipid peroxides to 
generate hydroxyl and lipid radicals, respectively. These radi-
cals, in turn, damage membrane lipids, proteins, and nucleic 
acids. Second, in response to diminished levels of essential 
intracellular iron following complexation of the metal by 
environmental pollutants or a catabolic product, the cell can 
generate superoxide as a ferrireductant in an effort to reacquire 
the metal. Cellular oxidant generation, specifically superox-
ide, is known to follow exposure to iron deficiency.58–60 This 
production of oxygen-based radicals functions in the reme-
dial response to iron loss following complexation of the metal. 
Superoxide, produced by the living system, tissue, cell, and 
organelle in response to iron deficit, assists in the import of 
this requisite metal by chemically reducing ferric iron to fer-
rous iron. This ferrireduction is an essential, and frequently 
limiting, reaction in such iron import and can be achieved in 
many cell types using superoxide.61–64

Host Response to Disruption in Iron Homeostasis 
after Exposure to Environmental Pollutants
The response of a living system to complexation of iron by 
inappropriate chelators, such as that proposed for environ-
mental pollutants, can include a systemic decrease in the 
available functional metal. Teleologically, microbial utiliza-
tion of host iron was the challenge that probably accounts 
for the development of this response. The host reacts with 
an exploitation of its own metal by isolating the iron into the 
reticuloendothelial system, where it is considered less acces-
sible to an inappropriate chelator, such as a microbe or a xeno-
biotic agent. This response is recognized as a component of the 
acute-phase reaction. If the exposure is prolonged, an anemia 
of chronic disease can result. Comparable to microbes and 
other xenobiotic agents, the complexation of host iron by envi-
ronmental pollutants is proposed to initiate an attempt by the 
exposed individual to sequester its metal. The decreased iron 
level will reflect both the chelating capacity of the environ-
mental chemical and the host’s acute-phase response to that 

Downloaded From: https://bioone.org/journals/Environmental-Health-Insights on 14 Aug 2024
Terms of Use: https://bioone.org/terms-of-use

http://www.la-press.com
http://www.la-press.com/journal-environmental-health-insights-j110


Environmental pollutants and iron

39Environmental Health Insights 2016:10

chemical. Accordingly, exposures to environmental pollut-
ants impact indices of the acute-phase response, serum iron, 
and indices of red blood cell production. Such an acute-phase 
response has been documented following occupational expo-
sure to environmental pollutants (ie, dieldrin and pentachlo-
rophenol).65,66 Similarly, the acute-phase reaction includes a 
loss of functional iron. With continued exposures, this can 
lead to anemia. Herbicide exposures have been associated with 
decrements in red blood cell counts, hemoglobin, and hemat-
ocrit values, which are predicted to result following significant 
and prolonged contact.67,68

Exposures to environmental pollutants and human 
health. Exposures to environmental pollutants have been 
associated with diseases that are predicted to disclose a rela-
tionship with disrupted iron homeostasis. A few examples are 
briefly discussed here to support this viewpoint.

Prenatal and neonatal effects. Pregnancy is a state of 
high iron demand. However, it is estimated that only 20% of 
reproductive-aged women worldwide have an iron reserve that 
is optimal for the development of the fetus.69 Exposure of the 
mother to environmental pollutants that have the capability 
to perturb iron homeostasis and diminish available concen-
trations may adversely affect the development of the fetus.  
An example of such a pollutant is perchlorate. It was shown in 
a previous study that increasing urinary perchlorate concentra-
tions were associated with decreasing serum iron concentra-
tions among pregnant women.11 Decreased availability of iron 
resulting from a reaction of the environmental pollutant with 
maternal iron pools may preferentially influence the levels in 
the fetus as a result of its exceptional need and the delicate bal-
ance of the metal in the developing life. Iron is needed for cell 
growth and cell cycle progression.70 Low iron concentrations 
block cellular proliferation by impinging on pathways that 
control cell division.71 Iron chelation can arrest cell cycle pro-
gression in late G1, before the G1/S border. Accordingly, an 
increased incidence of birth defects can potentially be associ-
ated with exposures to environmental pollutants.69,72,73 It has 
been observed that children who were iron deficient at birth 
have lower cognitive skills.74

Endocrine disease. Iron homeostasis influences endo-
crine function. For example, iron deficiency impairs thy-
roid hormone synthesis, possibly by reducing the activity 
of heme-dependent thyroid peroxidase,75 and is a common 
finding in patients with decreased thyroid activity.76 Iron 
treatment can provoke both an increase of T4 and a decline 
of TSH.75 Deficiency of the metal following exposures to 
environmental pollutants is predicted to influence thyroid 
function with hypothyroidism resulting. Such an impact 
has been described with decrements in indices of thyroid 
function following exposures to environmental pollutants, 
including perchlorate.77,78

Infections. A connection exists between infection and 
disruption of iron homeostasis following exposures to dif-
ferent xenobiotic agents.79 The same relationship is proposed 

following exposures to environmental pollutants. The regu-
lation of iron metabolism is affected by exposure to either the 
chemical or its metabolite, complexing the metal and thereby 
decreasing available functional iron concentrations. How-
ever, total iron concentrations increase with the exposed cells 
and tissues upregulating iron importers in order to compete 
for the metal and allow cell survival. The increased total iron 
in the exposed cells and tissues will be reflected by elevated 
ferritin levels in the host. There is an absolute dependency 
of all life on iron availability. With very few exceptions (eg, 
lactobacilli which substitute manganese for iron), microbes 
require host iron in order to proliferate.80 The pathogen’s 
survival and virulence are directly related to its success in 
competing for the available iron in the host. Therefore, expo-
sures to environmental pollutants will elevate the risk for 
infection by increasing total iron levels in cells, tissues, and 
living systems.81,82

Metabolic syndrome. This group of characteristics 
includes obesity, insulin resistance, hyperglycemia, and dys-
lipidemia, which are risk factors for several diseases such 
as cardiovascular disease, diabetes type 2, immune disor-
ders, and liver diseases. Exposures to multiple environmen-
tal chemicals are suspected to contribute to this disorder 
according to the Parma consensus statement.83 It is proposed 
that perturbation of iron homeostasis, as a result of exposure 
to environmental chemicals, contributes to this metabolic 
disruption. Supporting the concept is a seven-year follow-
up study showing that markers of iron metabolism are asso-
ciated with insulin resistance in adipose tissue, liver, and 
muscle, which may affect impaired glucose metabolism and 
type 2 diabetes.84 A rat study on chronic, low-dose expo-
sure to the widely used herbicide atrazine (2-chloro-4-eth-
ylkamine-6-isopropylamino-S-triazine) showed that this 
herbicide induced abdominal obesity and insulin resistance 
due to impaired mitochondrial function.85 This herbicide 
has several nitrogen atoms and double bonds in its chemical 
structure and, therefore, may have the capability to form 
iron complexes.

Chronic diseases. Associations between exposures to 
environmental pollutants and increased incidence of chronic 
disease have been suggested.86–91 A disruption of iron 
homeostasis is proposed to participate in the pathogenesis of 
numerous chronic diseases including diabetes, cancer, and car-
diovascular, cerebrovascular, and neurodegenerative diseases. 
Diabetes and cardiovascular disease may have been preceded 
by the metabolic syndrome. Changes in the concentrations 
of functional iron are recognized as a determinant in the 
pathogenesis as they are related to both oxidative stress and 
injury. Therefore, it is feasible that increases in the incidence 
and prevalence of these chronic diseases following exposures 
to environmental pollutants are associated with altered iron 
availability. Some examples are discussed.

An association between a disruption in iron homeosta-
sis and peripheral insulin resistance has been demonstrated 
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in epidemiological investigations. Among middle-aged men, 
those with higher levels of serum ferritin had higher insulin 
and glucose levels.92 Serum ferritin concentrations were 
an independent predictor of increased serum insulin levels 
among adults.93 Women with impaired glucose tolerance or 
gestational diabetes had higher serum ferritin values rela-
tive to women with normal glucose tolerance.94–98 Diabetes 
has been shown to be associated with a disruption of normal 
iron metabolism. Individuals with type 2 diabetes had higher 
levels of serum ferritin and nontransferrin-bound iron rela-
tive to healthy controls.99 Men with high iron stores were  
2.4 times more likely to develop type 2 diabetes compared with 
men with lower stores.100 A potential benefit of iron depletion 
on insulin sensitivity and/or type 2 diabetes has been demon-
strated with frequent blood donors having better insulin sensi-
tivity and lower ferritin levels compared with nondonors.101,102 
An increased number of lifetime blood donations was associ-
ated with decreased prevalence of type 2 diabetes in men.103,104 
Iron chelation therapy with intravenous deferoxamine signifi-
cantly improved metabolic control with a reduction in blood 
glucose and glycosylated hemoglobin levels among type 2 
diabetics.105 Accordingly, a disruption in iron homeostasis 
with an accumulation in total metal following exposure to an 
environmental pollutant can potentially impact both insulin 
resistance and diabetes.

A disruption in iron homeostasis can also participate 
in cardiovascular disease. In women, the risk of heart dis-
ease increases following either natural or surgical meno-
pause, which is associated with elevations in serum ferritin 
concentrations.106 Among men, there is an increase in the 
risk of coronary heart disease with elevated iron stores. 
Men with high body iron stores had a two- to threefold 
increased risk of myocardial infarction compared with men 
with low body iron stores.107 Among randomly selected men 
with no symptomatic coronary artery disease at entry, the 
adjusted risk of acute myocardial infarction with serum fer-
ritin .200 ng/mL was 2.2-fold higher than in those with 
lower serum ferritin with the odds ratio increasing by 0.2 
for each 100 ng/mL increase in serum ferritin.108 Mechanis-
tically, evidence for a participation of iron in atherosclerosis 
was suggested by the ability of the metal to oxidize low-
density lipoprotein (LDL) and damage endothelial cells, by 
the observation of ferritin induction with the progression 
of atherosclerotic lesions, by the inhibition of endothelial 
cell damage and oxidation of LDL by chelators, and by 
the prevention of endothelial cell dysfunction and vascu-
lar smooth muscle proliferation by chelators.109–112 Altering 
iron metabolism with phlebotomy, systemic iron chela-
tion treatment, or dietary iron restriction reduces athero-
sclerotic lesion size and/or increases plaque stability.113–115 
Changes in iron stores during a five-year follow-up period 
modified the risk of atherosclerosis with the lowering of 
iron stores being beneficial and the further accumulation of 
iron increasing cardiovascular risk.116 Furthermore, studies 

on the effect of blood donation on the reduction of cardio-
vascular events support the postulate that iron stores can 
be associated with coronary artery disease.117,118 Therefore, 
increases in heart disease following exposure to environ-
mental pollutants could result from host iron complexation 
and impact of total available metal.

Evidence also supports the participation of iron 
in cerebrovascular disease. Experimental iron overload 
induced by using an iron-rich diet causes larger infarct 
volumes after permanent middle cerebral arterial occlu-
sion in rats.119 These results indicate that the severity of 
tissue injury with cerebrovascular occlusion can be propor-
tional to total iron. Asymptomatic carotid atherosclerosis, 
assessed by duplex sonography, shows a strong correlation 
with iron stores in men and women.120 Higher serum fer-
ritin concentrations can be associated with an increased 
risk of ischemic stroke.121 Increased ferritin concentrations, 
in both blood and cerebrospinal fluid, have been related to 
poor outcome in stroke patients.122 Increased serum ferri-
tin concentrations before treatment also predict prognosis 
in patients with a higher risk of hemorrhagic transforma-
tion and brain edema.123 Treatment with an iron-deficient 
diet reduces neuronal necrosis and improves neurological 
status in animal models of global and focal cerebral isch-
emia.124 Following exposure to environmental pollutants, 
an accumulation in total iron concentration combined with 
a decrease of functional iron could account for the observed 
changes in cerebrovascular disease.

Perturbed iron homeostasis has been observed in neu-
rodegenerative diseases, including Alzheimer’s disease, 
Parkinson’s disease, and amyotrophic lateral sclerosis (ALS).125  
In Alzheimer’s disease, increased levels of iron and ferritin 
have been noted pathologically in the cerebral cortex.126 
Among those individuals suffering from Parkinson’s disease, 
iron accumulates at the sites of neuronal death.127 Among 
ALS patients, elevations in serum ferritin and transferrin 
saturation levels have been shown.128 It is feasible that altered 
iron homeostasis following exposure to environmental pollut-
ants could contribute to the observed accumulations of this 
metal in neurodegenerative disease.

Regarding cancer, cohort studies have found that indi-
ces of iron metabolism are associated with an increased 
risk of cancer incidence and cancer mortality. Among per-
sons with increased transferrin saturation, a daily intake of 
dietary iron of .18 mg is associated with an increased risk 
of cancer.129 A causal relationship is suggested by studies show-
ing that blood donation (to reduce total body iron stores) is 
associated with lower cancer risk130,131 and that blood trans-
fusion adversely affects cancer outcome.132 A randomized 
trial of subjects undergoing phlebotomy showed a significant 
reduction in overall cancer incidence with iron reduction.133 
An association of iron intake with colorectal cancer risk has 
been observed among a cohort of the National Health and 
Nutrition Examination Survey I.134 The association between 
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elevations in biologically available iron and increased can-
cer may result from the antiapoptotic effect of the metal.71 
Experimental study findings support a role of iron in chemi-
cally induced carcinogenesis and demonstrate that iron may 
initiate and promote carcinogenesis through the production of 
oxidative stress, facilitation of tumor cell growth, and modi-
fication of the immune system. Excessive accumulation of 
iron in hepatocytes causes hepatocellular injury, which leads 
to the development of hepatoma.135 A low iron diet resulted 
in a decrease in skin tumor incidence (both papillomas and 
carcinomas) and the number of tumors per mouse, as well as 
the conversion of papillomas to carcinomas.136 Comparable 
to diabetes, coronary artery disease, cerebrovascular disease, 
neurodegenerative disease, and cancer may be associated with 
a disruption in iron homeostasis initiated by the exposure to 
an environmental pollutant.

Conclusion
Based on previous investigations, various diseases have 
been shown to be associated with exposure to environ-
mental pollutants. Multiple exposures over time may have 
cumulative effects and lead to increased susceptibility to 
disease. Mechanistically, we propose that this occurs 
through an impact of such pollutants on iron homeostasis. 
The disruption of iron homeostasis results from the initial 
interaction with environmental pollutants, ie, complexation 
of the metal by the chemical or its metabolic products with 
subsequent reductions in host cell and tissue levels of func-
tional iron, and likely represents the most basic mechanism 
underlying the biological effects following such exposure. 
If the concept described in this investigation is confirmed, 
iron chelation may be the molecular-initiating event of the 
adverse outcome pathway of many environmental chemi-
cals. Determination of their chelating capability will be 
of interest with regard to their association with adverse 
health effects.
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