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Variation in Flatwoods Salamander Survival Is Unrelated to Temperature
and Rainfall

George C. Brooks1, Thomas A. Gorman2, and Carola A. Haas1

Survival rates are known to vary over the course of an individual’s lifetime and among individuals within a population.
Quantifying the natural variability in survival rates is crucial when scaling up to infer the dynamics of populations.
Using ten years of mark–recapture data from two adjacent wetlands on the Florida Panhandle, we investigated indi-
vidual and temporal variability in survival rates of Reticulated Flatwoods Salamanders (Ambystoma bishopi). Our objec-
tives were to 1) provide the first estimates of survival for the species, 2) evaluate the relationship between body size
and mortality risk, 3) quantify the degree of variability in survival rates across the study period, and 4) discern
whether variability in survival or detection correlates with environmental conditions. To address these objectives, we
constructed a modified Cormack-Jolly-Seber model that includes body size and year as covariates. Mean annual sur-
vival was estimated to be 0.72 and was strongly correlated with body size; survival rates of the smallest individuals in
the study were 0.5 and those of the largest individuals were 0.85. Survival also varied considerably across years, but it
did not correlate with temperature extremes or rainfall. Therefore, a key priority for future research should be to
identify the ecological correlates of mortality risk in A. bishopi. Our results can be integrated into demographic projec-
tions for Reticulated Flatwoods Salamanders and will help managers to discern population viability, evaluate alterna-
tive management strategies (e.g., habitat restoration), or buffer the impacts of climate change. More broadly, our
work highlights the need for more long-term studies that will garner accurate estimates of vital rates to aid ongoing
recovery efforts for endangered and at-risk species.

S
URVIVAL rates are known to vary over the course of an
individual’s lifetime and among individuals within a
population (Roff, 1992; Cooch, 2002; Ebenman and

Persson, 2012). Mortality risk is intrinsically tied to environ-
mental conditions and body size and can therefore show con-
siderable variability through time and across a population
(Laurie and Brown, 1990; Forsman, 1991; Sorci and Clobert,
1999; Kunz and Ekman, 2000; Church et al., 2022). For
instance, in amphibians, regulating temperature and water bal-
ance is more challenging for smaller individuals, making them
susceptible to prolonged periods of drought, temperature
extremes, and food deprivation (Ash et al., 2003; Knapp et al.,
2003; Rothermel and Semlitsch, 2006; Tilghman et al., 2012).
In addition, body size can directly influence an individual’s
vulnerability to gape-limited predators, such that smaller indi-
viduals experience higher mortality than larger individuals
(Shine, 1991; Janzen, 1993; Forsman, 1996; Sorci and Clobert,
1999; Lind et al., 2008; Kishida et al., 2009).

Quantifying the natural variability in survival rates is cru-
cial when scaling up to infer the dynamics of populations
(Brooks et al., 2000; Rees and Ellner, 2009). Certain life his-
tories can be extremely sensitive to changes in vital rates,
and stochastic forces strongly impact population growth
(Lande, 1993; Letcher and Horton, 2008; Van de Wolfshaar
et al., 2008; Rees and Ellner, 2009; Xu et al., 2010). By treat-
ing survival as a fixed parameter, traditional demographic
methods used to conduct population viability analyses may
generate erroneous conclusions regarding population status
and extinction risk (Ramula et al., 2009; Hegg et al., 2013).
In the context of modern conservation efforts, assessments
that neglect variation in mortality could lead to flawed
management decisions, thereby reducing the effectiveness
of conservation measures for at-risk species.

For studies with infrequent sampling events or low cap-
ture probabilities, however, discerning the relationship
between survival and ecological covariates is often difficult
to achieve (Wulfsohn and Tsiatis, 1997; Su and Wang, 2012;
Langrock and King, 2013; Rose et al., 2018). Capture–recap-
ture data sets are largely comprised of partial records,
including individuals that were born prior to the start of the
study, individuals that die after the study has ended, and
instances that simply went unobserved (Lebreton et al.,
1992; Pike et al., 2008; Royle, 2008; Papadatou et al., 2012;
Rose et al., 2018). Historically, records such as these were
often omitted from analyses (Bailey et al., 2004; Matechou
et al., 2013), or it was necessary to assume survival rates
were constant for models to be identifiable (Pollock et al.,
1990). Methodological advances have allowed for the inclu-
sion of more partial records in mark–recapture models
(Pledger et al., 2003, 2010; Colchero and Clark, 2012; Su
and Wang, 2012), but challenges remain (Letcher and Hor-
ton, 2008; Gilroy et al., 2012; Barbour et al., 2013; Ergon
and Gardner, 2014). Notably, if ecological covariates impact
both mortality risk and animal behavior, models may inad-
vertently conflate variation in survival with variation in
detectability (Kellner and Swihart, 2014).

Amphibians exemplify the challenges associated with
obtaining survival estimates from wild populations. Many
amphibians are long lived, sometimes surviving for multiple
decades in their terrestrial life stage (Duellman and Trueb,
1994; Petranka, 1998; Wells, 2019). Thus, there is a poten-
tial for significant variability in survival rates, which in turn
has strong implications for population growth (Biek et al.,
2002; Vonesh and De la Cruz, 2002; Harper et al., 2008; Terrell
et al., 2023). Both survival and activity periods of amphibians
are impacted by climatic factors (e.g., Brooks et al., 2019; Cayuela
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et al., 2020; Messerman et al., 2020; Sanchez et al., 2020), and a
positive relationship between body size and vulnerability to abi-
otic conditions has been shown for a variety of species (Spotila,
1972; Maiorana, 1976; Duellman and Trueb, 1994; Cabrera-Guz-
mán et al., 2013; Yagi and Green, 2017; Messerman et al., 2020).
However, the fossorial nature of many amphibians makes it hard
to disentangle environmentally driven variation in survival from
the environmental correlates of aboveground activity and detec-
tion (Pollock, 1982; Petranka, 1998; O’Donnell and Semlitsch,
2015; Burrow et al., 2021).
Using ten years of mark–recapture data from Eglin Air Force

Base on the Florida Panhandle, we investigated individual and
temporal variability in survival rates of Reticulated Flatwoods
Salamanders (Ambystoma bishopi), a species endemic to the
Southeastern United States. Reticulated Flatwoods Sala-
manders breed in ephemeral wetlands, a strategy that
exhibits sporadic recruitment (Palis et al., 2006; Taylor
et al., 2006; Brooks et al., 2020). Reticulated Flatwoods Sal-
amanders are a federally listed endangered species, but
recovery of the species is hampered by a lack of basic natu-
ral history information, including accurate survival estimates
(USFWS, 2009, 2020). We constructed a modified Cormack-
Jolly-Seber model that included body size and year as covari-
ates. Our objectives were to 1) provide the first estimates of
survival for Reticulated Flatwoods Salamanders, 2) evaluate
the relationship between body size and survival, 3) quantify
the degree of variability in survival and detection across the
study period, and 4) discern whether variability in survival or
detection correlates with environmental conditions. We pre-
dicted relatively high survival estimates, a positive association
between survival and body size, and variability in survival and
detection probabilities corresponding to extremes of tempera-
ture and precipitation. Our findings can be used to evaluate
the long-term viability of Reticulated Flatwoods Salamander
populations and help to inform ongoing recovery efforts.

MATERIALS AND METHODS

Study site.—Data were collected from a ten-year mark–recap-
ture study of Reticulated Flatwoods Salamander populations
on Eglin Air Force Base, Florida. Eglin is a largemilitary installa-
tion (188,459 ha) primarily consisting of actively managed
Longleaf Pine (Pinus palustris) dominated sandhills (approxi-
mately 145,000 ha) interspersed with treeless open test ranges,
pine plantations, and mesic flatwoods. The landscape is punc-
tuated by ephemeral wetlands which fill with late fall or early
winter rains and typically remain inundated throughout the
spring (Chandler et al., 2016, 2017). Wetlands in this region are
typically characterized by open overstories dominated by Long-
leaf Pine, Slash Pine (Pinus elliottii), and Pond Cypress (Taxodium
ascendens), with abundant herbaceous groundcover (including
species of Aristida, Dicanthelium, and Eriocaulon). Long-term
average temperatures for the region are 288C in summer and
168C in winter. Average precipitation is 166 cm annually.
Two Reticulated Flatwoods Salamander breeding wetlands

have been completely encircled with drift fences and moni-
tored since 2010 (see Erwin et al., 2016 and Brooks et al.,
2019 for details). The dates that drift fences were opera-
tional changed through time in response to weather condi-
tions and staff availability, but we generally attempted to
open fences in time to capture the first movement of indi-
viduals in the fall (October–November). We typically ran
fences into the spring only when metamorphosis was likely

(identified through larval dipnet surveys conducted every
spring) due to suitable hydrologic conditions. Upon capture
of an individual salamander, we recorded the date and time
of capture, and uniquely marked each individual using pas-
sive integrated transponder (PIT) tags (Biomark MiniHPT8
FDX-B) or visual implant elastomer (VIE; Northwest Marine
Technologies, Inc.). We measured snout–vent length (SVL),
total length, and mass of all animals captured at drift fences.
By sampling repeatedly across years, we were able to gener-
ate a unique capture history for each marked individual. All
field work was approved by the Virginia Tech Institutional
Animal Care and Use Committee.

Statistical analysis.—We fit a hierarchical Cormack-Jolly-Seber
(CJS) model (Cormack, 1964; Jolly, 1965; Seber, 1965) to esti-
mate annual survival and detection probabilities. We chose
this approach because the CJS formulation can easily be
modified to include continuous covariates and random
effects while accounting for imperfect detection. We adopted
a two-stage approach that first involves imputing values for
unobserved body sizes, followed by a partial likelihood
approach to estimate parameters of interest (Tsiatis et al.,
1995; Su andWang, 2012; Rose et al., 2018). Our formulation
consists of a model for the partially observed state of each
individual (the “process model”) and an observation model
that accounts for imperfect detection, conditional on true
state. Individual states, zi;t , describe whether individual i is

alive and available for capture at time t. An individual’s state
zi;t is modeled as

zi;t j zi;t�1; f ¼ 1 ; t ¼ 1
Bern zi;t�13f i;t

� �
; t > 1

(

where / represents survival probability and zi,t�1 is the state
of individual i in the previous time step. We modeled sur-
vival as a linear function of body size at time of capture
using a logit link function:

logit f i;t

� � ¼ mt þ bXþ « t

mt ¼ log
f

1� f

 !

f � Uð0;1Þ

b � Nð0;1ÞIð0;1Þ

« t � Nð0;s2Þ

s2 � gammað1;1Þ
where b is the slope for size-specific survival, l t is the inter-
cept at time t, and X is a matrix of body sizes for every indi-
vidual at each sampling period. Size measurements were
standardized by subtracting the mean size of all captured
individuals and dividing by the standard deviation, resulting in
a transformed covariate withmean zero. Size estimates for unob-
served individuals were interpolated using parameters estimated
from the von Bertalanffy growth equation (von Bertalanffy,
1938; Brooks et al., 2020). Error ðeÞ was assumed to be normally

distributed withmean zero and standard deviation r2.
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For each sampling occasion, an individual is either seen
or not seen. Before an individual has entered the popula-
tion, or after an individual has died, detection probability is
zero. We used a non-informative prior on detection proba-
bility and compared scenarios with constant detection and
scenarios where detection varied across years. Observed
states for each individual ðyi;tÞ are linked to true states in the

process model with a Bernoulli function:

yi;t j zi;t � Bern zi;t 3 ptð Þ

logit ptð Þ ¼ v þ e t

v ¼ log
p

1� p

� �

p � Uð0;1Þ

e t � Nð0;s2Þ

s2 � gammað1;1Þ
where p is the probability of detection given an individual is
available for capture and et is the random effect of year on
detection probability.

To assess the environmental basis of variation in survival
and detection, we estimated the correlation between param-
eter estimates and temperature and precipitation data
obtained from the PRISM Climate Group (Oregon State Uni-
versity, https://prism.oregonstate.edu). We downloaded
monthly precipitation and temperature data from PRISM at
the highest resolution (800 m) for our study area covering
the years 2010 to 2020. We then calculated mean tempera-
tures and total precipitation for June through August of
each year to characterize the severity of summers across the
study and calculated the mean temperature and total

precipitation for November through February of each year to
characterize the severity of winters. We then determined to
what degree annual survival and detection estimates were cor-
related with mean summer temperature, total summer precipi-
tation, mean winter temperature, and total winter precipitation
using Kendall’s s statistic. All analyses were performed in R
using the package R2WinBUGS (Sturtz et al., 2005; R Core
Team, 2022). Results reported are posterior means and 95%
credible intervals unless otherwise stated.

RESULTS

Between fall 2010 and spring 2020, 953 adult salamanders at
two breeding wetlands on Eglin Air Force Base were marked
and released. Of the 953 animals marked, 688 marked individ-
uals were recaptured on at least one subsequent occasion. The
longest recorded time between two capture events was ten
years. In addition, 704 metamorphs were captured emerging
from wetlands but were excluded from subsequent analyses to
avoid bias introduced by unequal emigration rates. Over the
entire study duration, only 59 individuals tagged as meta-
morphs were ever recaptured. The average snout–vent length
(SVL) of marked individuals was 54 mm (range ¼ 32–76 mm;
Fig. 1). The sex of 77% of individuals could be identified. Of
the animals that could not be sexed, 24% were identified as
yearlings (based on color pattern). Females on average were
larger than males (t ¼ 13.4, df ¼ 247, P, 0.001) and individu-
als of unknown sex (t ¼ 13.4, df ¼ 320, P , 0.001), and the
average size of males was larger than individuals of unknown
sex (t ¼ 4.1, df ¼ 272, P , 0.001; Table 1, Fig. 2). Sex ratios
approximated 1:1 at the start of the study but fluctuated across
years. In 2014–2015, there were almost three males for every
female, but in subsequent years the population was female
biased (Table 1).

All parameters of the Cormack-Jolly-Seber model adequately
converged; all potential scale reduction factors (PSRF) for indi-
vidual parameters were ,1.1. The multivariate PSRF for the
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Fig. 1. Body size distributions for Reticulated Flatwoods Salamanders by year. Sizes are snout–vent length (SVL) in millimeters. Points represent
the raw data points; the center lines show mean, 75%, and 95% confidence intervals; and the shaded region is an approximate density.
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full model was 1.06. Posterior P-values for survival and detec-
tion probabilities all approximated 0.5, indicating a good
model fit. Owing to the model formulation, the parameters
for survival and detection probabilities in the final year of the
study were unidentifiable, and thus not reported here, nor
used to calculate averages across years.
Estimated annual detection probabilities were 0.75 (CI:

0.66–0.82; Supplemental Fig. 1; see Data Accessibility). Thus,
three years of monitoring on average would be required to
achieve .95% detection probability for a given individual.
However, two individuals went ten years between successive
captures. The probability of detection varied across years.
Detection was lowest in 2019 (mean ¼ 0.61, CI: 0.45–0.76)
and highest in 2015 (mean ¼ 0.91, CI: 0.83–0.96). Annual var-
iation in detection probability was not correlated with maxi-
mum summer temperatures (Kendall’s s ¼ 0.36, P ¼ 0.14),
minimum winter temperatures (Kendall’s s ¼ –0.36, P ¼ 0.14),
or total winter precipitation (Kendall’s s ¼ –0.14, P ¼ 0.72).

However, annual variation in detection rates was correlated
with total summer precipitation, whereby detection probabili-
ties of adults in the breeding season were higher in years with
low amounts of rainfall in the previous summer (Kendall’s s ¼
�0.57, P ¼ 0.03; Fig. 3).

Mean survival of adult salamanders was 0.78 (CI: 0.61–
0.89; Supplemental Fig. 1; see Data Accessibility). However,
survival rates varied considerably among individuals and
across years (Figs. 4, 5). Survival rates were positively corre-
lated to body size in all but two years (Fig. 5; Supplemental
Fig. 2; see Data Accessibility). Survival for the smallest indi-
viduals in our study (30 mm) averaged 0.56 (CI: 0.36–0.75),
whereas survival of the largest individuals (80 mm) averaged
0.87 (CI: 0.75–0.94). Survival rates were not correlated with
body size in 2015 where survival was uniformly high across

Table 1. Summary of Reticulated Flatwoods Salamander encounters at drift fences each year. Numbers are the number of unique individuals cap-
tured. Numbers in parentheses are the number of recaptures, i.e., animals that had been marked in previous years. Reported sizes are mean
snout–vent length (SVL) in millimeters with associated standard deviations.

Season Number of females Mean female size Number of males Mean male size Sex ratio M:F

2010 67 (0) 61.164.6 77 (0) 54.067.6 1.1:1
2011 69 (20) 60.466.2 71 (18) 56.364.6 1:1
2012 43 (21) 61.167.6 41 (24) 57.066.3 1:1
2013 34 (26) 65.365.4 22 (19) 58.765.5 0.6:1
2014 46 (25) 60.667.7 131 (11) 50.665.0 2.8:1
2015 89 (19) 59.465.6 64 (37) 54.865.0 0.7:1
2016 40 (29) 62.864.0 29 (19) 57.165.7 0.7:1
2017 40 (9) 60.965.9 48 (6) 51.764.6 1.2:1
2018 53 (21) 58.966.1 33 (14) 52.463.6 0.6:1
2019 28 (18) 60.764.8 12 (8) 55.765.0 0.4:1
2020 9 (8) 63.465.8 6 (2) 51.164.9 0.7:1
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Fig. 3. Detection probability within each breading season as it relates
to rainfall in the previous summer. Kendall’s tau was used to determine
the strength of the correlation between the variables (Kendall’s t ¼
�0.57, P ¼ 0.03). No other correlations were found between environ-
mental conditions and parameters of interest.
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Fig. 2. Body size distributions for males (M), females (F), and individuals
of unknown sex (U). Sizes are snout–vent length (SVL) in millimeters.
Points represent the raw data points; the center lines show mean, 75%,
and 95% confidence intervals; and the shaded region is an approximate
density. The average size of females was larger than males (t ¼ 13.4, df ¼
247, P , 0.001) and individuals of unknown sex (t ¼ 13.4, df ¼ 320, P ,
0.001), and the average size of males was larger than individuals of
unknown sex (t ¼ 4.1, df ¼ 272, P, 0.001).
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individuals and in 2017 where survival was uniformly low

across individuals (Fig. 5; Supplemental Fig. 2; see Data

Accessibility). Survival was predicted to be highest in 2018

(mean ¼ 0.95, CI: 0.84–0.99) and lowest in 2017 (mean ¼
0.46, CI: 0.37–0.55). Annual variation in survival was not

correlated with maximum summer temperatures (Kendall’s

s ¼ 0.00, P ¼ 0.55) or minimum winter temperatures (Ken-

dall’s s ¼ –0.14, P ¼ 0.73). In addition, annual variation in

survival rates was not correlated with total summer precipi-

tation (Kendall’s s ¼ –0.07, P ¼ 0.64) or total winter precipi-

tation (Kendall’s s ¼ –0.07, P ¼ 0.64).

DISCUSSION

Here we find evidence for a positive relationship between

body size and survival in Reticulated Flatwoods Salamanders

and considerable annual variability in adult mortality. Infer-
ring survival rates from incomplete data has been a primary
goal of many ecological studies (Pollock et al., 1989; Colchero
and Clark, 2012; Gilroy et al., 2012; Gilbert et al., 2014). Con-
servation practitioners require accurate estimates of sur-
vival to parameterize demographic models and quantify
extinction risk. Our results provide some insight into the
imperiled status of Reticulated Flatwoods Salamanders,
carry implications for the long-term viability of popula-
tions, and highlight future research directions that will aid
ongoing recovery efforts.

The average survival rates estimated for Reticulated Flat-
woods Salamanders were similar to those reported for conge-
ners (e.g., Husting, 1965; Trenham et al., 2000; Gamble et al.,
2009; Messerman et al., 2020) and align with population
trends at the study sites (Brooks et al., 2023). These estimates
suggest a mean life expectancy of 3–5 years and a maximum
lifespan of 15 years. In support of this finding, a small percent-
age of individuals marked (as adults) in the first year of the
study were recaptured ten years later. Unfortunately, the true
age of individuals in this study was not known so the overall
demographic structure can only be indirectly inferred. Never-
theless, the apparent longevity of flatwoods salamanders indi-
cates that the terrestrial breeding population acts as a reservoir
that is periodically supplemented via sporadic recruitment
events (Husting, 1965; Whitford and Vinegar, 1966; Warner
and Chesson, 1985; Dodd, 1993; Semlitsch and Bodie, 2003;
Harper et al., 2008). In such species, interannual variation in
survival has the potential to preclude multiple breeding
attempts in a lifetime and may ultimately undermine popula-
tion viability (Trenham et al., 2000; Griffiths et al., 2010).
Improved, non-fatal aging methods offer exciting future ave-
nues for studies that seek to answer such questions in long-
lived amphibians (Sinsch, 2015).

The positive correlation we found between body size and
survival is unsurprising given the ubiquity of this relationship
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Fig. 5. Size-dependent survival esti-
mates for Reticulated Flatwoods
Salamanders by year. Body size
reflects snout–vent length (SVL) in
mm. The shaded regions indicate
the 95% credible intervals.
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Fig. 4. Size-dependent survival estimates for Reticulated Flatwoods
Salamanders averaged across years. Body size reflects snout–vent length
(SVL) in mm. The shaded region indicates the 95% credible interval.
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in nature (Roff, 1992; Cooch, 2002; Ebenman and Persson,
2012). In several amphibians, size at metamorphosis has been
shown to have long-term effects on future survival and repro-
ductive success (Semlitsch et al., 1988; De Block and Stoks,
2005; Earl and Whiteman, 2015; Yagi and Green, 2017, 2018).
A promising avenue for Reticulated Flatwoods Salamander
conservation efforts, therefore, may lie in ensuring high qual-
ity habitat conditions for larval growth and development,
including fire-maintained herbaceous vegetation, litter sources
that provision high quality prey items, and extended wetland
hydroperiods (Wilbur and Collins, 1973; Semlitsch et al.,
1988; Alvarez and Nicieza, 2002; Altwegg and Reyer, 2003;
Richter-Boix et al., 2011; Chandler et al., 2017; Jones et al.,
2018; Burrow and Maerz, 2021). In addition, the use of larval
headstarting may aid population recovery, when tailored to
produce large individuals that have a higher probability of sur-
viving their first summer and returning to breed (Newman,
1998; Griffiths and Pavajeau, 2008; Middleton and Green,
2015). A priority for future research efforts would be to under-
stand the factors that impact size at metamorphosis in Reticu-
lated Flatwoods Salamanders and to what extent larval
conditions carry over to impact the terrestrial life stage (Fice-
tola and Bernardi, 2006; Richter-Boix et al., 2006; Cabrera-
Guzmán et al., 2013; Earl and Semlitsch, 2013; Earl and
Whiteman, 2015; Yagi and Green, 2018).
Given the strong link between ectothermic life histories

and environmental conditions (Laurie and Brown, 1990;
Forsman, 1991; Sorci and Clobert, 1999; Kunz and Ekman,
2000), temporal variability in survival rates is considered
likely. Several salamander species have been shown to expe-
rience a negative energy budget at higher temperatures,
resulting in elevated mortality during the hottest summer
months (Bobka et al., 1981; Rothermel and Semlitsch, 2006;
Homyack et al., 2010, 2011; Rohr and Palmer, 2013). Alter-
natively, survival of amphibians may be indirectly impacted
by temperature through its effect on water balance or prey
availability (Spotila, 1972; Maiorana, 1976; Ash et al., 2003;
Knapp et al., 2003; Rothermel and Semlitsch, 2006; Tilgh-
man et al., 2012; Messerman et al., 2020). Regardless of the
mechanism, there is much concern regarding the impact of
climate change on amphibian populations (Means et al.,
1996; Blaustein et al., 2001, 2010; Corn, 2005; Lawler et al.,
2010; Shoo et al., 2011; Foden et al., 2013; Yiming et al.,
2013). However, we found no evidence for coarse metrics of
temperature or precipitation being the drivers of variation
in survival. Instead we find that detection probabilities, and
therefore presumably periods of aboveground activity, are
more strongly correlated with environmental conditions.
This indicates that despite animals attempting to buffer var-
iation in survival through behavioral means (time spent on
the surface), differences in survival rates across years are still
pronounced. A key research priority, therefore, is to uncover
the proximate factors driving annual variability in survival.
Understanding how survival probabilities change over the

course of an individual’s life is crucial when scaling up to
infer the dynamics of a population. Variability in vital rates
can strongly influence a population’s vulnerability to local
extirpation (Letcher and Horton, 2008; Van de Wolfshaar
et al., 2008; Xu et al., 2010). Conservation of pond-breeding
amphibians has often neglected the terrestrial phase of the
life history (Semlitsch, 2003; Burrow et al., 2021), but there
is a growing body of literature demonstrating the sensitivity
of amphibian populations to changes in adult survival rates

(Vonesh and De la Cruz, 2002; Harper et al., 2008; Kissel
et al., 2020; Terrell et al., 2023). Studies like the one pre-
sented here will provide a key component to demographic
models that can be used to quantify the threat of extinction
in at-risk species. Once the impact of variable survival on
the long-term viability of populations has been established,
management actions to either dampen or combat that vari-
ability can be implemented.
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