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ABSTRACT
Consideration of ecological scale is fundamental to understanding and managing avian population growth and
decline. Empirically driven models for population dynamics and demographic processes across multiple spatial scales
can be powerful tools to help guide conservation actions. Integrated population models (IPMs) provide a framework
for better parameter estimation by unifying multiple sources of data (e.g., count and demographic data). Hierarchical
structure within such models that include random effects allow for varying degrees of data sharing across different
spatiotemporal scales. We developed an IPM to investigate Greater Sage-Grouse (Centrocercus urophasianus) on the
border of California and Nevada, known as the Bi-State Distinct Population Segment. Our analysis integrated 13 years
of lek count data (n . 2,000) and intensive telemetry (VHF and GPS; n . 350 individuals) data across 6 subpopulations.
Specifically, we identified the most parsimonious models among varying random effects and density-dependent terms
for each population vital rate (e.g., nest survival). Using a joint likelihood process, we integrated the lek count data with
the demographic models to estimate apparent abundance and refine vital rate parameter estimates. To investigate
effects of climatic conditions, we extended the model to fit a precipitation covariate for instantaneous rate of change
(r). At a metapopulation extent (i.e. Bi-State), annual population rate of change k (er) did not favor an overall increasing
or decreasing trend through the time series. However, annual changes in k were driven by changes in precipitation
(one-year lag effect). At subpopulation extents, we identified substantial variation in k and demographic rates. One
subpopulation clearly decoupled from the trend at the metapopulation extent and exhibited relatively high risk of
extinction as a result of low egg fertility. These findings can inform localized, targeted management actions for specific
areas, and status of the species for the larger Bi-State.

Keywords: Bayesian analysis, Bi-State Distinct Population Segment, Centrocercus urophasianus, climate,
demographic, density dependence, ecological scale, environmental stochasticity, precipitation, random effect

La importancia relativa de los impulsores intrı́nsecos y extrı́nsecos del crecimiento poblacional varı́a
entre las poblaciones locales de Centrocercus urophasianus: un enfoque integrado de modelado
poblacional

RESUMEN
Es fundamental considerar la escala ecológica para entender y manejar el crecimiento y la disminución de las
poblacionales de aves. Los modelos de base empı́rica de la dinámica poblacional y los procesos demográficos a través
de múltiples escalas espaciales pueden ser herramientas poderosas para ayudar a guiar las acciones de conservación.
Los modelos poblacionales integrados (MPIs) brindan un marco de referencia para una mejor estimación de los
parámetros mediante la unificación la múltiples fuentes de datos (e.g., datos de conteo y demográficos). La estructura
jerárquica al interior de estos modelos, que incluye efectos al azar, permite varios grados de intercambio de datos a
través de diferentes escalas espacio-temporales. Desarrollamos un MPI para investigar a Centrocercus urophasianus en
el ĺımite entre California y Nevada, conocido como el Segmento Poblacional Distintivo Bi-Estatal. Nuestros análisis
integraron 13 años de datos de conteo de ensambles de cortejo (n . 2,000) y datos de telemetrı́a intensa (VHF y GPS;
n . 350 individuos) a través de 6 subpoblaciones. Especı́ficamente, identificamos los modelos más parsimoniosos
entre efectos aleatorios variables y términos denso dependientes para cada tasa vital poblacional (e.g., supervivencia
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del nido). Usando un proceso de probabilidad conjunta, integramos los datos de conteos de los ensambles de cortejo
con los modelos demográficos para estimar la abundancia aparente y refinar las estimaciones de los parámetros de las
tasas vitales. Para investigar los efectos de las condiciones climáticas, extendimos el modelo para ajustar una
covariable de precipitación para una tasa de cambio instantánea (r). Para la extensión de la metapoblación (i.e., Bi-
Estatal), la tasa de cambio poblacional anual k (er) no favoreció una tendencia de incremento o disminución general a
lo largo de la serie de tiempo. Sin embargo, los cambios anuales en k fueron impulsados por cambios en precipitación
(efecto retardado de 1 año). Para la extensión de la subpoblación, identificamos variación sustancial en k y en las tasas
demográficas. Una subpoblación claramente se desacopló de la tendencia a la extensión de la metapoblación y
exhibió riesgos relativamente altos de extinción como resultado de una baja fertilidad de los huevos. Estos hallazgos
pueden guiar acciones de manejo localizadas y enfocadas para áreas especı́ficas e informar sobre el estatus de la
especie para una mayor área Bi-Estatal.

Palabras clave: análisis bayesianos, Centrocercus urophasianus, clima, demografı́a, denso-dependencia, efecto
aleatorio, escala ecológica, estocasticidad ambiental, precipitación, Segmento Poblacional Distintivo Bi-Estatal

INTRODUCTION

Fundamental to population ecology is a thorough under-

standing of population structure and dynamics at varying

spatiotemporal scales (Allen and Hoekstra 1992, Levin

1992). Trends of population growth and decline, as well as

underlying demographic processes that guide them, often

vary across hierarchical levels of organization and their

corresponding scales (Allen and Star 1982). A major goal

in wildlife conservation is to align processes and patterns

to their appropriate spatiotemporal scale and further

identify biotic and abiotic factors governing such patterns.

Macro-ecologists have recently stressed the importance of

documenting and understanding cross-scale interactions,

whereby environmental factors at regional spatiotemporal

scales that strongly influence an ecological response can

operate differently when interacting with factors occurring

at local (and nested) scales (Peters et al. 2007, Soranno et al

2014). It follows that management actions at one

ecological scale (e.g., representing a local subpopulation

or population) might influence outcomes differently at

other scales (e.g., regional; Hobbs 1998). However,

incorporating spatiotemporal scales, particularly those

occurring at regional extents (Soranno et al. 2014) to the

management of wildlife populations can be challenging.

Failure to account for scale-specific processes can result in

significant misinterpretation of observed patterns and

subsequent actions misaligned with drivers of population

change (Bissonette 2016).

Integrated population models (IPMs) provide an em-

pirically driven framework to investigate population

dynamics by incorporating multiple sources of data within

a single unified framework (Schaub and Abadi 2011, Kéry

and Schaub 2012). For example, IPMs can include

information on abundance through time and space using

survey information (e.g., time-series count data), as well as

information on population processes derived from more

in-depth demographic information (e.g., life stage data).

An IPM framework that combines data from multiple

sources provides better parameter estimation and an

understanding of processes and patterns, even in circum-

stances when data are missing or disparate (Schaub and

Abadi 2011). IPMs also provide a platform to evaluate

density-dependent effects on each population vital rate

(Weegman et al. 2016) and recover parameters about

specific demographic rates where data might be missing or

sparse (Abadi et al. 2010, Kéry and Schaub 2012). For a

detailed review of other benefits of IPMs see Schaub and

Abadi (2011) and Kéry and Schaub (2012).

We focus on 2 properties of IPMs that lend themselves

well to applied management. First, the inherent hierarchi-

cal properties of IPMs allow for estimation of vital rates

and abundance across nested spatial and temporal scales,

which would otherwise be inestimable and cause gaps in

time-series data (Abadi et al. 2010, Kéry and Shaub 2012,

Duarte et al. 2017). This property is particularly important

because intrinsic and extrinsic factors influencing popula-

tion dynamics at more localized extents representing

subpopulations may differ from those at more regional

extents representing larger metapopulations (Saether

1997). Demographic estimates spanning a sufficient

temporal duration are also important for populations that

exhibit cyclical dynamics that respond to resource

availability (Bjornstad and Grenfell 2001, Ahrestani et al.

2016). Hence, contrasting IPM-derived estimates of vital

rates, and rates of population change, among local and

regional extents through time can disentangle factors likely

affecting subpopulations at smaller spatial extents (e.g.,

anthropogenic disturbances) from those affecting meta-

populations at larger extents (e.g., region-wide wildfire and

drought).

This type of comparative framework would be extremely

valuable for conservation and management of species’

populations, allowing wildlife and land managers to make

decisions that align with patterns and processes at the

appropriate spatiotemporal scale (Bissonette 2016). For

example, long-term population trends for single species

can be evaluated at scales that encompass the species’

distributional range to help inform federal regulatory

agencies tasked with status assessments and protection
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policies (e.g., U.S. Fish and Wildlife Service) such as the

Endangered Species Act (ESA; 16 U.S.C. § 1531 et seq.).

Whereas, understanding processes driving population

dynamics at relatively small spatial scales can provide

critical information for conservationists and managers

determining actions for local populations within a species’

range.

Second, IPMs can be fit with different hierarchical,

random effects (e.g., population and year) that allow

‘‘borrowing of strength from the ensemble’’ (Kéry and

Schaub 2012) such that data can be shared across space

and time to improve vital rate parameter estimates within

multiple, subcomponent demographic models. The struc-

turing of random effects for space and time (i.e. additive or

nested) influences more finite estimation of grand means

for parameters (Kéry and Schaub 2012, Nowak 2015).

Different random effect structures, however, create trade-

offs between precision and accuracy of parameter esti-

mates, which affect joint likelihood estimates of

abundance. Among local subpopulations of birds (i.e. with

spatial random effects included), data that inform specific

demographic vital rate estimates often are limited. In these

instances, information can be shared among subpopula-

tions, which increases precision and reduces uncertainty.
On the other hand, effects of sharing could be relaxed to

increase subpopulation-specific estimates that are inde-

pendent when sample sizes are robust among all

subpopulations. Similarly, data sharing can occur across

years, which allows for derivation of parameters annually

and across longer time periods. Thus, the demographic

component of IPMs can be improved by fitting the most

parsimonious random effects that balance precision and

accuracy.

Here, we describe an IPM for a Distinct Population

Segment (DPS) of Greater Sage-Grouse (Centrocercus

urophasianus, hereafter referred to as ‘‘sage-grouse’’) found

along the border of California and Nevada, known as the

Bi-State DPS. Sage-grouse are sagebrush obligates (Braun

et al. 1976) that have declined in distribution and

abundance largely as a result of human disruption of

sagebrush ecosystems (Schroeder et al. 2004, Knick and

Connelly 2011). Sage-grouse have undergone multiple

evaluations for listing under the ESA and, specifically, the

Bi-State DPS has been evaluated separate from other sage-

grouse populations throughout the species’ range (U.S.

Fish and Wildlife Service 2013, 2015a, 2015b). The Bi-State

DPS may be at increased risk of population declines

because of substantial loss of sagebrush habitat and lack of

connectivity among subpopulations comprising the DPS

(Oyler-McCance et al. 2005, 2014). The primary threats

within the Bi-State are habitat loss as a result of conifer

encroachment (Coates et al. 2017, Prochazka et al. 2017),

wildfire (Coates et al. 2016), and annual grass invasion

(U.S. Fish and Wildlife Service 2015a).

Sage-grouse populations in the Great Basin inhabit

sagebrush ecosystems where productivity is tied strongly

to variation in precipitation and temperature owing largely

to the cold-desert climate (Noy-Meir 1973). In the Bi-State

DPS, population dynamics at larger spatial scales likely

follow cyclical patterns that alternate between short bursts

of primary productivity resulting from periods of above-

average precipitation, and then often followed by periods

of drought. Increased primary productivity likely increases

resources needed for reproduction and survival, whereas

drought imposes the opposite effects and drives popula-

tions downward (Fedy and Doherty 2011, Blomberg et al.

2013, Coates et al. 2016). It is imperative, therefore, to

identify when and where perturbations decouple trends at

smaller spatial scales from trends at larger spatial scales

governed by environmental stochasticity. Different types of

IPMs have been used to describe sage-grouse population

dynamics in the more mesic northeastern portion of the

species’ range (McCaffery and Lukacs 2016) and for

Gunnison Sage-Grouse (C. minimus) in Colorado (Davis

et al. 2014). Other than preliminary reports (Coates et al.

2014), however, population dynamics of sage-grouse in the

Bi-State DPS within the more xeric Great Basin have not

been described with IPM methods used in this study.

The primary objective of this study was to develop a

stochastic stage-based IPM to provide insight into the

demographic processes responsible for the state of

subpopulations and any decoupling from broader popula-

tion trends. Specifically, we (1) evaluated different random

effects (e.g., subpopulation and year) and density-depen-

dence for each life stage to refine the demographic process

models; (2) integrated demographic and lek count data

using a joint likelihood process; (3) estimated demographic

rates across each life stage for different age and

subpopulation classes; and (4) derived k at the subpopu-

lation and metapopulation extent through time. We then
extended the model to fit the climatic characteristics of

precipitation as covariates on k and compared these effects

among spatial extents (subpopulation and metapopula-

tion). We also compared annual estimates of k derived

from the individual state-space and demographic sub-

models to those derived from the joint likelihood IPM to

examine relative differences in variance and alignment of

trends among the 3 model outputs.

METHODS

Study Area
The study area encompasses 18,325 km2 of land in Mono,

Alpine, and Inyo counties, California, and Carson City,

Douglas, Esmeralda, Lyon, and Mineral counties, Nevada

(Appendix Figure 7). We monitored sage-grouse within 6

subpopulations in the Bi-State DPS, from north to south:

Pine Nut Mountains (PN), Desert Creek (DC), Fales (FA),
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Bodie Hills (BH), Parker Meadows (PA), and Long Valley

(LV). Based on telemetry of sage-grouse movement within

the Bi-State DPS (Coates et al. 2013), we assumed

movements between these subpopulations exist, but were

negligible. The number of subpopulations and their spatial

distribution provided an appropriate demographic struc-

ture for the Bi-State DPS. Elevation ranged from 1,386 to

4,344 m. Wyoming big sagebrush (Artemisia tridentata

wyomingensis) and black sagebrush (A. nova) dominated

landscapes at low elevations below ~2,100 m, and

mountain big sagebrush (A.t. vaseyana) and low sagebrush

(A. arbuscula) dominated above 2,100 m. Other common

shrubs in sagebrush communities included rabbitbrush

(Chrysothamnus spp., Ericameria spp.), ephedra (Ephedra

viridis), snowberry (Symphoricarpos spp.), western service-

berry (Amelanchier alnifolia), and antelope bitterbrush

(Purshia tridentata). Although sagebrush communities

within the Bi-State DPS were typical of those present

elsewhere in the Great Basin, this region had relatively

greater amounts of singleleaf pinyon (Pinus monophylla;

hereafter referred to as ‘‘pinyon’’) and Utah juniper

(Juniperus osteosperma; hereafter referred to as ‘‘juniper’’).

Jeffrey pine (Pinus jeffreyi) and other conifer species were

present but less abundant than pinyon and juniper trees.

Common grasses included needle and thread (Hesperosti-

pa comata), Indian ricegrass (Achnatherum hymenoides),

bottlebrush squirreltail (Elymus elymoides), and cheatgrass

(Bromus tectorum; present mostly at northern sites).

Common forbs included phlox (Phlox spp.), lupine

(Lupinus spp.), buckwheat (Eriogonum spp.), mule-ears
(Wyethia spp.), and hawksbeard (Crepis spp.).

Survey Data
During 2003–2015, collaboration between government

agencies, universities, and other stakeholders resulted in

extensive demographic and lek survey datasets of sage-

grouse subpopulations comprising the Bi-State DPS. Lek

survey protocol followed published methodologies (Con-

nelly et al. 2003) and were performed collaboratively by a

team of interagency personnel from California Department

of Fish and Wildlife, Nevada Department of Wildlife,

Bureau of Land Management, U.S. Forest Service, Univer-

sity of Nevada Reno, University of Idaho, Los Angeles

Department of Water and Power, and the U.S. Geological

Survey. The Bi-State DPS surveys generally employed a

‘‘saturation count’’ method for deriving the maximum

count for a single day, with exception of populations in

Nevada. Saturation counts required that all known active

leks be counted simultaneously by experienced observers.

Male sage-grouse were counted at each lek at least 3 times

in the spring (March–May) to estimate maximum count.

The 3 counts typically were spaced equally in time and

overlapped with peak lek attendance by males. Lek counts

were conducted between 30 min before sunrise and 90 min

after sunrise. Binoculars, a spotting scope, or both were

used to count sage-grouse from a location that afforded a

view of the entire lek. Three counts per survey were

conducted at 10-min intervals, and the greatest count was

selected for each survey. The lek count for the peak lek

attendance day was obtained for each season. Leks with a

recorded integer value of zero or greater for male

attendance were included in the analysis. Leks with a

blank value (i.e. not surveyed) were not included. From

total surveys, we derived annual maximum male atten-

dance for each lek and averaged maximum lek counts for

each subpopulation by year. We averaged these numbers

because inferences were at the subpopulation extents and

we sought to prevent biased low estimates for years of

missing data for any given lek because many of these areas

consisted of more than one lek.

Demographic Data
During the 13-yr period, we conducted intensive on-the-

ground monitoring of sage-grouse movements, survivor-

ship, and reproduction. Sage-grouse were captured in the

spring (March–April) and at various concentration areas

in the fall (October–December) during 2003–2015 using

spotlighting techniques at night (Giesen et al. 1982,

Wakkinen et al. 1992). Captured sage-grouse were

outfitted with necklace-style VHF radio-transmitters

(Kolada et al. 2009). During 2012–2015, a subsample of

sage-grouse was outfitted with Global Positioning Systems

(GPS), Platform Transmitter Terminals (PTTs; GeoTrak,
Apex, North Carolina) with a VHF ancillary transmitter

(combined weight was ,3% of body mass). The purpose of

the GPS-PTT was to collect high-density relocation data

remotely and transmit to a central database via satellites.

Because all sage-grouse carried a VHF transmitter, they

were relocated using handheld radio receivers and

antennae at least twice per week during spring and

summer, and at least once per month during winter. Each

grouse was circled at a radius of 30–50 m using the loudest

signal method to help minimize location error. We

approximated the distance and recorded the azimuth from

the observer’s location (recorded using GPS) to estimate

the location coordinates (Universal Transverse Mercator)

of the sage-grouse.

Telemetered sage-grouse were divided into 2 age classes

for monitoring: (1) sage-grouse that entered their first

breeding year but were less than 2 yr old were classified as

yearlings, and (2) sage-grouse that entered their second

breeding year were classified as adults (Eng 1955, Dalke et

al. 1963). Deaths within both age classes were documented.

Transmitters were equipped with mortality signals and

immediately retrieved following sage-grouse mortality

(Sveum et al. 1998). Date of mortality was recorded and

linked to band identifications. Aerial telemetry was

conducted periodically, especially during times when
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sage-grouse were thought to be missing. Ground location

confirmations generally were collected following flights.

Data recorded in the field consisted of date of transmitter

placement, last date observed alive, date of observed

mortality, and date censored from analysis.

Female sage-grouse were located every 3–5 days during

the nesting season (March–June) to estimate the nest

initiation date (propensity). When a nest was located,

subsequent nest checks were conducted every 2–3 days

until nest fate was determined. Nest fate was categorized as

either successful (�1 egg hatched) or unsuccessful

(depredated or abandoned; Rearden 1951). Data recorded

in the field consisted of (1) date each nest was found, (2)

date each nest was last checked alive, (3) date of nest fate

determined, and (4) fate of each nest. Clutch sizes were

measured opportunistically throughout the incubation

period (e.g., during incidental flushing or incubation

recesses). Clutch sizes also were measured following hatch

or depredation by counting egg shells, egg shell mem-

branes, or both. Field technicians noted unreliable clutch-

size counts and these were omitted from analyses. Eggs

that failed to hatch and exceeded 30 days of incubation

were inspected for fertility and recorded.

Following hatching, broods were monitored intensively.

Initial brood sizes were estimated by counting hatched egg

shells. Brood-rearing sage-grouse were relocated every 1–5

days with periodic checks of chicks (Casazza et al. 2011). A

final brood count was conducted after a fixed period of
time, which differed across years (2003–2005, 50 days;

2007–2009, 35 days; 2010–2011, 28 days; 2012–2015, 50

days). For this situation, we employed analytical tech-

niques that standardized count data across these different

data sets as described in the Data Analysis subsection.

During final brood counts, female sage-grouse were

flushed and intensive searches were conducted to count

chicks. If no chicks were detected, a second check was

conducted within 48 hr to confirm brood failure (Casazza

et al. 2011).

We imposed a set of decision rules to exclude data from

the analysis during a quality assessment process. Because

we conducted a female-based demographic analysis, we

first excluded marked male sage-grouse from the data set,

and female sage-grouse that were not relocated following

marking. We then excluded data when (1) relocation dates,

needed to estimate demographic parameters, were missing;

(2) information regarding the status of nest, brood, or

sage-grouse were not recorded (e.g., sage-grouse mortality

or alive); (3) unique identification of sage-grouse could not

be determined; and (4) study subpopulation of sage-grouse

could not be determined.

Data Analysis
Step 1: Evaluate random effect structures of vital rate

models. Before developing the process model (i.e.

demographic matrix model) of the IPM, we conducted

an initial step that evaluated separate models composed of

different random effect and density-dependent structures

for each population vital rate. One purpose of this step was

to evaluate the appropriate degree of data sharing (i.e.

borrowing of strength) across space and time to estimate

parameters for each vital rate. We collected demographic

data to estimate parameters for clutch size, nest survival,

second nest propensity, hatchability, chick survival, year-

ling survival, and adult survival. We relied on published

data to help inform first nest propensity rates and juvenile

survival (explained below). We modeled each vital rate

separately and created 5 models with different random

effect structures representing different spatiotemporal

effects: null (no random effects), year only, subpopulation

only, year and subpopulation additive, and year and

subpopulation nested. A model with random effect (year)

only allowed parameters to vary across time, but not space,

and a model with random effect (subpopulation) only

allowed variation across space, but not time. Both

structures allow for increased degree of data sharing

(e.g., estimation pulled toward a grand mean). The additive

space and time structure allow estimates to vary across

subpopulation and years, which should be more robust in

cases where data are sparse (e.g., missing subpopulation or

year combinations) and some degree of data sharing is

needed. Lastly, a nested random effects structure offers the

least amount of data sharing and should be most

parsimonious with clear differences among subpopulations

and years with robust sample sizes. Greater degrees of data
sharing can help inform disparate data sets and increase

precision in estimates (i.e. narrower credible limits). On

the contrary, less data sharing might increase accuracy for

individual subpopulation and year combinations where

sample sizes are robust. However, where data are scarce,

uncertainty in parameter estimation will increase. Thus,

this method allows the model fit to indicate the balance

between precision and accuracy given the data for each life

stage.

Because k is likely regulated by density-dependent

effects similar to other species (Turchin 1995, 1999), we

also fit density-dependent terms within each vital rate

model to account for variation explained by population

size. Several simple density-dependent models exist

(Turchin 1995, 1999). Here, we considered the Ricker

model that assumed constant linear decrease in the

demographic rate as population size increases N (Ricker

1954), and the Gompertz model that assumed constant

linear decrease as a function of logarithmic transformation

of N. Thus, the second form favors stronger density

dependence with relatively smaller N. To account for time-

delayed dynamics (Jacobson et al. 2004), we also fit 1-yr lag

effects (Garton et al. 2011, 2015). Each life stage model

consisted of 8 candidate models to identify the most
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parsimonious random effect structure and density-depen-

dent model form. We calculated Watanabe–Akaike

information criterion (WAIC; Watanabe 2010) to compare

models fitted with the suite of random effect structures.

The WAIC is a fully Bayesian technique that is valid in

hierarchical models (Watanabe 2013) and is generally

recommended for Bayesian ecological analyses (Hooten

and Hobbs 2015). We chose the model with the lowest

WAIC score to represent each vital rate model. Model

specifications that follow represent the most parsimonious

model structure for a given life stage (i.e. lowest WAIC).

Importantly, we derived estimates based on the model with

the most support from the data. For example, if WAIC

favored a nested random effect, then parameters for a

particular vital rate were derived for each combination of

subpopulation and year. If WAIC supported a model with

additive or single random effect (no nested effect in the

model), then the supported model was used to derive

parameters across year or subpopulation accordingly.

Lastly, if WAIC supported the null model, then parameters

were derived across all subpopulations and years. The data

preparation and most parsimonious model expressions

(Appendix Table 4) for each life stage follow.

Yearling and adult survival models. Using telemetry

data, we located individual monitored sage-grouse and

modeled annual survival as a continuous process observed

at discrete monthly intervals.We monitored survival at daily

to weekly intervals during the breeding season (e.g., March–

September) using ground-based telemetry, and at monthly

intervals during the winter months using aerial telemetry.

Therefore, encounter histories used to calculate survival of

individual yearling and adult grouse were scored as alive or

dead for each month of the year, which corresponded to our

lowest temporal resolution for monitoring survival. We

‘‘right-censored’’ individuals from the data, meaning we did
not always observe the date of death and only had

knowledge that individuals survived beyond a certain point.

We considered censoring to be a random process, because

sage-grouse were censored under 3 circumstances: (1) the

study period ended before death was determined, (2) the

transmitter failed, or (3) sage-grouse were lost to follow-up

monitoring. Thus, all individuals either died or were

eventually right-censored. We also allowed for graduation

of yearling sage-grouse to adults between years. Inference

was based on a constant hazard model, meaning the

probability of mortality did not change across months. We

recognize that sage-grouse survival can vary markedly

among seasons (Blomberg et al. 2013) and more complex

error structures can be fit to account for uneven survival

probabilities across the annual life cycle of sage-grouse.

Because our objective was to estimate the probability that

grouse lived or died for a given year, rather than when they

lived or died within that year, our assumption of constant

monthly hazard was appropriate.

Modeling procedures for annual survival followed those

described in Halstead et al. (2012). The unit hazard (UH)

was modeled where each encounter interval represented a

Bernoulli process per month. The additive effect model

was expressed as:

UHhijk ¼ expðai þ bage*xage;hijk þ cj þ fijÞ ð1Þ

ai~Normalð0;r2
aÞ

cj~Normalð0;r2
cÞ

fij~Normalð0;r2
fÞ

where UH was a function of random effects for

subpopulation ai, year cj, and subpopulation by year fij
(nested structure). Random variables were assumed to

arise from normal distributions with mean zero, and

variances r2
a, r2

c and r2
f , respectively. Expected change in

the ln(hazard ratio) was estimated by age (bage), where xage
represents the vector of age class data (yearling and adult)

and the indicator was equal to one for adults. The hazard

ratio represented the ratio of hazard rates (in this case,

monthly risk of morality) between the 2 age classes.

Subscripts h, k, i, and j reference grouse, month,

subpopulation, and year. Following the modeling process,

we derived the annual (an) survival parameter (s) as:

san;ij ¼ e�CHij ð2Þ

CHij ¼
XT¼12
k¼1

UHijk ð3Þ

where CH represented the cumulative hazard (T¼12
months represented annual survival). We also attempted

to fit a first-order autoregressive hazard model; adding this

complexity resulted in no convergence and stationary

distribution.

First nest propensity. We did not develop a model for

nest propensity (np1) for first nests based on data collected

in the Bi-State DPS. Rather, an extensive study conducted

by Taylor et al. (2012) provided information across

numerous, range-wide sage-grouse studies and reported

0.96 (95% confidence interval [CI] ¼ 0.94–0.97) and 0.89

(95% CI¼ 0.87–0.91) for adults and yearlings. These values

were considered reliable because of the large number of

studies used in the analysis. However, as a more

conservative approach, we provided priors that were

slightly wider than these published confidence intervals.

We set informative priors for adults ¼ Beta (97,5) and

yearlings ¼ Beta (90,12). In the absence of additional
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information, we assumed this proportion to be constant

among subpopulations and years.

Clutch size. Data for clutch size (c1) of first nests were

modeled using the Poisson distribution as follows:

yc1;hj~Poissonðlc1;hjÞ

logðlc1;hjÞ ¼ bage*xage;hj þ cj ð4Þ

cj~Normalð0;r2
cÞ

Thus, the log expected count of clutch sizelc1 of first clutch
for grouse h and year j is a linear function of random year

effects cj, which were assumed to arise from a normal

distribution withmean zero and variancesr2
c.We estimated a

change in the expected count by age (bage), where xage
represented the vector of age class data (yearling and adult)

and the indicator was equal to one for adults. Parameter

estimates for clutch sizes of second nests (c2)were derived in a

separatemodeling process that followed the same procedures.

Nest survival. Survival parameters of first (ns1) and

second (ns2) nests were derived separately. Nest survival

was modeled as proportional hazards as expressed in

equation 1. However, for nest survival estimation, encoun-

ter histories were developed for each nest and modeled as

a continuous process at discrete, daily intervals. In this

case, T¼38 was used to estimate survival during 10 days of

laying and 28 days of incubation. Female age was used as a

fixed effect in this model. This model did not consist of

random effects based on lack of evidence during step 1.

Egg hatchability. Data on egg hatchability (h) in the Bi-

State DPS were derived for most nests that were successful.

Hatchability was modeled as arising from a Binomial

distribution (logit-link function) and took the form:

yh;eij~Binomialðph;eij; nh;eijÞ

logitðph;eijÞ ¼ ai þ bage*xage;eij þ cj þ fij ð5Þ

ai~Normalð0;r2
aÞ

cj~Normalð0;r2
cÞ

fij~Normalð0;r2
fÞ

where the initial number of eggs laid in a clutch e

represented the number of trials (nh,eij) at subpopulation i

and year j, and the number of hatched eggs represented

successes (yh,eij). The logit(ph,eij) is a linear function of

random subpopulation effects ai, random year effects cj, as

well as subpopulation and year effects combined fij, each
of which were assumed to arise from normal distributions

with mean zero, and variances r2
a, r

2
c, and r2

f , respectively,

and a change in the expected count of magnitude bage,

where the indicator of age was equal to one for adults.

Second nest propensity. Parameters were derived for the

second nest attempt propensity (np2) directly from data

collected in the Bi-State DPS. Data to estimate second nest

propensity were more reliable than those for the first nests

because females were monitored intensively (relocated

every 1–3 days) following first nest failures. Field

technicians were able to determine whether or not a

female attempted a second nest by approaching sage-

grouse and confirming nesting when sage-grouse were

located at the same coordinate as the previous location.

Second nest propensity data were modeled as arising from

a Binomial distribution as follows:

ynp2;ij~Binomialðpnp2;ij; nnp2;ijÞ

logitðpnp2;ijÞ ¼ ai þ bage*xage;ij þ bdd*xdd;ij þ cj þ fij ð6Þ

ai~Normalð0;r2
aÞ

cj~Normalð0;r2
cÞ

fij~Normalð0;r2
fÞ

where the number of unsuccessful nests at each subpop-

ulation in each year were denoted by nnp2,ij. In this model,

ynp2,ij represents the number of renests and logit(pnp2,ij) is a

linear function of random subpopulation effects ai, random
year effects cj, as well as random subpopulation and year

effects combined fij, each of which were assumed to arise

from normal distributions with mean zero, and variances

r2
a, r2

c, r2
f , respectively. The influence of age and density

dependence on np2 were measured as fixed effects with

magnitude bage and bdd, where the indicator of age was

equal to one for adults, and the density-dependent variable

was the natural log of abundance with a 1-yr lag.

Chick survival. As described previously, chicks were not

directly marked and followed using radio-telemetry to

reduce researcher disturbance. Thus, chick survival (cs)

probabilities were derived from the 2 brood counts with

time-interval lengths that varied throughout the 10-yr study

period. However, the number of days elapsed from nest

hatch to brood count (survival periods) varied by study year

(2003–2005, 50 days; 2007–2009, 35 days; 2010–2011, 28

days; 2012–2015, 50 days). Rather than choosing the

minimum survival period (28 days), we accounted for

variable survival periods to allow full use of data collected
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across all years of the study as follows. We modeled chick

survival based on brood-count data as arising from a

Binomial distribution where the initial brood size was

scored as the number of trials and chicks that survived to

days d were scored as successes and took the form:

ycs;bid~Binomialðpcs;bid; ncs;bidÞ ð7Þ

where d on the binomial probability p is d¼d(j) and

represents one of 3 survival periods depending on the year j

of data collection of time period (t¼28, 35, or 50). For a 35-

day interval, the probability of survival is modeled by this

logistic relationship:

logitðpcs;bi;35Þ ¼ ai þ bage*xage;bi þ bdd*xdd;bi ð8Þ

ai~Normalð0;r2
aÞ

In this model, ycs,bi represents the number of chicks that

survived for each brood b at subpopulation i. The

logit(pcs,bi,35) is a linear function of random subpopulation

effects ai. The influence of age and density dependence on

chick survival were measured as fixed effects with

magnitude bage and bdd, where the indicator of age was

equal to one for adults, and the density-dependent variable

was the natural log of abundance with a 1-yr lag. We

assumed a constant hazard function, and consistent with

this assumption the probabilities of survival for the other

intervals are related as follows:

pcs;bid ¼
ðpcs;bidÞ28=35; t ¼ 28

ðpcs;bidÞ35=35; t ¼ 35

ðpcs;bidÞ50=35; t ¼ 50

8><
>:

ð9Þ

Juvenile survival. Juvenile sage-grouse (js; post-fledging,

.35 days and ,1 yr old) were not radio-marked and tracked

in the Bi-State DPS. However, we derived a posterior

distribution of juvenile survival rates (js) during this period

by using an informative prior of 0.75 (95% CI ¼ 0.67–0.82)

reported in Taylor et al. (2012) in the form of Betað100; 34Þ.
Step 2: Developing the IPM. The framework of the

IPM was a state-space model, where the state process was

informed by the demographic data and observation

process was informed by the lek-count survey data. The

state process of the IPM consisted of an age-structured

demographic matrix based on annual and subpopulation

parameter estimates of survival (s) and fecundity (f ). Using

the demographic model structures described previously, f

was a derived parameter that took the form:

fija ¼ ðnp1a 3 c1ja 3 ns1a 3 ha 3 csia 3 jsaÞ

þ
�
ð1� ns1aÞ3 np2ija 3 c2ja 3 ns2a 3 ha

3 csia 3 jsa

�
ð10Þ

where i, j, and a represent subpopulation, year, and age

class, respectively. Fecundity (f ) was divided by 2 as this

represents a female-based demographic model and we

assumed equal sex ratios at hatch (Atamian and Sedinger

2010). Sub-models of population vital rates consisted of

stochastic processes, where posterior distributions of

population vital rate parameters were estimated.

Lek counts were appropriate for Markovian processes of

time-series data where observations are imperfect (Baum-

gart 2011). Each lek was counted multiple times within a

season, and the maximum male count was assumed to

reflect peak male attendance at leks. The average of these

maximum counts (yobs) were linked with breeding male

apparent abundance N at subpopulation i and year j using

the equation

yobs;ij~PoissonðNijÞ ð11Þ

For sage-grouse lek counts, this Poisson distribution

most appropriately represents error in observations

because sage-grouse can be undercounted and overcount-

ed during observations, and as the true population

becomes larger the degree of error becomes larger, too.

Undercounting (false negatives) can take place when

grouse are difficult to observe and overcounting (false

positives) is possible when grouse move around during the

counting process. Initial N at each subpopulation was

drawn from a discrete uniform distribution. We also

compiled the number of leks, maximum number of males

TABLE 1. Summary of lek survey data averaged across years for Greater Sage-Grouse in the Bi-State Distinct Population Segment
study area, California and Nevada, 2003–2015. Number pairs in parentheses are lower and upper limits of the 95th percentile.

Subpopulation
Average number

of leks
Average number
of males per lek

Average number
of active leks

Proportion
of active leks

Pine Nut 3.3 (1.0, 9.0) 9.7 (1.2, 19.7) 2.2 (1.0, 5.0) 0.79 (0.28, 1.00)
Desert Creek 6.2 (3.3, 9.4) 15.4 (6.5, 28.7) 4.9 (3.0, 8.4) 0.81 (0.52, 1.00)
Fales 3.7 (2.0, 5.0) 9.7 (5.7, 14.3) 2.5 (2.0, 3.7) 0.71 (0.50, 1.00)
Bodie 12.4 (8.6, 15.7) 23.5 (12.4, 35.5) 11.2 (7.3, 14.4) 0.84 (0.74, 1.00)
Parker 3.1 (3.0, 3.7) 4.5 (1.3, 8.1) 1.7 (1.0, 2.0) 0.55 (0.33, 0.67)
Long Valley 10.3 (8.3, 13.7) 29.3 (18.4, 39.6) 9.5 (7.3, 11.0) 0.93 (0.79, 1.00)
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per lek, number of active leks, and percentage of active leks

by subpopulation and year (Table 1).

In a final step of the IPM, we used joint likelihoods, of

which lek counts informed the observation process (equation

11) and demographic data informed the state process

(equations 2 and 10). By fitting random effects, N was

estimated through time and across subpopulations. We

estimated unobserved N over the next 5 yr into the future

by extending the loop of the state process and adapted the

prior definitions of the demographic rates (Kéry and Shaub

2012). From the estimated posterior distribution of N we

derive the finite rate of change (k; Caswell 2001), which took

the form:

kij ¼
Nij

Nij�1
ð12Þ

where i represents subpopulation, j represents year, and j�1
represents a previous year. The instantaneous per capita rate

of change (r) then was calculated by natural logarithmic

transformation (Gotelli and Ellison 2006), and is expressed as:

rij ¼ lnðkijÞ ð13Þ

An annual estimate of abundance was calculated for
the metapopulation extent (Bi-State region) by summing

the annual abundance estimates across the 6 subpopula-
tions. Estimates of k and r were calculated at the
metapopulation extent using equations 12 and 13,
respectively. For each subpopulation, we calculated the
probability that the subpopulation was increasing, stable,
and decreasing based on the posterior distributions of
derived parameters. We then calculated the odds of
increase from the probability values, where the odds of
increase represented the probability of increase divided
by the sum of the probability of decrease and stability.
Likewise, we calculated the odds of decrease. We then
created a ratio of the 2 odds (OR; increase:decrease) and
applied natural logarithmic transformation to that ratio.
The purpose of this procedure was to quantify evidence
for population trends (when ratio equals 0, then the odds
of increase are the same as decrease). We categorized
values of ln(OR) between 0.9 and 1.1 as stable, values
,0.9 as decreasing, and values .1.1 as increasing. We
report and plot observed lek counts, N, k, and ln(OR) for
each subpopulation and the Bi-State DPS. Posterior
distributions of parameters were summarized as median
and 95% credible intervals (CRI), expressed as 0.025–
0.975 quantile. Lek count observation data were summa-
rized by mean, as well as 2.5th and 97.5th percentile of the
data distribution. Vital rates were averaged across time
and space when random effects were evidenced, and
reported by age (Table 2). Detailed information of
estimated parameters for each vital rate are available
(https://www.sciencebase.gov/catalog).

Lastly, we derived k using 3 sources of modeling for

comparison: (1) only a demographic matrix model

(DMM), (2) only a state-space model (SSM) using lek

count data, and (3) IPM (as described above). The DMM

was an age-structured stochastic process that derives k
using only likelihoods for S and f as described above

(equations 2 and 10) and did not include count

observations. The SSM model relied only on count

observations and did not incorporate demographic likeli-

hoods. In this case, the SSM separates process variance

(that is, environmental) from observation error (Kéry and

Schaub, 2012) by partitioning each variance component,

which took the form:

Ntþ1 ¼ Nt 3 kt ð14Þ

kt~Normalðk̄;r2
kÞ ð15Þ

yt~PoissonðNtÞ ð16Þ

N1 ¼ Uniformð0; 150Þ ð17Þ

Here, the state process (equations 14 and 15) was

modeled while accounting for observation error (equation

TABLE 2. Summary of posterior distributions of derived
population vital rate parameters for Greater Sage-Grouse in
the Bi-State Distinct Population Segment study area, California
and Nevada, 2003–2015.

Population vital rate a
Age
class

Quantile b

0.5 0.025 0.975

Nest propensity (np1) Adult 0.96 0.91 0.99
Yearling 0.89 0.82 0.94

Nest propensity (np2) Adult 0.26 0.04 0.83
Yearling 0.09 0.00 0.88

Nest survival (ns1) Adult 0.41 0.33 0.50
Yearling 0.42 0.30 0.56

Clutch size (c1) Adult 6.58 5.49 7.81
Yearling 6.10 4.90 7.47

Nest survival (ns2) Adult 0.45 0.26 0.66
Yearling 0.49 0.13 0.83

Clutch size (c2) Adult 5.58 2.85 9.56
Yearling 4.38 1.91 10.72

Hatchability (h) Adult 0.83 0.36 0.95
Yearling 0.90 0.49 0.97

Chick survival (cs) Adult 0.46 0.35 0.59
Yearling 0.42 0.29 0.57

Fecundity (f ) Adult 0.41 0.15 0.70
Yearling 0.33 0.13 0.64

Survival (s) Adult 0.69 0.47 0.86
Yearling 0.67 0.42 0.85
Juvenile 0.78 0.71 0.83

a Propensity of first nest and juvenile survival were estimated
using informative priors (Taylor et al. 2012).

b Median is 0.5 quantile and 95% CI is 0.025–0.975.
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16). Equation 16 maps the true state of the process onto

the observed data (yt), which in this case is an annual sum

of averaged maximum counts across each of the 6

subpopulations. Similar to the observation process in the

IPM, the errors in the counts were modeled using a

Poisson distribution with a mean equal to the variance. We

assigned vague priors to the initial (t ¼ 1) population size

(equation 17).

We used JAGS 3.4.0 (R version 3.1.1) using the package

rjags to obtain posterior samples of parameters. We used

Markov chain Monte Carlo methods and ran 5 indepen-

dent chains of 100,000 iterations, following a burn-in of

99,000 iterations and an adaptive phase of 1,000 iterations.

Chains were thinned by a factor of 500 because of storage

limitations given the large number of parameters. We

found no evidence for lack of convergence, observed by

examining history plots. We could not compute the R-hat

statistic (Gelman et al. 2004), typically used to measure

convergence, because of limitations in memory owing to

the large number of parameters in our models. Instead, we

examined history plots which indicated no evidence for

lack of convergence.

Post hoc precipitation analysis. We conducted a post

hoc analysis using the IPM to investigate links between k
and climatic conditions. Because precipitation has been

reported as an influential driver of recruitment (Blomberg

et al. 2002) and population growth rates using lek count

only data within the Great Basin (Coates et al. 2016), we
chose to focus our analysis on precipitation. Spatially

explicit data for local measurements of precipitation at a

spatial resolution of 800 m from 2002 to 2015 were

obtained from the PRISM Climate Group (http://www.

prism.oregonstate.edu/). We restricted our analyses to

include variables related to precipitation to limit the

number of covariates in our climatic model set, and

because effects due to precipitation are more readily

explained from a perspective of sage-grouse life history

(e.g., relations between rainfall, primary productivity, and

available resources for grouse) than from extremes in

temperature, particularly for a cold-adapted gallinaceous

species.

We aggregated precipitation into seasonal and annual

intervals based on a priori hypotheses that aligned with

phenology of sage-grouse. For example, precipitation

measured during March–May represented our hypothesis

that resources from precipitation would benefit sage-

grouse during nesting life stage (i.e. growth of perennial

grasses and forbs). During June–August, precipitation

would influence those resources required for successful

brood-rearing (e.g., wet meadow productivity, forb growth,

delay of plant senescence). Precipitation during Septem-

ber–November was thought to influence spurts of new

growth and water requirements that influence late brood-

rearing and juvenile survival during late summer for all

sage-grouse. During December–February, precipitation

(primarily as snow) might contribute snowpack for

increased runoff in following seasons that was thought to

drive more productive and possibly longer growing

seasons. We formed 6 models that represented additive

effects for our precipitation-based hypotheses, which were

(1) snowpack runoffþnesting; (2) nestingþbrood-rearing;

(3) brood-rearing þ extended brood-rearing/juvenile; (4)

snowpack runoff þ nesting þ brood-rearing; (5) nesting þ
brood-rearing þ extended brood-rearing/juvenile; and (6)

all life stages (annual precipitation). Although heavy

snowfall during winter can have adverse impacts on

overwinter survival (Moynahan et al. 2006, Anthony and

Willis 2009), generally winter survival rates are greatest

among the seasonal survival rates (Blomberg et al. 2013).

Therefore, we aligned winter at the beginning rather than

the end of the precipitation year to represent our

hypothesized positive carryover effects (e.g., snowpack

melt and runoff ) on successful reproduction and increased

recruitment. We also investigated the influence of loga-

rithmic transformation of the annual change in precipita-

tion [ln(Pt/Pt�1)] with 1-yr lag on r (t þ 1), extending on

findings from previous analyses (Blomberg et al. 2013,

Coates et al. 2016). Our final model set consisted of 20

candidate models.

The model was formulated as a 2-stage process: (1)

estimating N from the IPM and deriving r for each

subpopulation (sp) and year (equations 12 and 13); and (2)

in a parallel stage we fit the derived parameter r sampled

from the full posterior distribution as a function of

different precipitation (pr) covariates, although total

variance (parameter uncertainty þ process uncertainty)

may be slightly underestimated possibly owing to inflated

sample size and requires further study. The model took the

form:

rit ¼ b0 þ bprsp;i*xpr;t ð18Þ

where r represents samples from the posterior probability

distribution of per capita rate of change for subpopulation

i and year t, and b represents model coefficients. The

model Posterior distributions were derived using Program

JAGS within the rjags package (Plummer et al. 2015) in R

version 3.1.1 (R Core Team 2014). Specifically, posterior

distributions of parameter estimates were generated from

5 chains of 5,000 iterations each, after a burn-in of 5,000

using Markov-chain Monte Carlo (MCMC) methods. The

chains were thinned by a factor of 5 and the number of

adaptation iterations was 1,000. Convergence of MCMC

output was assessed visually with history plots and the R-

hat statistic, where values ,1.1 indicated convergence

(Gelman et al. 2004). Priors were selected to be

uninformative.We compared models using WAIC (Hooten

and Hobbs 2015) and chose the model with the lowest to
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represent seasonal precipitation effects. We provide plots

displaying the relationship between k and change in

precipitation (Dprecipitation) across the Bi-State and

varying estimated slopes of this relationship for each

subpopulation. We also provide plots of N varying with

Dprecipitation across each subpopulation to illustrate the

decoupling of specific subpopulations through time.

RESULTS

Population Estimates and Trends
Survey data consisted of .2,000 independent lek counts

resulting in 607 lek surveys that reflected annual

maximum male attendance for each lek. We monitored

354 sage-grouse using 2 forms of telemetry (VHF, n¼ 330;

GPS, n ¼ 24) during the 13-yr study period. Sample sizes

used for demographic parameter estimates varied across

life stages (s, n¼ 354; c, n¼ 207; ns, n¼ 280; h, n¼ 126; cs,

n ¼ 113; np2, n ¼ 49).

The derived posterior estimates of k across the Bi-State

region, as a whole, indicated that the sage-grouse

population trend over the 13-yr study period did not

exhibit evidence of a general pattern of decrease or

increase (median¼0.98; 95% CRI¼0.69–1.25), but instead

showed evidence of cycling within an otherwise stable

trajectory during the 13 yr of study (Figure 1A). Based on

the Bi-State–wide posterior distribution of k for this

period, the following probabilities were calculated: (1)

increased population, 42.6%; (2) stable population, 3.1%;

and (3) decreased population, 55.4%. Thus, the Bi-State as

a whole showed similar evidence for the odds of increase

to decrease (odds ratio; Figure 1B). We found that the

estimates of SSM (without demographic data) and DMM

(without count data) were generally consistent in the

pattern of cycling, displaying similar peaks and valleys

throughout the 13-yr period (Figure 2). The SSM exhibited

the most amount of annual stochasticity, whereas the

DMM revealed the least. Posterior distributions for the

IPM (demographic and count data) exhibited the least

amount of uncertainty (differences between 25th and 75th

quartiles), whereas the DMM revealed the most. Within

years of disagreement between estimates from the SSM

and DMM, estimates from the IPM were generally evenly

split between the model types.

Although the Bi-State, as a whole, exhibited a cyclic

pattern with evidence of stability across the 13-yr period,

we detected variation among years and among subpopu-

lations. The average number of observed males per lek

ranged from 4.5 (Parker Meadows) to 29.3 (Long Valley;

Table 1). Bodie Hills had the greatest average k (1.03, 95%

CRI ¼ 0.76–1.34) among all subpopulations and Parker

Meadows had the least average k (0.90, 95% CRI ¼ 0.55–

1.41). Most populations showed equal odds of decrease to

increase (Figure 3A–F), however the odds of decrease for

the Parker Meadows subpopulation were 2.5 times greater

than the odds for an increase (Figure 3E). Nevertheless,

our results indicate that the Bi-State DPS in its entirety was

relatively stable during the 13-yr time frame, despite

FIGURE 1. Average number of males per lek (A: dashed line represents observed counts and the solid line represents apparent
abundance N) and log odds ratio (B: OR[increase:decrease]) of Greater Sage-Grouse population trend (dashed horizontal line
represents a stable population and solid line is overall average for the 13-yr period) within the Bi-State Distinct Population Segment
during 2003–2015. Gray shading represents 95% credible limits.
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relatively short-term cycles and strong evidence for a

declining trend in the Parker Meadows subpopulation. In

other words, the Parker Meadows subpopulation, which

consisted of 3 leks (one active) with ,5 males on average

(Table 1), had relatively little influence on the overall

average population trend for the entire DPS.

Random Effects and Density Dependence
We found variation among random effect structures and

density dependence across different life stages (Appendix

Table 4). Specifically, model ranking results supported

subpopulation by year nested structures for hatchability,

annual survival, and second nest propensity. Models for

these demographic rates without random effects (null)

resulted in relatively poor model fit (DWAIC¼ 254.8, 27.8,

and 33.1, respectively; Appendix Table 4). For these life

stages, model ranking results indicated that the most

variation was explained by subpopulation and years, and

this resulted in the least amount of data sharing in

parameter estimation. Hatchability had the greatest

variability, especially among subpopulations (Appendix

Table 4). Estimated hatchability at Parker Meadows (0.5

quantile; hy, 0.50; ha, 0.31; Appendix Table 4) was

approximately half those estimated for the entire region

(0.5 quantile; hy, 0.89; ha, 0.82; Table 2). An additive

random effect structure was included in a second model

for hatchability that provided better fit but was less

parsimonious (DWAIC ¼ 90.1) than the model with no

random effects. This model resulted in greater data sharing

throughout years and among subpopulations. An illustra-

tive example of differences in data sharing between nested

and additive random effect structures for hatchability is

presented (Appendix Figure 8). A nested random structure

also garnered the most support for the yearling and adult

survival stage (Appendix Table 4). However, the greatest

variation occurred among years rather than subpopula-

tions. During 2003, 2007–2008, and 2012–2013, survival

was on average 8.4% lower than typical years during the

13-yr period (Appendix Table 4). The years with lowest

survival were 2003 and 2012 (0.5 quantile; sy, 0.58; sa, 0.61)

followed by 2007 (0.5 quantile; sy, 0.59; sa, 0.63). The year

with the highest estimated annual survival was 2011 (0.5

quantile; sy, 0.75; sa, 0.77). Over the entire course of the

study, the subpopulation with the lowest average survival

was Desert Creek (0.5 quantile; sy, 0.64; sa, 0.67) and the
greatest was Parker Meadows (0.5 quantile; sy, 0.71; sa,

0.68).

Differences in nest survival estimates across the Bi-State

were not substantial enough to prompt the use of a
subpopulation random effect structure (metapopulation

extent; 0.5 quantile; sy, 0.42; sa, 0.41). However, random

effect structures provided support for variation in chick

survival across subpopulations and clutch size across years

(Appendix Table 4). The subpopulation with the lowest

chick survival was Bodie Hills (0.5 quantile; csy , 0.30; csa,

0.34) followed by Long Valley (0.5 quantile; csy , 0.30; csa,

0.35); the highest was Parker Meadows (0.5 quantile; csy,

0.57; csa, 0.61).

Chick survival was the only model that demonstrated

strong evidence of density dependence (Appendix Table 4),

supported by the Gompertz type with a 1-yr lag effect. A

similar model was marginally supported for second nest

propensity compared to a model without density depen-

dence (DWAIC ¼ 2.7). No other demographic rates

exhibited evidence of density dependence (Appendix Table

4).

Precipitation Effects on k
We investigated 20 candidate models that reflected

seasonal precipitation effects (amount and change) on k.
The Dprecip during spring, summer, and fall months

garnered the most support from the data in explaining

more variation in k than any other seasonal effect model

(model 1, Table 3). This model was 7.2 WAIC units less

than a null model (intercept only) and more parsimonious

than a model consisting of precipitation across the entire

year (model 2, DWAIC ¼ 4.45). Change in k cycled with

Dprecip during the 13-yr period (Figure 4). The greatest

negative change in precipitation occurred from 2011 to

FIGURE 2. Comparison in posterior distributions of rate of
change in apparent abundance between estimates from
Integrated Population Model (IPM), Demographic Matrix Model
(DMM; telemetry data only), and State-Space Model (SSM;
observed count data only) for data collected on Greater Sage-
Grouse within the Bi-State Distinct Population Segment,
California and Nevada, 2003–2015. Plot displays full range of
posterior (dashed lines; minimum to maximum), first and third
quartile (lower and upper edge of rectangle, respectively), and
median value (horizontal line within rectangle).
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2012, which corresponded proportionally with the greatest

negative change in k from 2012 to 2013. Similarly, the

substantial decline in precipitation from 2007 to 2008

corresponded with a decline in k from 2008 to 2009. Based

on the estimated median of the posterior distribution, a

50% increase in precipitation corresponded to a 15.5%

(95% CI ¼ 5.4–26.9) increase in k the following year. A

model with the effect of Dprecip outperformed one with

amount of precipitation while comparing among the same

seasonal effect (model 5, DWAIC ¼ 5.31). The effect of

Dprecip varied across subpopulations (Figure 5). For

example, the subpopulation with the greatest model

support was Bodie Hills, where 50% increase in precipi-

tation corresponded to 17.3% (95% CI ¼ 11.0–24.5)

increase in k the following year. Parker Meadows had the

weakest association, where a 50% increase in precipitation

was associated with a 10.6% increase (95% CI ¼ 3.9–18.1)

in k. All subpopulations cycled with Dprecip throughout

the 13-yr period except Parker Meadows, where k was

decoupled from precipitation patterns during 2008 and

failed to recover as precipitation increased (Figure 6).

Other populations showed similar signs of correlation with

Dprecip following the 2013 drought (Figure 6). A

secondary model, the amount of precipitation across all

months of the year, evidenced less support (2.60 WAIC

units less than a null model). Based on a median estimate,

an increase of 28.5 mm from one year to the next was

associated with an increase in k by 6.2% (95% CI¼�0.2 to

12.8).

DISCUSSION

Our results indicate that population abundance of sage-

grouse across the Bi-State metapopulation did not appear

to increase or decrease throughout the 13-yr period and

could be characterized as stable. However, variability

among subpopulation trends indicated differing intrinsic

and extrinsic factors influencing the subpopulations. Sage-

grouse populations generally exhibit short-term oscilla-

tions (approximately 6–10 yr) in population abundance

(Fedy and Doherty 2011, Garton et al. 2015). Thus, our 13-

yr time series seemed adequate to encompass potential

oscillations in abundance throughout a complete sage-

grouse population cycle. In particular, the Bodie Hills

FIGURE 3. Log odds ratio (increase:decrease) of population trend evidence for Greater Sage-Grouse subpopulations Pine Nuts (A),
Desert Creek (B), Fales (C), Bodie Hills (D), Parker Meadows (E), and Long Valley (F) within the Bi-State Distinct Population Segment,
California and Nevada, 2003–2015. The dashed horizontal line represents a stable population. The solid horizontal line is overall
average for the 10-yr period. Vertical bar represents final observations for all data types (right of bar is 5-yr model projections).

The Auk: Ornithological Advances 135:240–261, Q 2018 American Ornithological Society

252 Sage-grouse integrated population model P. S. Coates, B. G. Prochazka, M. A. Ricca, et al.

Downloaded From: https://bioone.org/journals/The-Auk on 15 Nov 2024
Terms of Use: https://bioone.org/terms-of-use



FIGURE 4. Relationship between changes in population growth
(k; solid line) and precipitation (n; dashed line) between
successive years for Greater Sage-Grouse within the Bi-State
Distinct Population Segment, California and Nevada, 2003–2015.
Population growth (per capita) and change in precipitation are
on a logarithmic scale. Primary x axis reflects year of population
growth change and secondary x axis represents year of
precipitation change to illustrate the 1-yr lag effect. Horizontal
dashed line reflects no change for either variable between years.

FIGURE 5. Finite population rate of change (k) as a function of
change in precipitation (n) between years within the Bi-State
Distinct Population Segment (BS), as a whole, and among
different subpopulations (BH ¼ Bodie Hills, FA ¼ Fales, DC ¼
Desert Creek, LV ¼ Long Valley, PN ¼ Pine Nuts, PA ¼ Parker
Meadows) for Greater Sage-Grouse within the Bi-State Distinct
Population Segment, California and Nevada, 2003–2015.

TABLE 3. Comparison of seasonal precipitation effects on population growth rate of Greater Sage-Grouse within the Bi-State Distinct
Population Segment, California and Nevada, 2003–2015.

Model Covariate a Hypothesis b WAIC

1 Dprecip nesting þ brood-rearing þ extended brood/juvenile �14.16
2 precip all life phases �9.58
3 Dprecip nesting þ brood-rearing �9.35
4 precip nesting þ brood-rearing þ extended brood/juvenile �8.85
5 Dprecip all life phases �8.66
6 Dprecip brood þ extended brood/juvenile �8.37
7 precip snowpack runoff þ nesting þ brood-rearing �8.37
8 Dprecip nesting �8.25
9 precip snowpack runoff þ nesting �7.85
10 precip nesting �7.69
11 precip extended brood/juvenile �7.59
12 Dprecip brood-rearing �7.53
13 precip nesting þ brood-rearing �7.50
14 precip brood-rearing þ extended brood/juvenile �7.46
15 Dprecip snowpack runoff þ nesting þ brood-rearing �7.32
16 null na �6.98
17 Dprecip snowpack runoff þ nesting �6.83
18 precip snowpack runoff �6.75
19 Dprecip extended brood/juvenile �6.66
20 precip brood-rearing �6.16
21 Dprecip snowpack runoff �6.07

a D symbolizes difference in precipitation between the corresponding phenological seasons.
b Sage-grouse phenological hypotheses: nesting (March–May), brood-rearing (June–August), extended brood/juvenile (September–

November), and snowpack runoff (December–February).
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subpopulation exhibited the strongest population growth,

whereas Pine Nuts and Parker Meadows declined to very

low numbers. Fales, Desert Creek, and Long Valley

appeared stable throughout the 13-yr period.

The growth rate of the overall metapopulation cycled

during relatively short periods and was correlated with

climatic patterns. Specifically, annual changes in k and the

amount of precipitation were well correlated (Figure 4). In

comparison to all other seasonal combinations evaluated,

annual changes in precipitation during spring, summer,

and fall were most strongly associated with variation in

population growth. This effect of non-winter precipitation

on k across the Bi-State is consistent with results observed

at larger spatial extents (e.g., Great Basin; Coates et al.

2016). The period of severe drought toward the end of the

time series (peaking in 2013) allowed better estimation and

insight to how climatic variation can influence population

dynamics of sage-grouse.

Productivity of cold-desert sagebrush ecosystems is tied

strongly to variation in precipitation (Noy-Meir 1973), and

other studies have reported links between precipitation and

sage-grouse population vital rates (Moynahan 2004, Blom-

berg et al. 2012, Guttery et al. 2013, Blomberg et al. 2014b,

Gibson et al. 2017), and between precipitation and count-

based changes in abundance across large spatiotemporal

scales (Coates et al. 2016). Donnelly et al. (2016) demon-

strated close spatial associations between sage-grouse and

the distributions of mesic resources. Collectively, research

indicates that cumulative precipitation during the sage-

grouse reproductive period (spanning nesting to brood

break-up) is important for delaying plant senescence and

desiccation of mesic resources (i.e. upland springs and seeps)

that provide critical resources during the brood-rearing stage

as the summer progresses. However, the only vital rates

influencing fecundity that were best explained by random

effects (and would therefore indicate tracking of precipita-

tion) were second nest propensity, clutch size, and

hatchability. Chick survival, which would be most indicative

of precipitation effects during late summer when drought

conditions can be most exasperated, was best explained by

subpopulation random effects. We certainly do not discount

potential effects of precipitation during the breeding season

on fecundity (Blomberg et al. 2014a, Blomberg et al. 2017);

our failure to detect a year, or subpopulation by year, effect

on chick survival likely was influenced by limited samples

across subpopulations and years. However, although annual

FIGURE 6. Apparent abundance N (solid line) related to precipitation (dashed line) for Bodie Hills (A), Fales (B), Desert Creek (C),
Long Valley (D), Parker Meadows (E), and Pine Nuts (F) for Greater Sage-Grouse within the Bi-State Distinct Population Segment,
California and Nevada, 2003–2015. Primary x axis reflects year of population growth change and secondary x axis represents year of
precipitation to illustrate the 1-yr lag effect. Gray shade represents 95% credible limits.
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survival varied by subpopulation, the overall lowest survival

estimates were during 2007 and 2012, which were the 2

driest years in the time series. Drought can negatively impact

populations of sage-grouse through many mechanisms

(Blomberg et al. 2012, Donnelly et al. 2016), yet a likely

explanation for how drought precipitated sage-grouse

declines in our study relates to the hypothesis that lack of

water during the breeding season causes more movement by

sage-grouse as they search the landscape for increasingly

scarce mesic resources (Gibson et al. 2017). Furthermore,

increased movements among individuals decreased their

probability of survival (Prochazka et al. 2017), likely as a

function of increased vulnerability to predation.

Although results from our study at the metapopulation

extent implicate extrinsic (and density-independent) varia-

tion in annual precipitation as a strong driver of cyclic

abundance, Fedy and Doherty (2011) implied that intrinsic

feedbacks from delayed density dependence can drive sage-

grouse population cycles. This is likely a functional response

of sage-grouse due to predation or declining resource

availability to sage-grouse as populations approach carrying

capacity. Consistent with Garton et al. (2015) and Coates et

al. (2016), who described Gompertz-type effects on k, we
found that probability of renesting and chick survival were
influenced by a 1-yr lag effect of density. Thus, it is this lag

effect that causes these demographics to be greatest

following years with relatively low sage-grouse population

abundance. These studies attempted to account for both

density-dependent and density-independent effects, yet

patterns illustrated in Figures 4 and 5 indicate a more

recent paradigm—that the strength of density-dependence

can be modified by interactions with environmental

covariates, which then influences population stability

(Saether 1997, Ahrestani et al. 2016). In our study,

differences in the magnitude of sage-grouse population

response to annual change in precipitation indicated that

populations at lower densities (owing to declining k) can
respond more rapidly than those at higher densities to

equivalent amounts of seasonal precipitation. Whereas per

capita resources during periods of higher density and higher

precipitation are essentially capped near carrying capacity,

more resources are available to fewer individuals during

periods of high rainfall following drought. Moreover, our

results indicate that precipitation needs to be approximately

20% greater than average for population recovery following

drought, consistent with results from the Great Basin

during a longer time series and in the absence of wildfire

(Coates et al. 2016). Hence, interactions between density-

dependent and density-independent factors help fuel

‘‘boom-and-bust’’ cycles that are ubiquitous among sage-

grouse populations, and particularly those inhabiting more

arid environments such as the Great Basin.

Hierarchical models, such as IPMs, are well suited for

disentangling local and regional drivers in cross-scale

interactions (Soranno et al. 2014), and results from our

analysis provided strong evidence of these interactions

across spatial scales in the Bi-State DPS. We also observed

large variation in the response to precipitation at the

subpopulation extent, and that widespread effects of

precipitation at the metapopulation extent were decoupled

from the subpopulation extent for some subpopulations

(Figures 5 and 6). For example, the relationship between

changes in precipitation and k was weakest for Parker

Meadows and strongest for Bodie Hills, relative to the effect

at the metapopulation extent (Figure 5). In fact, consistently

low abundance at Parker Meadows was strongly invariant to

precipitation throughout the time series (Figure 6). In

addition, subpopulations whose median effects differed

greatest from the metapopulation effect (in ascending order:

Desert Creek, Long Valley, Pine Nuts, and Parker Meadows;

Figure 5) failed to respond to more typical strong effects of

high precipitation. This demonstrated increasingly greater

odds of population decline compared with odds of

population increase. In contrast, the subpopulation at Bodie
Hills appeared buffered from the effects of drought, possibly

because it responded more strongly to periods of high

precipitation. Alternatively, this subpopulation was at higher

elevation where ground moisture was likely more stable

throughout the season and precipitation is greater.

Demographic rates among subpopulations can yield

more detailed insight into the mechanisms that result in

decoupling. Random effects analysis within the demo-

graphic models identified that hatchability influenced

fecundity and ultimately k within Parker Meadows, a

subpopulation that is isolated and small. Estimated

parameters for hatchability in this subpopulation were

approximately one-half of those estimated among the

others. Hatchability at Parker Meadows was also markedly

lower than range-wide average estimates derived for

Greater Sage-Grouse average (. 0.92; Taylor et al. 2012),

and other species of prairie grouse such as Sharp-tailed

Grouse (Tympanuchus phasianellus; . 0.90; McNew et al.

2017) and Greater Prairie-Chicken (Tympanuchus cupido;

. 0.80; Peterson and Silvy 1996, McNew et al. 2012). Field

observations concluded that decreased hatchability was

caused by low egg fertility rates. Parker Meadows is likely

experiencing an Allee effect, perhaps explained by limited

opportunities for females to copulate with the few males

that remain in that population (Stephens et al. 1999).

Alternatively, an Allee effect could be explained by lower

mitochondrial and nuclear genetic variation compared

with other sage-grouse (Oyler-McCance et al. 2014) as a

result of genetic drift (Luque et al. 2016). In addition,

second nest propensity estimates help explain observed k
and low abundance at Parker Meadows and Pine Nuts.

Responses of different subpopulations to changes in

precipitation elucidate potential reasons for decoupling

from trends at the metapopulation scale. For example,
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changes in abundance at Long Valley were correlated with

relative changes in precipitation through peak drought

conditions in 2013, but remained depressed thereafter,

despite a subsequent increase in precipitation in 2015.

Subpopulations Pine Nuts and Desert Creek displayed

similar patterns. Failure to respond positively to the

cessation of drought conditions likely contributed to greater

odds of decrease versus increase for these subpopulations.

Along with Parker Meadows, leks comprising these

subpopulations generally were situated in narrow bands of

mesic and high-elevation habitat surrounded by more

expansive arid areas at low elevation, using lek locations

and soil moisture and temperature maps fromMaestas et al.

(2016). In contrast, leks comprising Bodie Hills and Fales

were surrounded by more contiguous expanses of mesic

and high-elevation habitat, and have either recovered (in the

case of Fales) or were strongly buffered (in the case of Bodie

Hills) from the effects of drought.

Preliminary results of subpopulation and metapopulation

growth rates for Bi-State used a shorter data time series that

ended prior to the height of the drought in 2013 (Coates et al.

2014). During the shorter time period, subpopulations at Pine

Nuts and Long Valley had higher odds of increase than

decrease, and subpopulations at Fales had slightly higher
odds of decrease than increase. When the IPM described in

this study was expanded to include longer time series that

encompassed the full extent and partial recovery from the

drought, odds of increase versus decrease reversed for these

subpopulations. Interestingly, the lower annual survival

described for Pine Nuts and Long Valley in relation to all

other subpopulations during the major drought year of 2013

may point to increased risk of predation as adult sage-grouse

search for scarce mesic resources. Regardless of the

proximate mechanism, these patterns underscore the impor-

tance of multiyear data sets for evaluating vital rates and

abundances through time series that encompass extremes in

climatic variability in semi-arid ecosystems (i.e. the Bi-State

DPS). Accordingly, the winter of 2015 to 2016 was one of the

wettest on record, and ongoing intensive monitoring of Bi-

State sage-grouse planned through 2020 will allow better

understanding of demographic responses to periods of

extreme precipitation at the subpopulation and metapopu-

lation extents using the methods we described herein.

We compared estimates of k from DMM (demographic

data only), SSM (count data only), and IPM (combined

data) because our unique dataset is ‘‘vital-rate rich’’; the

DMM is informed by data that estimate 9 different vital

rates describing annual survival and fecundity, and

encompasses the life-cycle of Greater Sage-Grouse (Dahlg-

ren et al. 2016). In contrast to lek count data that informed

the SSM, demographic data were not available for all years

and across all vital rates. Demographic model estimates of

k reflect more within-year variation and generally have

wider posterior distributions for 2 main reasons: (1)

estimates of uncertainty for each component vital rate

propagate at each life stage step, and (2) estimates shrink

toward a grand mean during years when demographic

information is relatively sparse. In contrast, the state-space

model estimates of k might be more precise, but could be

biased because they are only based on counts subject to

observation error. In cases where posterior distributions of

k from the demographic model are wide, the IPM appears

to ‘‘favor’’ information from the SSM, and median

estimates of k from the SSM and IPM aligned closely.

When demographic data were available, the IPM estimate

relied on information from both sub-component models.

In both cases, however, the demographic model provided

information to estimate k. Hence, sage-grouse populations

can be monitored economically with lek counts, but

estimates of k can be refined even with sparse demo-

graphic data that can also help identify specific vital rates

most responsible for variation in k at the subpopulation

extent. Dahlgren et al. (2016) conducted a similar study

with life-cycle models instead of IPMs, and also found that

demographic models helped refine estimates of k, and

matched changes in lek counts through time. Perhaps

most importantly, patterns illustrated by our comparison

of demographic, state-space, and IPM outputs of k further

the notion proposed by Nowak (2015)—that the fear of

incomplete data should not hamstring application of IPMs.

One caveat is that IPMs assume independence among

datasets for robust parameter estimation (Kéry and Schaub

2012). In practice, this assumption is frequently violated

for demographic sub-model components, as it was for our

study. This is because the number of monitored individuals

required to estimate each vital rate independently is often

logistically daunting and financially infeasible. However,

any violations of nonindependence of data used in our

study likely had little influence on parameter bias (Besbeas
et al. 2009, Abadi et al. 2010). Additionally, females were

used for vital rate estimation and lek counts were based on

unmarked male sage-grouse. Thus, the datasets we used to

inform demographic (as a whole) and abundance sub-

models can be assumed to be independent.

Conclusion
Our study employed a unique and objective approach to

systematically implement the most parsimonious random

effects structures to describe and account for spatial and

temporal effects within an IPM framework (but see Nowak

2015). This allowed for determination of variation in vital

rates across subpopulations and/or years. These vital rates

were then used to identify demographic mechanisms

driving estimated rates of population change and to

decouple the effects of precipitation among subpopulation

and metapopulation extents and provided strong evidence

for the existence of cross-scale interactions. This process

adds to the increasingly strong body of work where
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integrated population modeling allows better understand-

ing of avian population ecology. Specifically for the sage-

grouse in the Bi-State DPS, these results help facilitate

informed decision-making by resource managers charged

with managing ESA ramifications (U.S. Fish and Wildlife

Service 2013, 2015a). Whereas the Bi-State DPS as a whole

appears stable and buffered somewhat from environmental

stochasticity by the robust Bodie Hills subpopulation,

decoupling trends and low abundances at the Parker

Meadows and Pine Nut subpopulations may signal the

need for management action. For example, a multiyear

translocation program of sage-grouse from Bodie Hills to

Parker Meadows to bolster this subpopulation was

initiated in the spring of 2017. Additional prospective

analyses that evaluate sensitivity and elasticity of vital rates

is needed to improve our understanding of how these

populations might demographically respond to future and

previously unobserved variation and associated effects of

environmental covariates.
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APPENDIX

APPENDIX TABLE 4. Comparison of different random effect and density dependent structures for different life stage specific models
of Greater Sage-Grouse within the Bi-State Distinct Population Segment during 2003–2015.

Life stage Random structure Density structure WAIC

Nest propensity (2nd) Subpopulation * Year lag Gompertz 83.8
Nest propensity (2nd) Subpopulation * Year lag Ricker 84.9
Nest propensity (2nd) Subpopulation * Year none 86.5
Nest propensity (2nd) Subpopulation * Year Ricker 85.5
Nest propensity (2nd) Subpopulation * Year Gompertz 85.8
Nest propensity (2nd) Subpopulation þ Year none 93.4
Nest propensity (2nd) Year none 99.0
Nest propensity (2nd) none none 116.9
Nest propensity (2nd) Subpopulation none 114.9
Clutch size (1st and 2nd) Year none 941.3
Clutch size (1st and 2nd) Subpopulation þ Year none 942.5
Clutch size (1st and 2nd) Year lag Gompertz 942.4
Clutch size (1st and 2nd) Year Gompertz 942.5
Clutch size (1st and 2nd) Year lag Ricker 943.6
Clutch size (1st and 2nd) Year Ricker 943.3
Clutch size (1st and 2nd) Subpopulation * Year none 942.9
Clutch size (1st and 2nd) Subpopulation none 945.3
Clutch size (1st and 2nd) none none 946.2
Nest survival (1st and 2nd) none none 1033.2
Nest survival (1st and 2nd) none lag Ricker 1033.4
Nest survival (1st and 2nd) none Ricker 1034.0
Nest survival (1st and 2nd) none Gompertz 1038.3
Nest survival (1st and 2nd) none none 1036.8
Nest survival (1st and 2nd) none lag Gompertz 1039.0
Nest survival (1st and 2nd) Subpopulation none 1039.3
Nest survival (1st and 2nd) Subpopulation þ Year none 1040.0
Nest survival (1st and 2nd) Subpopulation * Year none 1040.9
Hatchability Subpopulation * Year none 270.3
Hatchability Subpopulation * Year lag Gompertz 270.4
Hatchability Subpopulation * Year Gompertz 270.6
Hatchability Subpopulation * Year lag Ricker 271.2
Hatchability Subpopulation * Year Ricker 271.0
Hatchability Subpopulation þ Year none 360.4
Hatchability Subpopulation none 380.2
Hatchability Year none 493.9
Hatchability none none 525.1
Chick survival Subpopulation lag Gompertz 496.9
Chick survival Subpopulation Gompertz 502.0
Chick survival Subpopulation none 505.3
Chick survival none none 508.2
Chick survival Subpopulation lag Ricker 506.8
Chick survival Year none 503.7
Chick survival Subpopulation * Year none 492.8
Chick survival Subpopulation Ricker 510.3
Chick survival Subpopulation þ Year none 505.3
Annual survival Subpopulation * Year none 1226.2
Annual survival Subpopulation * Year Ricker 1228.0
Annual survival Subpopulation * Year Gompertz 1228.7
Annual survival Subpopulation * Year lag Ricker 1228.9
Annual survival Subpopulation * Year lag Gompertz 1229.8
Annual survival Subpopulation þ Year none 1240.3
Annual survival Subpopulation none 1247.3
Annual survival Year none 1249.9
Annual survival none none 1254.0
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APPENDIX FIGURE 7. Map of Greater Sage-Grouse Bi-State
Distinct Population Segment with subpopulations (stars; PN ¼
Pine Nuts, DC¼Desert Creek, FA¼ Fales, BH¼ Bodie Hills, MG¼
Mount Grant, PA¼ Parker Meadows, and LV¼ Long Valley) used
to develop the IPM during 2003–2015.

APPENDIX FIGURE 8. An example of differences in parameter
estimates sampled from the posterior probability distributions
for hatchability models fit with additive (gray boxes) and nested
(white boxes) random effect structures for Greater Sage-Grouse
within the Bi-State Distinct Population Segment, California and
Nevada, during 2004.
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