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Large losses in biodiversity are being documented
around the world in almost all classes of plants and ani-

mals (Lawton and May 1995). Although the exact number of
species being lost is unknown, some researchers estimate
that the rate of extinction is greater than any known in the last
100,000 years (Wilson 1992). This biodiversity crisis is ex-
emplified by the population declines and extinctions of am-
phibian species around the world (Blaustein et al. 1994a,
1994b, Houlahan et al. 2000, Stuart et al. 2004). In at least some
cases, amphibian losses appear to be more severe than losses
in other taxa (Pounds et al. 1997, 1999, Stuart et al. 2004).
Moreover, declines in amphibian populations are prominent
because many of them are occurring in areas that remain rel-
atively undisturbed by humans, such as national parks, con-
servation areas, and rural areas some distance from urban
centers.

There is concern about amphibian population declines in
part because many biologists consider amphibians excellent
indicators of environmental change and contamination
(Blaustein 1994, Blaustein and Wake 1995). Their skin is per-
meable and exposed (not covered by scales, hair, or feathers),
and their eggs, which have no shells, may readily absorb sub-
stances from the environment. The complex life cycle of
many amphibian species potentially exposes them to both
aquatic and terrestrial environmental changes. These attrib-
utes, and the fact that amphibians are ectotherms, make
them especially sensitive to changes in temperature and pre-
cipitation, and to other environmental changes such as greater
ultraviolet (UV) radiation.

There appears to be no single cause for amphibian popu-
lation declines. Like other animals, amphibians are assaulted
by a barrage of environmental insults that often act in a com-
plex way (Blaustein and Kiesecker 2002). The causes for de-
clines may vary from region to region and even among
different populations of the same species. Synergistic inter-
actions between two or more agents may be involved. There
may be interspecific differences, as well as differences be-
tween life stages, in how amphibians react to a potentially dam-
aging agent.

Numerous factors, such as global environmental changes,
habitat destruction, introduced species, diseases, and chem-
ical pollution, appear to be contributing to amphibian pop-
ulation declines (Lannoo 2005). Adding to the complexity
associated with amphibian population declines are observa-
tions that the behavior and life history characteristics of
many amphibian species appear to place these animals in jeop-
ardy. Such behaviors and ecological attributes were molded
over evolutionary time under selection pressures that acted
on amphibians in a variety of ways. Many biologists who study
amphibian population declines, however, have failed to con-
sider some of these evolutionary aspects. Better understand-
ing of amphibian population declines requires that scientists
and policymakers consider the ecological processes associated
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with the declines in light of evolutionary principles such 
as these: Evolution is limited by historical constraints; not all
evolution is adaptive; adaptations are often compromises;
evolution can only alter existing variations; and evolution 
takes time.

It is important to realize that much evolution occurs
through genetic changes that affect rates of development and
mechanisms that control specific biological processes.
Furthermore, evolutionary changes occur at different rates 
and on different timescales, depending on the organism. For
example, the evolutionary timescale may be in hours for bac-
teria, in weeks for certain fly species, and in decades for some
vertebrate groups.

A historical perspective
Amphibians have evolved behaviors, morphologies, and
lifestyles that have allowed them to persist for millions of years,
since before dinosaurs existed on Earth and after dinosaurs’
extinction. But under today’s environmental conditions, these
same behaviors and life history characteristics appear to be
placing amphibians in harm’s way. To illustrate these points,
we explore amphibians’ responses to two basic problems that
many animals confront every day: (1) potential overexposure
to sunlight with damaging UVB radiation and (2) exposure
to diseases. These two problems are especially significant be-
cause they appear to be contributing factors in the declines
of a number of amphibian populations around the world
(Lannoo 2005).

The examples and generalizations described below may ap-
ply differently in different regions of the world, and may
vary between species and even between life stages and pop-
ulations of the same species. However, we believe our points
about evolution are relevant to the phenomenon of am-
phibian population declines in general (figure 1), not only to
the examples we provide.

Amphibian evolution and exposure to sunlight
Over evolutionary time, selection pressures have shaped the
life history characteristics and behaviors of amphibians in ways
that relate to their exposure to sunlight.Amphibians seek sun-
light for thermoregulation and to maximize their growth
and development. Especially in temperate regions, larvae 
often seek shallow, warm water, which ultimately results in an
increase in their growth rate (Wollmuth et al. 1987). For ex-
ample, Cascades frog (Rana cascadae) tadpoles are frequently
observed in sunlit, warmer areas in the afternoon (Woll-
muth et al. 1987). Mountain yellow-legged frog (Rana mus-
cosa) tadpoles concentrate where water temperatures are
highest (near the shore during the day, deeper in the late 
afternoon and evening; Bradford 1984). In one study, all but
the latest-stage bullfrog (Rana catesbeiana) tadpoles selected
the warmest microhabitats (Wollmuth and Crawshaw 1988).

Many frog species bask in sunlight for prolonged periods
(Hutchinson and Dupré 1992). For example, Lillywhite (1970)
found that more than 70 percent of the bullfrogs present in
a pond were basking from 1:00 p.m. to 5:00 p.m. on a sunny

day, compared with less than 20 percent on a cloudy day. An
observational study of R. muscosa showed that each of eight
frogs present in a pond had between 50 percent and 80 per-
cent of its body exposed to full sunlight for half the sunlight
hours (Bradford 1984). Juvenile western toads (Bufo boreas)
often bask in the thousands along the shoreline (Blaustein et
al. 2005a).

Many amphibian species lay their eggs in shallow, open 
water in direct sunlight (Behler and King 1979, Nussbaum et
al. 1983, Ashton and Ashton 1988, Stebbins and Cohen 1995).
Eggs that are in shallow water, or even floating on the surface
of the water, develop in a more oxygenated environment and
probably in areas with a lower risk of predator or parasite at-
tacks. The oxygenation of eggs is critical to their development
(Duellman and Trueb 1986).

In summary, amphibians living today often seek sunlight
because, over evolutionary time, seeking sunlight has been
beneficial for their thermoregulation, growth, and develop-
ment, and perhaps for other reasons. Yet today’s sunlight 
exposes amphibians to doses of UVB radiation that can kill
or significantly damage them.

Ultraviolet radiation in ancient and modern sunlight
At the terrestrial surface, UVB radiation (with a wavelength
of 320 to 290 nanometers [nm]) is extremely important bio-
logically. Critical biomolecules absorb light with a higher
wavelength (UVA, 400 to 320 nm) less efficiently, and strato-
spheric ozone absorbs most light that has a lower wavelength
(UVC, 290 to 200 nm). UVB radiation can cause mutations
and cell death. At the level of the individual, UVB radiation
can slow growth rates, impair the immune system, and induce
various types of sublethal damage (Tevini 1993). Numerous
organisms, including algae, crop plants, fishes, humans, and
many invertebrates, can be harmed by exposure to UVB ra-
diation (van der Leun and Bornman 1998, Bancroft et al.
2007).

Animals have been exposed to sunlight and UVB radiation
throughout their evolutionary history (Cockell 2001). More-
over, animals, including amphibians, have been subjected to
periodic ozone depletion, with concomitant increases in UV
radiation exposure. Natural events such as volcanic activity,
supernova explosions, impacts from comets and asteroids, and
solar flares can result in large-scale ozone depletion, with
relatively rapid, transient increases in UV radiation (Cockell
and Blaustein 2000, Cockell 2001). Ozone depletion may last
for decades if an impact is large enough (Cockell and Blaustein
2000). On an evolutionary timescale, significant ozone de-
pletion caused by impacts from comets and asteroids may be
relatively common. Although ozone damage from such im-
pacts is influenced by a variety of factors (Cockell 2001), one
estimate is that significant ozone depletion from asteroid
and comet impacts may occur at an average frequency of
once every 800 years (Cockell 2001). Thus, over evolutionary
time, UV radiation has been a ubiquitous stressor on living
organisms (Cockell 2001).
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To seek or not to 
seek sunlight
Exposure to “bursts” of UV radi-
ation every few centuries most
likely is not responsible for the
situation facing organisms today.
Human-induced production of
CFCs (chlorofluorocarbons) and
other chemicals continuously 
depletes stratospheric ozone, in-
ducing long-term, persistent in-
creases in UVB radiation at the
Earth’s surface (Solomon 1999,
Cockell and Blaustein 2001).
Furthermore, decreases in strato-
spheric ozone, along with climate
warming and lake acidification,
lead to lower concentrations of
dissolved organic carbon (Schind-
ler et al. 1996), which results in in-
creasing levels of UV radiation in
aquatic systems. Data from re-
mote sensing indicate that levels of
UVB radiation have recently risen
significantly (especially since 1979) in both tropical and tem-
perate regions (Kerr and McElroy 1993, Herman et al. 1996,
Middleton et al. 2001), and amphibian populations are de-
clining in these areas (Stuart et al. 2004). These data, in con-
junction with mounting experimental evidence, suggest that
increasing UV radiation is harmful to amphibians (Blaustein
et al. 1998, 2001a).

Exposure to UVB radiation may be especially significant
for those amphibian species for which selection pressures
have resulted in behaviors that expose them to relatively large
doses of solar radiation. For example, as stated above, many
amphibians lay eggs in open, shallow areas where they receive
maximum exposure to sunlight. This exposure can heat egg
masses, which induces faster hatching and development
(Stebbins and Cohen 1995). Similarly, the larvae of many am-
phibian species seek shallow, open regions of lakes and ponds,
where it is warmer and they can develop more quickly (Hokit
and Blaustein 1997, Hoff et al. 1999). The rate of development
is especially critical for amphibians living in ephemeral 
habitats. These species must metamorphose before their
habitat dries or freezes (Blaustein et al. 2001b). Thus, am-
phibians are often faced with conflicting selection pressures.
Some species must develop quickly, before their habitat dis-
appears. Therefore, they seek sunlit areas, where exposure to
warmer temperatures enhances development. Yet evidence
from a number of recent studies illustrates that many am-
phibian species, even those that seek sunlight, are sensitive to
damage from solar radiation (Fite et al. 1998, Belden et al.
2000). If exposed, amphibians may die or accrue potentially
severe sublethal damage.

UVB damage in amphibians has been well documented 
experimentally in the laboratory and in the field. In field 

experiments, investigators around the world have shown that
ambient UVB radiation decreases the hatching success of
many amphibian species in nature (Blaustein et al. 1998,
2001b). For example, in the Pacific Northwest of the United
States, the hatching success of Cascades frogs, western toads,
long-toed salamanders (Ambystoma macrodactylum), and
northwestern salamanders (Ambystoma gracile) was lower
when exposed to ambient UVB radiation than when eggs were
experimentally shielded from UVB radiation (Blaustein et al.
1998). In California, the hatching success of California
treefrogs (Hyla cadaverina) and California newts (Taricha
torosa) was lower for eggs exposed to UVB radiation than for
eggs that were experimentally shielded from UVB (Anza-
lone et al. 1998). In Europe, the hatching success of common
toads (Bufo bufo) was lower for UVB-exposed eggs than for
those shielded from UVB (Lizana and Pedraza 1998). The
hatching success of moor frogs (Rana arvalis) increased when
embryos were shielded from UVB (Häkkinen et al. 2001). In
Australia, the hatching success of alpine treefrogs (Litoria
verreauxii alpina) and eastern froglets (Crinia signifera) was
significantly enhanced when embryos were shielded from
UVB radiation (Broomhall et al. 1999).

For other amphibian species, hatching success is unaffected
when eggs are exposed to ambient levels of UVB radiation in
field experiments (Blaustein et al. 2001a). However, even
though hatching rates of these species may appear unaffected
by UVB in field experiments, a number of sublethal effects 
accrue after exposure. For example, exposure to UVB radia-
tion may alter amphibians’ behavior (Nagl and Hofer 1997,
Blaustein et al. 2000, Kats et al. 2000), slow their growth and
development (Belden et al. 2000, Smith et al. 2000, Pahkala
et al. 2001, Belden and Blaustein 2002a), or cause cumulative

Figure 1. Evolutionary constraints regarding amphibian population declines.
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developmental and physiological damage (Worrest and Kimel-
dorf 1976, Blaustein et al. 1997, Fite et al. 1998, Ankley et al.
2000). Developmental anomalies after exposure to UVB 
radiation can occur at all life stages, from extremely early em-
bryonic stages (Scharf and Gerhart 1980, Elinson and Pasceri
1989) through adult forms living in nature (Fite et al. 1998,
Blaustein et al. 2005a).

Several experimental studies illustrate that early exposure
to UVB radiation causes delayed effects in later stages. For ex-
ample, UVB radiation did not influence the hatching success
of plains leopard frogs (Rana blairi), but larval growth and
development was slower for frogs that were exposed to UVB
as embryos (Smith et al. 2000). Embryos of the common
frog (Rana temporaria) exposed to UVB showed no effects in
terms of survival rates, frequency of developmental anomalies,
or hatching size (Pahkala et al. 2001). However, larvae exposed
to UVB radiation as embryos had more frequent develop-
mental anomalies, metamorphosed later, and were smaller
than larvae shielded from UVB as embryos (Pahkala et al.
2001). Ambient levels of UVB radiation had no effects on
hatching success in red-legged frogs (Rana aurora) (Ovaska
et al. 1997, Blaustein et al. 1998), but larvae exposed to UVB 
radiation as embryos were smaller and less developed than
those shielded from UVB radiation (Belden and Blaustein
2002b).

Emerging diseases
In human and wildlife populations, diseases may become
more prevalent when changes occur in the ecology of the
host–pathogen relationship.

Amphibian malformations. Amphibian species that lay their
eggs in water, and whose larvae must grow and develop in 
water, are subjected to a number of waterborne pathogens.
One example is the parasitic flatworm Ribeiroia ondatrae,
which is probably largely responsible for the increasing 
frequency of malformed amphibians in North America
(Blaustein and Johnson 2003a, 2003b, Sessions 2003).
Although malformed amphibians have been observed for
about 300 years (Johnson and Chase 2004), reports of de-
formed amphibians with missing or extra limbs have in-
creased dramatically. Contemporary observations appear to
show more severe and frequent malformations than histor-
ical observations (Johnson and Chase 2004).

Eutrophication, a growing problem for ponds and lakes
(Blaustein and Johnson 2003b), appears to be the catalyst 
driving the elevated parasitic infections that have been linked
to amphibian malformations (Johnson and Chase 2004).
With increasing eutrophication of freshwater ponds, due to
fertilizer runoff and cattle grazing, shifts in the composition
of the aquatic community occur (Johnson and Chase 2004).
In many freshwater systems where eutrophication has taken
place, small species of snails are replaced by larger species, such
as those that are intermediate hosts of Ribeiroia (Johnson 
and Chase 2004). Apparently, eutrophication lowers the 
mortality rate of infected snails, thereby increasing the period

over which they release parasites. Such changes lead to an 
increase in amphibian infections and malformations (John-
son and Chase 2004). Because most amphibian larvae must
remain in water for their entire larval period, they may be sub-
jected to a growing number of parasite-infected snails in 
eutrophic systems.

Infectious diseases. Just as there have been benefits to seek-
ing sunlight over evolutionary time, there have probably
been numerous benefits over evolutionary time for animals
to lay their eggs communally or to join groups (Hamilton
1971, Bertram 1978, Pulliam and Caraco 1984, Håkansson and
Loman 2004). Individuals within groups may be able to find
food more efficiently, avoid predators more successfully, or use
resources more effectively (Hamilton 1971, Bertram 1978).Yet
the egg-laying habits and social behavior of many extant 
amphibian species may be placing amphibians in danger of
acquiring infectious diseases.

Two pathogens that affect amphibian populations are the
oomycete Saprolegnia and the fungus Batrachochytrium den-
drobatidis (Blaustein et al. 1994c, Rachowicz et al. 2005).
Amphibians that lay their eggs in communal egg masses
(Behler and King 1979, Nussbaum et al. 1983) are especially
at risk of acquiring and spreading infectious diseases such as
Saprolegnia at the egg stage (Blaustein et al. 1994c). In fact, for
at least one species, it has been shown experimentally that egg
masses laid later and closest to the communal mass are more
likely to acquire Saprolegnia than eggs laid earlier and away
from the communal mass (Kiesecker and Blaustein 1997a).

Larval behavior may enhance amphibians’ susceptibility 
to diseases, and especially to Batrachochytrium. The larvae of
several amphibian species can act as reservoirs for Batra-
chochytrium (Blaustein et al. 2005b), whereas the larvae of
other species die from exposure to the fungus. Transmission
of Batrachochytrium may be enhanced under several cir-
cumstances. For example, as ponds dry, concentrations of
Batrachochytrium increase. This may be especially impor-
tant in highly social tadpoles that form large schools, as do
many species of toads (Bufo spp.). In large schools, which can
comprise hundreds of thousands of individuals (Blaustein
1988), there is great potential for disease transmission.
For many species, schooling may be the only social behavior,
besides mating, in which individuals are in contact with con-
specifics. Moreover, as larvae, many species are found in the
same habitat with other anurans, and pathogens may be
transmitted between species at the larval stage.

Even after metamorphosis, juvenile frogs and adults 
may congregate in large numbers. For example, in Oregon,
western toads—often numbering in the thousands—
metamorphose synchronously and remain in large aggre-
gations (Arnold and Wassersug 1978, Samollow 1980,
Blaustein et al. 2005a). Adults of many amphibian species 
congregate to breed in huge assemblages (Wells 1977). These
large aggregations may enhance the probability of disease
transmission.
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Climate change, ultraviolet radiation, 
and disease: A complex relationship
Ecological systems are complex. Thus, like the causes of am-
phibian malformations, the influences on the prevalence and
acquisition of infectious diseases are complex and often in-
volve an interaction with environmental changes. For exam-
ple, Kiesecker and colleagues (2001) found a significant
relationship between the amount of precipitation during
amphibian breeding and the water depth at which toad eggs
developed. In dry years linked to El Niño events, western
toad eggs developed in shallower water, and embryonic mor-
tality was higher. Western toad eggs can be sensitive to am-
bient levels of UVB radiation, and dry conditions caused an
increase in exposure of the eggs to UVB. The authors suggest
that UVB could have contributed to higher rates of egg mor-
tality in these years (Kiesecker et al. 2001). However, there is
a complex relationship among climate change, UVB radiation,
and outbreaks of disease. Kiesecker and colleagues (2001)
showed that when water levels decrease, UVB exposure in-
creases, and eggs become infected with Saprolegnia more
readily than when water levels are higher. The increase in fre-
quency and magnitude of El Niño events as a result of global
climate change (Meehl and Washington 1996, Timmermann
et al. 1999) could increase the exposure of amphibians to detri-
mental levels of UVB and raise the infection rates of Sapro-
legnia (Kiesecker et al. 2001).

Pounds and colleagues (2006) showed that changes in cli-
mate in the American tropics have probably led to more out-
breaks of chytridiomycosis, the disease caused by
Batrachochytrium. It appears that shifting temperatures in the
region are the ultimate trigger for the expansion of Batra-
chochytrium into amphibian populations. Temperatures in
many highland areas in the American tropics are shifting to-
ward the optimum for Batrachochytrium growth.

The coupling of environmental changes and disease out-
breaks in amphibians in North America and in the tropics is
emblematic of the complexity and dynamics of the ecologi-
cal processes influencing amphibian population declines
worldwide (Blaustein and Dobson 2006). It is clear that or-
ganisms may not be able to adjust to such dynamics effectively
before their populations are seriously depleted.

The limits of evolution
We have argued that the causes of amphibian population
declines are complex, and that amphibians often behave in
ways that may be detrimental to them under today’s envi-
ronmental conditions. In an evolutionary context (figure 1),
the problems that amphibians face are unprecedented, and
many amphibian populations are at risk. Numerous selection
pressures act on amphibians, including various abiotic and
biotic agents to which amphibians are exposed during their
lifetime. Many of these agents of selection are intense and 
relatively new (e.g., increasing UVB radiation due to ozone
depletion; chemical contamination). It is difficult to predict
the direction a population will take in the face of both 

natural and rapidly mounting human-induced selection
pressures.

Limited by historical constraints, many amphibians 
(especially frogs and toads) must lay their eggs in water. This
exposes eggs not only to aquatic predators and competitors
but also to a variety of abiotic regimes, both natural and 
human induced, that may be especially harmful to them 
under today’s conditions. For example, the chemical contami-
nation of aquatic systems that extant amphibians face has 
become far more extensive as a result of mining, industrial-
ization, urban sprawl, and agricultural processes (Boone and
Bridges 2003). Such contamination can be measured in hun-
dreds of years—a rapid change, given that amphibians have
been laying their eggs in less-contaminated water for millions
of years.

Some of the constraints on amphibians may indeed be the
reason why populations of these animals are declining more
than populations of other vertebrate groups (Stuart et al.
2004; see discussions in Holt and Gomulkiewicz 2004, Bridle
and Vines 2007). Although relatively rapid evolution may
occur within some amphibian populations when a novel
threat arises (Kiesecker and Blaustein 1997b), other threats—
such as emerging infectious disease, perhaps coupled with en-
vironmental changes—may be too intense and too new for
amphibians to cope with them. As stated above, the dynam-
ics of amphibian population declines are complex, and as in
all organisms, there is an interplay among many biotic and
abiotic factors and environmental and genetic constraints
(Holt and Gomulkiewicz 2004).

Not all evolution is adaptive. Many amphibians still lay 
their eggs in shallow water and in large communal masses,
potentially subjecting the eggs to UVB radiation and infec-
tious diseases. Many amphibians school in large numbers,
many newly metamorphosed amphibians aggregate, and
many amphibian species mate in large communal groups.
These behaviors and ecological attributes have probably per-
sisted, and were probably beneficial, for millions of years
(Romer 1939, 1968). But under today’s conditions, these very
behaviors may subject amphibians to a variety of damaging
agents, including UVB radiation and pathogens. So why do
amphibians exhibit such seemingly maladaptive character-
istics? Because evolution takes time, it is not perfect, and it can
only alter existing variations.

Obviously, amphibians, like other organisms, have de-
fenses against UVB radiation and diseases. Exposure to sun-
light over evolutionary time has undoubtedly resulted in
mechanisms that have helped animals to cope with UVB 
radiation (Epel et al. 1999, Hofer 2000, Cockell 2001).
Animals can either prevent UV damage from occurring or 
repair damage once it occurs (Epel et al. 1999). Thus, am-
phibians may use molecular, physiological, and behavioral
mechanisms to limit their exposure to UVB radiation, or
they may somehow repair UVB-induced damage (Blaustein
and Belden 2003). Similarly, all organisms have defenses
against diseases. For amphibians, these include the immune
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system and numerous peptides on the skin (Rollins-Smith and
Cohen 2003, Rollins-Smith and Conlon 2005).

However, many selection pressures, especially those that are
human induced, may be too intense and may have arisen too
rapidly for amphibians to evolve adaptations to overcome
them. For example, ozone depletion is a phenomenon initi-
ated only decades ago by human impacts on stratospheric
chemistry (Madronich et al. 1998, Solomon 1999, Hoppel et
al. 2005). Thus, living organisms have been bombarded with
constantly rising levels of harmful UVB radiation only for the
past several decades. Increasing UVB radiation is therefore a
relatively new selection pressure. For some species, popula-
tions may be adversely affected before behaviors limiting
amphibian exposure to sunlight, and other defenses (e.g.,
DNA repair mechanisms; Blaustein et al. 1994a), can overcome
strong established selection pressures for seeking warmth. It
is likely that some species will continue to seek sunlight, and
those species without effective defense mechanisms against
the damage from UVB radiation will be harmed or die when
exposed to UVB (Blaustein and Belden 2003). Moreover, nu-
merous experimental studies have shown that some am-
phibians cannot repair UV-induced DNA damage effectively
(Blaustein et al. 1994a), either because the synergistic effects
of UVB with other factors render the repair mechanisms in-
effective or, more likely, because the repair mechanisms are
not efficient in light of current levels of UVB radiation.

Similarly, immune systems are not perfect—otherwise,
organisms would not get sick. Since 1976, at least 30 new 
diseases have emerged, many triggered by recent changes in
the Earth’s climate (Epstein 1997). Climate changes have 
influenced the emergence of two amphibian pathogens,
Batrachochytrium and Saprolegnia, as discussed above.

Finally, evolution is a compromise. Evolution does not 
result in perfect organisms. Because of the numerous selec-
tion pressures facing organisms and the lack of existing vari-
ation, it is not possible for evolution to mold the “perfect
amphibian.” Indeed, the notion of amphibians’ evolving
adaptations to cope with recent and intense selection pressures
has been given some weight. For example, it has been stated
that amphibians have a “high resistance”to UVB (Licht 2003),
and it has been suggested that many amphibian “eggs are ap-
parently well protected against even today’s UVB levels”
(Beardsley 2003).Yet this depends on the species, the species’
life history stage, and the ecological context. For example, the
eggs of some species do not have adequate defenses against
UVB radiation, and they may be laid where they are subjected
to lethal levels of UVB radiation (Blaustein et al. 1994a). We
do expect and observe variation in how amphibians cope with
UVB radiation, diseases, and other agents—not all mem-
bers of a population are equally susceptible to the same stres-
sor—but we do not expect to see amphibians evolve into
perfect organisms in the face of potentially damaging factors.

Genetic variation, in conjunction with various selection
pressures, leads to differential survival of individuals within
a population. Certain combinations of traits may allow an 
organism to survive better when facing some selection pres-

sures, but these traits may make the same organism more sus-
ceptible to other selection pressures. Because of this interplay
between traits, adaptation can be limited under certain cir-
cumstances even when overall genetic diversity is high (Bri-
dle and Vines 2007). If a population faces many pressures and
fails to adapt to just one pressure, the population may not per-
sist, resulting in local declines. Given adequate genetic diversity
and potential for rapid adaptation, those individuals with char-
acteristics that allow them to cope with mounting environ-
mental changes, emerging diseases, and other stressors will
produce more offspring than individuals without those char-
acteristics. Perhaps for some of the amphibian populations
containing such individuals, those attributes will be good
enough to permit the species to persist for millions more years.
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