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A B S T R A C T

Upscaling of sample data on indicators of decomposition to the landscape scale is often 
necessary for extensive ecological assessments. The amount of such data is mostly scarce 
even with high sampling efforts. Moreover, environmental conditions are very hetero-
geneous in high mountain regions. Therefore, the aim was to find a suitable technique 
for spatial modeling under these circumstances.

A method combining decision tree analysis and the construction of fuzzy member-
ship functions is introduced for a GIS-based mapping of decomposition indicating pa-
rameters. It is compared with an approach solely based on decision trees. Within a case 
study in the Italian Alps the spatial distribution of humus forms, classified by the occur-
rence of an OH (humified residues) horizon, is examined. There appears to be a strong 
relationship with elevation and a minor correlation with slope exposition.

The fuzzy logic-based approach proves to be suitable for modeling the spatial distri-
bution of indicators of decomposition. Mapping fuzzy values allows for the representa-
tion of small-scale variability and uncertainty of data due to a relatively low sample size 
in a very heterogeneous environment.

Introduction

Decomposition processes are of high signifi-
cance for the functioning of terrestrial ecosystems. 
As part of various material cycles, these processes 
ensure the survival not only of decomposing but 
also of producing and consuming organisms (Swift 
et al., 1979). A prominent indicator with regard to 
decomposition are humus forms (Andreetta et al., 
2012; Ascher et al., 2012; Graefe and Beylich, 2006; 
Ponge, 2013). They can be defined as manifesta-
tions of dead organic matter at different stages of 
decomposition in the topsoil, which in forest eco-
systems consist of organic layers (OL = litter, OF = 
fragmented residues, OH = humified residues) and 
the uppermost mineral horizon.

Analyzing and assessing the impacts of ecologi-
cal processes and interactions are required at the 

landscape scale for numerous purposes. In contrast, 
ecological field data at the landscape scale is often 
scarce due to high costs and low accessibility, espe-
cially in high mountain environments. Upscaling 
by means of spatial modeling allows for bridging 
the gap between the local study scale and the target 
landscape scale.

In terms of soil ecology, there is a wide range of 
such modeling methods associated with the con-
cept of digital soil mapping (McBratney et al., 2003), 
comprising pedotransfer functions, geostatistical 
techniques, and factor-based approaches (Behrens 
and Scholten, 2006). Pedotransfer functions allow 
the derivation of soil variables from other factors 
easier to determine by means of mathematical for-
mulas (Bouma, 1989; Wösten et al., 2001); thus a 
detailed quantitative comprehension of the correla-
tions between environmental factors is prerequisite 
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(McBratney et al., 2002). The application of geosta-
tistical techniques (e.g., kriging, co-kriging) is par-
ticularly critical in areas with a high heterogeneity 
of environmental covariates. For these techniques an 
accordingly higher density of samples is indispensa-
ble (Heuvelink and Webster, 2001). Factor-based ap-
proaches are based on considering the soil properties 
as a system state, whose configuration is determined 
by the soil-forming factors (e.g., clorpt model, Jenny, 
1941; scorpan model, McBratney et al., 2003). Dif-
ferent methods have been applied implementing the 
factor-based approach (Behrens and Scholten, 2007; 
McBratney et al., 2003), including linear regression 
and classification models, artificial neural networks, 
tree-based regression and classification models, sup-
port vector machines, and fuzzy logic models.

This study aims at refining a spatial knowledge-
based modeling technique and establishing it for the 
prediction of indicators of decomposition processes 
and properties under a highly heterogeneous topog-
raphy and a relatively small sample size. Decompo-
sition processes are influenced by various environ-
mental factors. In a high mountain environment 
these are in a large part mediated by the elevation 
and the slope exposition, but for some factors in a 
nonlinear way (such as vegetation, where thresholds 
for different zones exist depending on the topogra-
phy). Therefore a fuzzy logic approach based on a 
data mining decision tree algorithm accounting for 
nonlinearities is hypothesized to fit the situation.

The first part describes the methodological ap-
proach proposed in this study. It is followed by the 

presentation of a case study conducted in a study 
area in the Italian Alps. In this case study, the ap-
proach utilizing fuzzy logic is applied for modeling 
the occurrence of humus forms showing an OH 
horizon and comparing it with an approach solely 
utilizing decision tree analysis. 

Methodological Framework

Construction of a Decision Tree
Binary decision trees for data mining (i.e., classifi-

cation and regression trees [CART]; Breiman et al., 
1984) serve as a practicable and simply interpretable 
tool to statistically model complex and nonlinear 
dependencies between (environmental) influencing 
factors and a target variable on the basis of sample 
data (Aberegg et al., 2009; De’ath and Fabricius, 
2000; McKenzie and Ryan, 1999; Mertens et al., 
2002). Decision trees are constructed by recursive-
ly partitioning the sample set into pairwise disjoint 
subsets that show a higher rate of homogeneity with 
respect to the target variable. The rules for partition-
ing have the form x

i
 ≤ c, c ∈ V

i
 ⊆ ℝ, if the influenc-

ing factor X
i
 ∈ {X

1
, …, X

a
} taking values in V

i
 is in-

terval or ratio scaled, and the form x
i
 ∈ S otherwise, 

with S covering a subset of the property values M
i
 = 

{m
1
, …, m

z
} of X

i
 (x

i
 is evaluated for every sample as 

the value of X
i
) (Fig. 1). As part of the partitioning 

procedure, an inhomogeneity measure ι is calculated 
in order to establish an appropriate decision rule. 
Each time, the difference of the inhomogeneity of 

FIGURE 1.    Illustration of a node split in 
a decision tree depending on the scale of 
measurement of the influencing variable 
X

i
 ∈ {X

1
, …, X

a
}.
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a certain node v and the sum of the inhomogenei-
ties of the successor nodes v

L
 and v

R
 are maximized: 

max{ι[v] – [ι(v
L
) + ι(v

R
)]}. For classification trees the 

gini index ι
Class

 (Equation 1) serves as an estimator 
of the inhomogeneity of a node v, with the condi-
tional probability p(y

i
|v), i = 1, …, z, of a value of 

the target variable y
i
 ∈Y in v. For regression trees the 

resubstitution error ι
Reg

 (Equation 2) is used, where 
the number of all samples is denoted as N and the 
number of samples in v is denoted as N

v
 ≤ N, with 

the related values of the target variable y
n
, n = 1, …, 

N
v
 (Breiman et al., 1984).

	 ι ι ιιClass k kk
v p y v p y v y y Y( ) ( | ) ( | ), ,= ⋅ ∈

≠∑ 	 (1)

	 ιReg( ) ( / ) ( ( ))v N y y vnn

Nv= −
=∑1 2

1
	 (2)

The recursive partitioning procedure is per-
formed on all subsets. It terminates as soon as no 
higher degree of homogeneity can be reached or 
a threshold of the number of elements in a node is 
undercut.

Fuzzy Logic Model
The fuzzy logic model is based on the concept 

of fuzzy sets (Zadeh, 1965). Unlike ordinary sets, 
fuzzy sets enable their elements to show a partial de-
gree of membership in the range from 0 (no mem-
bership) to 1 (full membership). In this way, fuzzy 
logic models are capable of representing continu-
ous graduations from one class to another class (e.g., 
soil types, humus forms), which has been applied in 
soil science on numerous occasions (de Gruijter et 
al., 2011; McBratney and Odeh, 1997; Qi and Zhu, 
2011; Zhu, 2006; Zhu et al., 1996, 2001). In the con-
text of digital soil mapping, fuzzy logic models have 
been designed and applied for predicting various soil 
properties (Ashtekar and Owens, 2013; de Menezes 
et al., 2013). By means of fuzzy membership func-
tions µ: E

1
×…×E

n
 → [0,1], (x

1
,…,x

n
) ↦ µ(x

1
,…,x

n
), 

dependencies of a target variable on environmental 
covariates (with the domains E

1
, …, E

n
) can be de-

scribed. These functions refer membership degrees 
of the target variable to different environmental cir-
cumstances (McBratney and Odeh, 1997).

In order to derive suitable fuzzy membership 
functions from an existing decision tree, tuples con-

taining the value that is inhered in a distinct tree 
node and the related values of the covariates are 
used to approximate a general function rule. In case 
of the fuzzy membership s

ij,k,a
 of a modeled variable 

k as a function of a single environmental variable 
a with the value z

ij,a
 at location (i,j), a two-dimen-

sional rule is needed, such as the bell-shaped func-
tion provided by Shi et al. (2009) and Shi (2013) 
(Equation 3), with the maximal membership max 
∈ [0,1], the central values of the function v

1
 and 

v
2
, the inflection points w

1
 and w

2
, and with r

1
 and 

r
2
 determining the steepness of the function parts.

s z v w if z v

s
ij k a ij a

r
ij a

ij k

, , , ,

, ,

exp{[( ) / ] ln[ . ]} ,= − <max ∗ 1 1 1
1 0 5

aa ij a

ij k a ij a
r

if v z v

s z v w

= ≤ ≤

= −

max

max

1 2

2 2
2 0

,

, , ,

,

exp{[( ) / ] ln[ .∗ 55 2]} ,if z vij a >










	(3)

In case of a continuously increasing or decreas-
ing behavior of the modeled variable k along the 
gradient of an environmental variable a, a sigmoidal 
function can be derived from Equation 3 by utiliz-
ing only the increasing or decreasing function parts, 
respectively. Membership values between 0 and 1 
can be derived from the fuzzy membership func-
tions depending on the values of the environmen-
tal covariates. If information about these covariates 
is extensively available, membership values can be 
modeled for every site across the study area and for 
every class of the target variable.

Similar approaches based on a combination of 
decision trees and fuzzy logic have been described 
elsewhere (Chiang and Hsu, 2002; Suárez and Lut-
sko, 1999) and utilized for soil scientific purposes 
(Ai et al., 2013; Ribeiro et al., 2014; Qi and Zhu, 
2011). To our knowledge, though, this is the first 
time that a model combining decision tree analysis 
and fuzzy logic is applied for mapping indicators of 
decomposition.

Case Study: Modeling of Humus Forms 
at Val di Rabbi (Trentino, Italy)

Study Area
The study area (522.7 km²) belongs to the Au-

tonomous Province of Trentino in northern Italy 
and encompasses the two Alpine valleys Val di Sole 
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and Val di Rabbi (Fig. 2). The entire area is char-
acterized by siliceous parent material, with parag-
neiss, mica schists and phyllites prevailing, and with 
some lenses of orthogneiss (Aberegg et al., 2009). 
In terms of soil classes, the range up to 1900 m a.s.l. 
is dominated by Haplic Cambisols (Dystric) and 
Umbric Podzols. At higher elevations, the prevalent 
classes are Entic Podzols, Albic Podzols, and Um-
bric Podzols (Sartori and Mancabelli, 2009).

Data Basis and Preprocessing
Six investigation sites were located inside the 

closed coniferous forest along different eleva-
tions between 1180 and 1660 m a.s.l., three each 
at north-exposed slopes (N1, N2, N3) and south-
exposed slopes (S6, S7, S8). They are comparable 
with respect to geology (all sites have paragneiss as 
parent material) and local topographical position 
(all sites are located on uniform slopes). The north-
exposed sites are dominated by Norway spruce (Pi-
cea abies) and the south-exposed sites by European 
larch (Larix decidua). The site S6 was located in a 
former coppice.

Every investigation site (~25 m², depending on 
the local variability of site conditions) comprised 
three or six sampling plots, respectively (humus 
profiles at a length of up to 1 m), according to the 
number of different soil cover types (grass, moss, 
litter, fern). These plots also included different lo-
cal slope dynamics (i.e., erosive and accumulative 

characteristics) at every investigation site. The to-
tal number of sampling plots amounted to n = 30. 
The humus profiles were dominated by moder 
conditions (humus forms showing a continuous 
OH horizon), with transitions to mull-like condi-
tions (OH horizon missing), primarily at the lowest 
north-facing site N1 as well as at the south-facing 
sites (Table 1).

The model of humus forms addresses the occur-
rence of a humus form with an OH horizon. Data 
from the sampling plots were obtained, indicating 
the occurrence of an OH horizon with values from 
the interval [0,1] (Table 2). The value 1 was assigned 
to a sample where a continuous OH horizon was 
present. If an OH horizon did not exist, the value 
0 was assigned. For discontinuous OH horizons the 
small-scale presence and absence of an OH horizon 
often changed abruptly and irregularly (thus with-
out the possibility to trace it back clearly to other 
factors). Therefore, the intermediate value 0.5 was 
used for this situation.

In order to examine the combined effects of el-
evation and slope exposition, the particular eleva-
tion and slope exposition values were aggregated 
to three levels of elevation and two levels of ex-
position. For elevation, the intermediate values 
1200 m, 1400 m, and 1630 m were derived from 
the elevation values of the related sampling plots. 
For slope exposition, north-exposed sites were as-
signed a value of 360°N (equal to 0°N), and south-
exposed sites were assigned a value of 180°N (Table 

FIGURE 2.    Location of the study area and investigation sites in the Autonomous Province of Trentino (Italy) 
(modified from Egli et al., 2006).
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2). The humus form data of each sampling plot was 
weighted according to the estimated percentage of 
its soil cover type in relation to the overall area at 
this site (Table 1).

Four additional sites for model validation were 
studied with a reduced number of sampling plots 
(n = 8). Two sites each were located at north-facing 
(VN1, VN2) and south-facing (VS1, VS2) slopes 
(Table 3).

Information about the elevation in the study area 
was taken directly from a bare ground digital terrain 
model (DTM) with a grid width of 10 m (Aberegg 

TABLE 1

Soil cover types, dominating humus forms, and humus profiles at the investigation sites (N1–N3, northern slope 
exposition; S6–S8, southern slope exposition) (according to Egli et al., 2006; personal communication, D. Tatti 

and G. Sartori).

Site
Elevation 
(m a.s.l.) Soil cover types

Dominating humus form according to

Typical humus 
profile

German classification 
(Ad-hoc-AG Boden, 2005)

Classification from 
Switzerland 

(Gobat et al., 2014)

N1 1180–1195 moss (90 %), fern (10 %) Mullartiger Moder
Hémimoder/
Eumoder/Dysmoder

OL-OF-(OH-)AE

N2 1395–1410 moss (100 %) Typischer Moder Dysmoder OL-OF-OH-AE

N3 1595–1605 grass (80 %), moss (20 %) Typischer Moder Dysmoder OL-OF-OH-E

S6 1200–1220 litter (90 %), grass (10 %) Mullartiger Moder Eumésoamphi OL-OF-(OH-)A

S7 1380–1395 grass (100 %) Mullartiger Moder Hémimoder OL-OF-(OH-)AE

S8 1650–1660 litter (80 %), grass (20 %)
Mullartiger Moder/
Typischer Moder

Hémimoder OL-OF-(OH-)AE

et al., 2009; compiled by the Provincia Autonoma 
di Trento on the basis of the topographic map with 
the scale of 1:10,000). A model representing slope 
exposition values was derived from this DTM with 
the slope method by Horn (1981).

Modeling
Two modeling approaches were juxtaposed. The 

first approach used results from decision tree analy-
sis without any fuzzification process, and the second 
one combined decision trees and fuzzy logic. Deci-
sion trees were built using the statistical software 
R (R Core Team, 2015) and the R package rpart 
(Therneau et al., 2015). The routine can be found 
in the online appendix (file DecTreeAnalysis.R to-
gether with the data file hf_data.txt).

Bell-shaped fuzzy membership functions de-
scribing the occurrence of OH horizons in de-
pendence on the elevation and slope exposition 
were formulated according to Equation 3. As the 
effects of two influencing variables (elevation and 
slope exposition) were examined, a two-step fuzzi-
fication procedure needed to be applied. With the 
first step, fuzzy membership functions were used to 
build submodels. These submodels correspond to 
the subtrees originating from the secondary split 
in the tree, thus they depend on the less influenc-
ing variable. The fuzzy membership functions were 
fitted by using values of the influencing variable 

TABLE 2

Data basis for modeling. Values of topography and hu-
mus forms have been aggregated from all sampling 

plots per investigation site.

Site

Number 
of 

sampling 
plots

Elevation 
(m a.s.l.)1 

Slope 
exposition

Percentage of 
humus forms 
showing an 
OH horizon

N1 6 1200 north (360°N) 15.00%

N2 3 1400 north (360°N) 66.67%

N3 6 1630 north (360°N) 60.00%

S6 6 1200 south (180°N) 6.67%

S7 3 1400 south (180°N) 50.00%

S8 6 1630 south (180°N) 53.33%

1From DTM, aggregated by plot elevations.
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together with the related percentages of a humus 
form with an OH horizon. With the second step, 
the submodels were combined by means of weight-
ing functions that thereby realize fuzzification of 
the primary influencing variable. The resulting 
fuzzy membership functions were realized with the 
ArcGIS extension tool ArcSIE (Shi, 2013). This tool 
processed them to build maps that spatially predict 
the occurrence of OH horizons.

Modeling was conducted for the central part of 
Val di Rabbi. According to our field experience, the 
prediction area was selected to include the conifer-
ous forest zone at the valley sides between 1100 m 
and 1800 m a.s.l.

The results from modeling were assessed with 
the mean error (Equation 4) and the root mean 
squared error (RMSE) (Equation 5) of the predic-
tions at the validation sites:

	 ME
n

y yi ii

n
= −

=∑1 1
| |^ 	 (4)

	 ^RMSE
n

y yi ii

n
= −

=∑1 2

1
( ) 	 (5)

The number of samples for validation is n, y
i
 are 

the observed values at the validation sites, and ŷ i
 are 

the related values predicted by the model.

Results

The sample data on the spatial distribution of 
humus forms showing an OH horizon and the 
related data on elevation and slope exposition 
was used for the construction of a decision tree. 

This yielded a tree with a primary partition in-
duced by the factor elevation at 1300 m a.s.l. (Fig. 
3). The left subtree consisted of a single node, 
representing the relatively similar percentages 
of humus forms with an OH horizon at north-
exposed and south-exposed slopes below 1300 
m. The right subtree applied to elevations from 
1300 m upwards and included another partition 
to distinguish between northern and southern 
slope expositions.

The nodes of the decision tree were obtained 
by recursive partitioning of the sample set. Each of 
the three leaf nodes held a subset with a prediction 
about the occurrence of OH horizons for the study 
area, which was specific to the related elevation and 
exposition range (Fig. 3):

•	 below 1300 m: 10.83% of the area exhibited a 
humus form with an OH horizon (based on 12 
samples)

•	 at south-exposed slopes from 1300 m upwards: 
51.67% of the area exhibited a humus form 
with an OH horizon (based on 9 samples)

•	 at north-exposed slopes from 1300 m upwards: 
63.33% of the area exhibited a humus form 
with an OH horizon (based on 9 samples)

The first model variant simply used this separa-
tion and mapped the values from the leaf nodes to 
the related elevation and exposition ranges inside 
the study area. This caused a steplike behavior of 
the distribution function (Fig. 4).

The second model variant also originated from 
the values of the leaf nodes, but includes a fuzzifi-
cation at the transitions between different elevation 
and exposition ranges. As there are two variables 

TABLE 3

Validation sites: topographic position and percentage values (observed and modeled) of humus forms showing 
an OH horizon.

Site
Elevation (m 

a.s.l.)
Slope 

exposition
Observed 

value

Decision tree model Fuzzified decision tree model

Predicted value Deviation Predicted value Deviation

VN1 1210 north 45.0% 10.8% 34.2% 11.2% 33.8%

VN2 1380 north 100.0% 51.7% 48.3% 62.0% 38.0%

VS1 1340 south 0.0% 63.3% –63.3% 46.0% –46.0%

VS2 1570 south 50.0% 51.7% –1.7% 52.1% –2.1%
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influencing the occurrence of OH horizons, two 
steps of fuzzification need to be realized. With the 
first step, the two subtrees at tree level 2 were fuzzi-
fied, both being independent on elevation (Fig. 3). 
For elevations below 1300 m a.s.l. (left subtree) the 
constant value 10.83% was used for all slope expo-
sitions (constant function s

ij,k,a
 = 0.1083). At higher 

elevations (right subtree) fuzzy membership func-
tions were constructed, which covered the pairs (z

ij,a
, 

s
ij,k,a

) referring to Equation 3 (z
ij,a

 = slope exposition 
in °N, s

ij,k,a
 = percentage of humus forms showing 

an OH horizon): (0, 0.6333), (180, 0.5167), (360, 
0.6333). Figure 5 illustrates possible functions for 
different parameters r

1
 / r

2
 (assuming r

1
 = r

2
). In this 

case the function with r
1
 = r

2
 = 2 was chosen for 

further modeling, as a function with a median trend 
in the increasing occurrence of OH horizons from 
south to north exposition (Equation 6).

s z if zij k a ij a ij a, , , ,. exp{[( ) / ] ln[ . ]}= − − <1 0 4833 180 285 0 5 1802∗ ,,

. ,

. exp{[(

, , ,

, , ,

s if z

s z

ij k a ij a

ij k a ij a

= =

= − −

0 5167 180

1 0 4833 1∗ 880 285 0 5 1802) / ] ln[ . ]} ,if zij a >










 (6)

Under the assumption r
1
 = r

2
 both of the functions 

for western and eastern slope expositions behaved 
equally (v

1
 = v

2
 and w

1
 = w

2
), so the system of equations 

Equation 6 reduced to a single equation (Equation 7).

s zij k a ij a, , ,. exp{[( ) / ] ln[ . ]}= − −1 0 4833 180 285 0 52∗    (7)

The submodels for the two elevation ranges 
(1100–1300 m and 1300–1800 m) represent the 
(left and right) subtrees of the root node (Fig. 3), 
which both underwent fuzzification of the slope 
exposition. As a second fuzzification step the parti-

FIGURE 3. Decision tree for the 
distribution model of OH horizons. 
The upper value inside the tree nodes 
represents the projected percentage of 
the area with humus forms showing 
an OH horizon in relation to the 
overall area at this elevation and slope 
exposition. The lower value n indicates 
the number of related samples.

FIGURE 4.    Cumulative distribution 
functions for the values predicting the 
percentage of a humus form with an 
OH horizon in the two models that are 
compared.
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tion of the root node (where both submodels are 
connected) needs to be addressed. Fuzzification of 
the elevation was performed in the range between 
the examined investigation sites N1/S6 and N2/
S7 (1200–1400 m a.s.l.), where predictions tend to 
be uncertain due to the lack of sampling data. It 
was accomplished by building functions associat-
ing the elevation with a weight between 0 and 1 
(Fig. 6). These weighting functions were applied at 
the fuzzy membership functions of the submodels 
from the first fuzzification step. As a consequence of 
fuzzification, the distribution function of the sec-
ond model showed a continuously increasing be-
havior without consecutive steps at the thresholds 
that stem from the decision tree (Fig. 4).

Prediction maps indicating the percentage of hu-
mus forms that show an OH horizon in the area 
selected for modeling were constructed for both 
model variants using ArcMap 10 and the exten-
sion ArcSIE (Fig. 7). According to the values of 
the fuzzy membership functions, the values of the 
prediction maps ranged from 10.8% to 63.3%. The 

lowest values were predicted for low elevation areas 
between 1100 m and 1200 m. At elevations from 
1400 m upwards, where only the fuzzy member-
ship functions for higher elevations was used (in 
consequence of the second fuzzification step, Fig. 
6), there were significantly larger percentages of 
a humus form with an OH horizon (between 
51.67% and 63.33%), with higher prediction values 
at north-exposed slopes.

Model validation shows notable deviations for 
both models, which are highest at site VS1 (ob-
served value 0.0 %, predicted value 63.3 % when 
using the decision tree model and 46.0 % when 
using the fuzzified decision tree model). The devia-
tions for the sites VN1 and VN2 are moderate to 
high, the observed value for site VS2 corresponds 
best with the values predicted by the models (Table 
3). When including fuzzification, validation results 
in a mean error of 30.0 % and an RMSE (root 
mean squared error) of 34.3 %. When predicting 
values only based on the decision tree, the mean 
error is 36.9 % and the RMSE is 43.3 %.

FIGURE 5.    Fuzzy membership functions 
for the distribution model of OH horizons 
above 1300 m a.s.l., derived from the 
right subtree in Figure 3. The solid line 
represents the function with r

1
 = r

2
 = 2, 

the dashed lines have the parameters r
1
 = 

r
2
 = 1 (short dashing) and r

1
 = r

2
 = 3 (long 

dashing).

FIGURE 6.   Weights for the synthesis of 
the elevation models. Dashed line: weights 
for the elevation model below 1300 m a.s.l.; 
solid line: weights for the elevation model 
from 1300 m a.s.l. upward. Parameter 
values of the model for lower elevations 
(dashed line): v

2
 = 1200, w

2
 = 100, r

2
 = 3. 

Parameter values of the model for higher 
elevations (solid line): v

1
 = 1400, w

1
 = 100, 

r
1
 = 3.
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FIGURE 7.   Comparison of the predicted spatial distribution of humus forms showing an OH horizon (a) using 
decision tree analysis without fuzzification procedure, and (b) combining decision tree analysis and fuzzy membership 
functions. In contrast to the first model (a), which only predicts three different percentage values, the second model (b) 
incorporates the gradual transitions in humus forms along different elevations and slope expositions. The modeled area 
includes areas with coniferous forest between 1100 m and 1800 m a.s.l. in the central part of Val di Rabbi (Trentino, Italy).
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Discussion

Results from the Case Study

The case study showed predictions for the oc-
currence of OH horizons that vary in accordance 
with the modeling approach. The model that in-
cludes a fuzzification procedure fitted the real situ-
ation potentially better than the one without this 
procedure, as there were no abrupt changes in the 
projected values due to any threshold values from 
the decision tree, which cannot be justified based 
on the low data amount. Nevertheless, the structure 
of the decision tree was also reflected in the predic-
tive map of the fuzzy logic model (Fig. 7).

Regarding the occurrence of OH horizons, 
modeling revealed differences primarily with a 
changing elevation. At higher elevations within the 
forest, north-exposed slopes were predicted to ex-
hibit slightly larger percentages of a humus form 
with an OH horizon than south-exposed slopes. 
The validation showed that deviations of field ob-
servations from the model results were likely to 
occur in some places. Nevertheless the predicted 
trends of a higher occurrence of OH horizons 
with an increasing elevation and also at northern 
slope expositions were confirmed. The deviations 
at the validation sites suggested that further thresh-
olds might exist depending on the elevation, which 
were still not well explained by the model.

This predicted distribution depending on the 
elevation and slope exposition is in line with the 
findings of other investigations of forest ecosys-
tems, for example higher accumulation of organic 
matter at north-facing compared to south-facing 
slopes (e.g., Aberegg et al., 2009; Ascher et al., 2012; 
Bernier, 1996; Egli et al., 2009, 2010a, 2010b). The 
correlation of humus forms and the relief param-
eters elevation and slope exposition emphasizes the 
influence of environmental factors such as solar ra-
diation, temperature and vegetation on decomposi-
tion processes also in the study area. The effects of 
other covariates on decomposition such as parent 
material were not examined in the context of this 
study, thus modeling results are potentially subject 
to uncertainties at sites where environmental con-
ditions deviate from the investigation sites (e.g., on 
mica schists). With a higher number of investiga-
tion sites the results could possibly be improved by 
integrating further potentially influencing variables.

Application of Decision Trees and 
Fuzzy Logic

Modeling is exerted with a knowledge-based 
approach, built on the use of decision tree analy-
sis and the concept of fuzzy logic. Decision trees 
have shown to be well suited for revealing rela-
tionships between sample data and environmental 
factors (Aberegg et al., 2009; De’ath and Fabricius, 
2000; Gerlitz, 2015). In the case of a small sample 
size, decision tree analysis has to be frequently per-
formed without any pruning procedure, since this 
would eliminate almost every partition of the sam-
ple set (for details on the pruning procedure, see 
Breiman et al., 1984). For that reason the number 
of sample elements is usually low especially in the 
leaf nodes, thus the direct use of maximum decision 
trees, which are not pruned, for prediction is criti-
cal. However, even these maximum trees are not 
generally overfitted, as long as the distinct places of 
the sampling plots have been determined directly 
in the field using the knowledge and experience of 
experts in the sector of decomposition.

The application of fuzzy logic helps to manage 
the limited predictive capability of the trees, as the 
divisions of the sample set and the related values of 
the covariates are fuzzified and do not act as strict 
thresholds. The use of a nonautomated fuzzifica-
tion procedure also allows the integration of expert 
knowledge for the definition of fuzzy membership 
functions (e.g., when choosing free parameters; 
see Fig. 5). Because of the relatively low number 
of samples and the ensuing use of the results from 
a nonpruned tree, an automated fuzzification pro-
cedure does not seem to be appropriate (Gerlitz, 
2015; Suárez and Lutsko, 1999).

With the help of fuzzy membership functions, 
the similarity of the environmental characteristics 
at a site in comparison to those at sites typical for 
one specific predicted value (e.g., OH horizon pre-
sent) can be modeled in the form of a membership 
(de Menezes et al., 2013; Zhu, 1997). The usage of 
fuzzy membership values enables also the consid-
eration of a high spatial heterogeneity. This allows, 
for example, for involving the small-scale variability, 
which has been shown to be an important charac-
teristic of decomposition processes and properties 
in the Alps (Bednorz et al., 2000). Consequently, the 
predicted percentage values, arising from the fuzzy 
membership values, provide information about the 
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local variability of humus forms, although it is not 
possible to get spatially differentiated predictions at 
a resolution higher than 10 × 10 m².

The bell-shape functions used to model the de-
pendency of indicators of decomposition on en-
vironmental factors show a high flexibility and 
can even manage factors that take values in a cy-
clic range (such as slope exposition). Nevertheless, 
the application of a bell-shape function to map the 
relationship between the slope exposition and in-
dicators of decomposition seems to be disadvanta-
geous, as it shows different behavior for sites north 
exposed (near 0°N and 360°N) and south exposed 
(around 180°N) (see Fig. 5). A potentially more 
reasonable way for this would be the implementa-
tion of a trigonometrical function.

Uncertainties and Validity of Models
For the application of environmental models it 

is essential to treat uncertainties, with respect to 
the acquisition of data on the one hand and to the 
modeling process on the other hand (Brown, 2010; 
Keenan et al., 2011). Within the modeled area of 
the case study, the results are subject to different 
magnitudes of uncertainty, depending on the simi-
larity of the elevation and slope exposition values 
to those of the investigation sites. Accordingly, the 
highest uncertainties of the model results are lo-
cated at eastern and western expositions and in el-
evation ranges midway between the investigation 
sites (e.g., 1300 m a.s.l., between 1200 m and 1400 
m). This kind of uncertainty corresponds with the 
level of accordance of the fuzzy membership func-
tions with the actual relationships in the modeled 
ecosystem.

Other sources of potential uncertainties of the 
results are deviations of the elevation values in the 
DTM from the real values, errors due to the cal-
culation procedure of exposition values and inac-
curacies due to the discrete representation of the 
landscape in the form of a raster (Bocedi et al., 
2012; Fisher and Tate, 2006; Wechsler, 2007). In the 
context of topographical and hydrological analyses, 
small errors in a DTM can result in major devia-
tions when deriving relief parameters (Holmes et 
al., 2000; Zhou and Liu, 2004).

The validity of the results from the case study 
is constrained to the modeled forested areas in the 
range from 1100 m to 1800 m a.s.l. An explicit vali-

dation procedure is essential when having the in-
tention to apply concrete predictions on indicators 
of decomposition (e.g., in the context of ecosystem 
management). This validation procedure also needs 
to consider the effect of additional environmental 
covariates that might be relevant for decomposition 
processes at places inside the area selected for pre-
diction showing varying site conditions compared 
to the sampling locations. When planning to trans-
fer the modeled effects of elevation and slope expo-
sition on decomposition to woodless areas or other 
regions that exhibit different environmental condi-
tions, a particular assessment of the transferability of 
the model is required (Wenger and Olden, 2012).

Conclusions

Two modeling approaches for upscaling of sam-
ple data on indicators of decomposition from the 
local scale to the landscape scale have been jux-
taposed. This study focused on an area character-
ized by a highly heterogeneous relief and data 
from a relatively small number of samples, which 
have been surveyed in places specified with expert 
knowledge. Combining decision tree analysis and 
the use of fuzzy membership functions has shown 
to serve as a suitable approach. Building decision 
trees helped to generate information about the in-
fluences of the environmental factors elevation and 
slope exposition. However, direct upscaling of in-
formation about decomposition processes from the 
results of decision tree analysis yielded partially un-
realistic predictions that were manifested in abrupt 
transitions between areas differentiated by the tree.

Continuous and more realistic transitions can 
be achieved by further processing the results from 
decision tree analysis through an additional step 
that comprises the construction of bell-shape fuzzy 
membership functions. For the parameter slope 
exposition a future improvement of the mapping 
could be to leave the functionalities of ArcSIE 
and use another function type (e.g., trigonometric 
function). As the modeling approach is based on 
fuzzy logic, it accounts for small-scale variations in 
decomposition processes as well as for uncertainties 
caused by the inference from a few investigation 
sites to a large study area.

Spatial modeling utilizing the technique pre-
sented in this paper is considered to be a useful tool 
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to obtain a detailed insight into decomposition 
processes in a high mountain environment. Im-
plementing such a model should include a valida-
tion procedure and an analysis of uncertainty. Apart 
from the humus form, this approach could be used 
to examine a variety of other related parameters 
on a landscape scale, such as the pH value and the 
composition of the decomposer community.
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