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Recent developments in

hydrological modeling and

biomass retrieval in

complex mountain areas

have heightened the need

for accurate precipitation

data at high spatial

resolution. The Tropical

Rainfall Measuring

Mission (TRMM) provides

rainfall estimates for certain climate models in mountain

ranges where rain gauges are lacking. TRMM precipitation

estimates, however, inherently have large uncertainties

because of their coarse spatial resolution. In this study, we

investigate a statistical downscaling calibration procedure to

derive high-spatial-resolution (1-km) precipitation maps for the

Tibetan Plateau using the satellite-based data set Enhanced

Vegetation Index (EVI) from the Moderate Resolution Imaging

Spectroradiometer, a digital elevation model from the Shuttle

Radar Topography Mission, and the TRMM 3B43 product.

Spatial downscaling from 0.25u to 1 km was achieved by

using the nonparametric statistic relationships between

precipitation and EVI, altitude, slope, aspect, latitude, and

longitude. An additive method was used to calibrate the

downscaled precipitation data. The best 1-km resolution

annual precipitation data for 2001–2012 over the Tibetan

Plateau were generated through downscaling and additive

calibration for most cases. The results show that the method

improves the accuracy of rainfall estimates. Monthly 1-km

precipitation data were also obtained by disaggregating 1-km

annual downscaled estimates with monthly fractions of annual

total precipitation. Monthly precipitation predictions are in

good agreement with rain gauge data. The calibration of the

monthly product with rain gauge data significantly reduced the

bias value. Overall we conclude that the methodology is useful

for areas with varied climate conditions and complex

topography. These results have practical implications for

calculating hydrological balances, mapping aboveground

biomass, and assessing regional climate change.
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Introduction

Precipitation is one of the most dynamic components of
the water cycle and plays a key role in matter and energy
exchange in Earth’s water, atmosphere, and soil cycles.
The amount of precipitation influences soil moisture,
vegetation growth, and stream flow (Goovaerts 2000; Guo
et al 2004; Schuurmans and Bierkens 2007; Michaelides et
al 2009; Langella et al 2010). But data in mountain regions
are often difficult to collect, especially in such remote
regions as the Tibetan Plateau, requiring downscaling of
satellite-based precipitation data to generate high-
resolution estimates with geospatial factors to assess
regional climate change and manage water resources for

regions with varied climatic conditions and complex
topography.

The continuing development of reliable, spatially
explicit ecological and hydrological models has led to
increasing interest in methods for obtaining accurate
precipitation data sets at high spatial and temporal
resolution (Kyriakidis et al 2001; Giannoni et al 2003).
Conventional ground measurements and remote sensing
estimation are 2 ways to accomplish this task. Spatial
interpolation of precipitation data from irregularly
spaced weather stations is frequently used to obtain
spatially continuous data. However, more interpolation
errors occur in areas where gauges are sparsely
distributed. Satellite-based measurement methods are
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designed to address this limitation and can be used to
generate precipitation data over a large area when
combined with rain gauge data. A range of regional and
global precipitation products exists, including rain gauge
stations, satellites, and other observations, such as the
Global Precipitation Climatology Project, Global Satellite
Mapping of Precipitation Project, and Tropical Rainfall
Measuring Mission (TRMM), which has been offering
several rainfall products since 1997 with the first space-
borne precipitation radar (Huffman et al 1997; Kubota et
al 2007). A problem with satellite-based rainfall data
products is their generally coarse resolution; the TRMM
3B43 data set has one of the highest resolutions (0.25 3

0.25u) currently available.
Several studies have focused on statistical downscaling

of TRMM products to obtain high-resolution rainfall data
(Immerzeel et al 2009; Quiroz et al 2011; Duan and
Bastiaanssen 2013; Hunink et al 2014). The methods are
generally based on the relationship between precipitation
and geospatial variables (eg vegetation indexes, including
the Normalized Difference Vegetation Index [NDVI])
built at coarse spatial resolution, and generate annual
regional precipitation data at 1-km resolution. Schemes
for statistical spatial downscaling of precipitation
products vary in 3 ways: (1) the model used to predict the
precipitation at fine resolution, (2) the geospatial
predictors in the regression model, and (3) calibration of
the downscaled rainfall products.

Several attempts have been made to build linear and
nonlinear models at coarse resolution. Agam et al (2007)
developed linear, polynomial, and exponent models for
spatial sharpening of imagery. Immerzeel et al (2009)
proposed an NDVI-based exponential statistical
regression model, which was used to downscale
precipitation data for the Iberian Peninsula from the
TRMM monthly product. Jia et al (2011) developed
a statistical linear regression model by introducing the
NDVI and elevation of the Qaidam Basin in China. Duan
and Bastiaanssen (2013) and Hunink et al (2014) also
applied parameterized regression using geospatial data to
improve TRMM rainfall estimates in mountainous areas.
The latter 2 studies improved the spatial resolution of
the TRMM annual, monthly, and weekly precipitation
data from 0.25u (approximately 28 km) to 1 km. Based on
Immerzeel’s method, Park (2013) decomposed TRMM
precipitation data into trend and residual components
and used a geostatistical regression model to downscale
the data to 1-km resolution. Considering the spatial
variation of precipitation, Chen et al (2014) also
disaggregated the TRMM monthly precipitation data
according to a geographically weighted regression model.
Zheng and Zhu (2014) presented a hybrid regression
model with residual correction for downscaling annual
TRMM 3B43 data for northern China from 2000 to 2009
from 0.25u to 1-km grids. Heidinger et al (2012) applied
multiresolution analysis to improve TRMM 3B42 daily

rainfall estimates at 19 meteorological stations on the
Andean Plateau. And Quiroz et al (2011) used a wavelet
transform to improve daily rainfall estimation from
NDVI.

These models are site based and perform well at a
small regional scale. Compared with linear and nonlinear
regression, our initial research found that nonparametric
regression models constructed using the random forests
(RF) algorithm can potentially improve the performance
of precipitation predictions for large areas (Xia 2014). RF
is a nonparametric statistical regression algorithm that
combines tree predictors depending on the values of
a random vector sampled independently. Each tree of the
RF has the same distribution in the forest (Breiman 2001;
Liaw and Wiener 2002). RF has been shown to be an
effective and robust algorithm and has been applied in
ecological, climatic, and many other fields (Chan and
Paelinckx 2008; Wei et al 2010; Ibarra-Berastegi et al 2011;
Stumpf and Kerle 2011; Vincenzi et al 2011; Yu et al 2011).
In this study, we concentrated on developing the current
downscaling methodology further and estimated
precipitation with a machine-learning algorithm used in
the model construction process.

NDVI is one of the key predictors used in downscaling
methods. Many studies have found a positive correlation
between NDVI and precipitation (Immerzeel et al 2009;
Jia et al 2011; Duan and Bastiaanssen 2013; Hunink et al
2014). As vegetation’s sensitivity to precipitation is
cumulative rather than instantaneous (Gessner et al 2013),
NDVI daily and monthly data on responses to
precipitation have a time lag (Immerzeel et al 2005). The
time lag can be up to 1–3 months (Quiroz et al 2011),
which means that NDVI-based downscaling is applicable
only at annual time scales (Duan and Bastiaanssen 2013).
NDVI-based downscaling methods may also be
problematic when precipitation is over a certain value in
humid areas. Therefore, it is necessary to find another
vegetation index to replace the NVDI for downscaling of
precipitation data. The Enhanced Vegetation Index (EVI)
was developed to optimize the vegetation signal with
improved sensitivity in high-biomass regions and to
improve vegetation monitoring through a decoupling of
the canopy background signal. Several investigations have
indicated that EVI potentially improves the relatively
weak empirical relationships between precipitation and
the saturated NDVI in humid areas (Justice et al 1998;
Huete et al 2002). EVI thus might be a better predictor of
precipitation. Further key elements for downscaling
include elevation, aspect, and slope, extracted from
a digital elevation model (DEM). A clear relationship
between elevation and precipitation has been reported in
previous studies, and Jia et al (2011) improved
downscaling results after inclusion of elevation data. Park
(2013) also employed a DEM, a vegetation index, and
a downscaling scheme to produce downscaling results that
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reflected detailed characteristics with better predictive
performance.

Another problem that influences the accuracy of final
precipitation data is the difference between downscaled
precipitation data and the measurements from rain
gauge stations. Reliable and robust calibration methods
can minimize the gaps and greatly improve the accuracy
of downscaled precipitation data. Hughes and Smakhtin
(1996) used geographical differential analysis (GDA) to
patch and extend observed time series of daily stream
flow. Cheema and Bastiaanssen (2012) used GDA to
calibrate TRMM rainfall data for the Indus River basin.
Duan and Bastiaanssen (2013) evaluated the GDA
method in an attempt to obtain disaggregated 1-km
monthly precipitation data for the humid Lake Tana
basin of Ethiopia. In this study, we extended GDA to
correct the bias of the downscaled precipitation data
using rainfall data from 91 rain gauge stations on the
Tibetan Plateau.

This study had 3 steps. First, we developed
a downscaling method involving a machine learning
algorithm to estimate annual precipitation with 6
predictors including EVI, elevation, slope, aspect,
latitude, and longitude. The regression models used to
estimate precipitation were trained and evaluated at
coarse resolution over a variety of arid to humid regions
in the Tibetan Plateau. Second, we generated maps of
annual precipitation on the Tibetan Plateau at 1-km
spatial resolution by applying the downscaling procedure
to original annual TRMM 3B43 data for 2001 to 2012,
and then produced maps of monthly precipitation by
disaggregating annual data using a simple fraction
method. Third, we investigated a calibration method
involving simple kriging, using rain gauge data, to see
whether it could improve the accuracy of annual and
monthly precipitation estimates. The ground
measurements include 12 years (2001–2012) of monthly
precipitation data collected at 91 rain gauge stations
across the Tibetan Plateau.

This study has practical implications for hydrologists
and climate researchers who need to calculate
hydrological balances, map aboveground biomass, and
assess regional climate change, and require precipitation
estimates at finer resolution for use in hydrological and
climate models for regions with complex terrain and
sparse networks for rainfall measurement.

Study area

This study focuses on the Tibetan Plateau, an area of
about 2.57 million km2 (Zhang et al 2002) located in
eastern Asia ranging from 26u009120 to 39u469500N and
73u189520 to 104u469590E (Figure 1A). The mean elevation
of the Tibetan Plateau is above 4000 m. It is the highest
plateau in the world and is often called the roof of the

world. Its special topography and location lead to
complex climatic conditions and varied vegetation
(Zhisheng et al 2001).

Under the influence of the Asian monsoon and
westerlies, there is a clear demarcation between the dry
and the rainy seasons; about 90% of the precipitation
occurs in the rainy season. The average air temperature
ranges from 7 to 15uC in the warmest month (July) to 21
to 27uC in the coldest month (January) (Zhong et al 2011).
The east Asian monsoon prevails in the eastern part of
the Tibetan Plateau but brings less precipitation because
the Hengduan Mountains block most of the moist air
from the sea from entering this area (Shen et al 2011). The
central and southern part of the plateau, influenced by
the Indian monsoon, sees more precipitation. The
western and northern part of the plateau is arid because
no monsoon reaches it. During the last decade, most
precipitation in the eastern and northern Tibetan Plateau
has fallen in June, July, and August (JJA) and March, April,
and May, and there has been almost no precipitation in
December, January, and February (DJF); most
precipitation in the southern and central parts of the
plateau occurs in JJA and almost no precipitation in other
seasons; most precipitation in the western plateau (except
for the Karakoram and Pamir regions) falls in JJA and
a little in DJF (Maussion et al 2014).

The vegetation of the Tibetan Plateau consists of
grasslands, forest, and shrublands (Shen et al 2011). Grass,
including meadows and steppe, occupies about 70% of
the plateau, mostly in the central part (Piao et al 2011)
(Figure 1B). Most vegetation is deciduous (Ran et al 2009).
The growing season is from April to October, with
a growth peak during July and August, which is consistent
with the precipitation pattern (Che et al 2014). Therefore,
a strong positive correlation between precipitation and
vegetation cover can be observed (at an annual, not
monthly, scale), which serves as the foundation for the
algorithm for downscaling spatial precipitation
(Almazroui 2011).

Data sets and processing

Enhanced Vegetation Index

The EVI maintains sensitivity in dense vegetation
conditions while minimizing canopy background
variations. For this reason, we assume that the correlation
between EVI and rainfall is closer than that between the
NDVI and rainfall, particularly in humid regions. The
Moderate Resolution Imaging Spectroradiometer EVI
product, MOD13A3, was used in this study and
preprocessed for geometric, radiometric, and
atmospheric correction. MOD13A3 data are a gridded
level-3 product at 1-km spatial resolution. When
generating this monthly product, the algorithm
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FIGURE 1 Tibetan Plateau. (A) Location and elevation of the plateau and location of 91 meteorological stations used for calibration and validation; (B) vegetation
map. (Map A by station information of China ground climate data set and DEM from the Shuttle Radar Topography Mission; map B by Moderate Resolution Imaging
Spectroradiometer global land cover product MCD12Q1)
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incorporates all 16-day 1-km products that overlap during
the month and employs a weighted temporal average if
data are cloud free, or a maximum value in case of clouds.
This 1-km monthly data set was obtained from the Land
Processes Distributed Active Archive Center (https://lpdaac.
usgs.gov/products/modis_products_table/mod13a3). We
aggregated the MOD13A3 data into the annual EVI for
the Tibetan Plateau for 2001–2012 at a spatial resolution
of 1 km. In the aggregated EVI product, each pixel
contained the average maximum monthly value of the
EVI.

Tropical Rainfall Measuring Mission

In order to measure tropical and subtropical rainfall, the
TRMM Multisatellite Precipitation Analysis provides
a calibration-based sequential scheme for combining
precipitation estimates from multiple satellites and gauge
analyses since 1998 (Kummerow et al 2000). The TRMM
Version 7 3B43 data set used in this study is one of
several TRMM precipitation products at different time
scales. The data set covers the latitude band 50uN–S for
1998 to the present at a resolution of 0.25 3 0.25u
(Huffman et al 2007; Jia et al 2011). The Global
Precipitation Climatology Center gauge analysis has been
integrated in the land values of TRMM Version 7 3B43
(Huffman and Bolvin 2013), which seemingly corrected
the land bias in most places by construction. We
aggregated TRMM 3B43 monthly precipitation data for
the Tibetan Plateau into annual total precipitation for
2001 to 2012. The TRMM 3B43 data set used in this study
was obtained from the International Scientific and
Technical Data Mirror Site for the Computer Network
Information Center of the Chinese Academy of Sciences
(http://www.gscloud.cn/).

Shuttle Radar Topography Mission DEM

We used a DEM from the Shuttle Radar Topography
Mission to analyze the influence of topography on
precipitation. This DEM, with a spatial resolution of 3 arc
seconds (roughly 90 m), covers land surface between
latitudes 60uN and 56uS, which includes approximately
80% of the earth’s surface. We downloaded the DEM
data from the website of the CGIAR Consortium for
Spatial Information (http://srtm.csi.cgiar.org/SELECTION/
inputCoord.asp) and extracted elevation, slope, and
aspect data from it using ArcGIS. All data were resampled
to 1-km resolution using pixel averaging, to match the
EVI data.

Rain gauge data

Annual and monthly precipitation data for 2001–2012
were downloaded from the website (http://www.escience.
gov.cn/metdata/page/index.html). These data were
gathered from 91 rain gauges at national weather stations
on the Tibetan Plateau, where precipitation was

measured with unheated tipping buckets or traditional
Hellman gauges, and the resulting data underwent
rigorous quality control. We randomly split monthly rain
gauge data into 2 sample sets. The first set was used to
calibrate the monthly disaggregated precipitation data
using the additive calibration method, and the second set
was used to provide independent validation sets to test
the stability of this method. The locations of national
weather stations on the Tibetan Plateau are shown in
Figure 1A.

Methodology

The statistical analysis conducted in this study consisted
of 4 main steps: training (modeling), downscaling,
calibrating, and disaggregating. First, a nonparametric
regression model was established and evaluated using the
RF algorithm at coarse resolution. Next, the regression
model was employed to predict precipitation at fine
spatial scale, and the downscaled results were obtained by
adding the residual terms. The downscaled data were then
calibrated using GDA and disaggregated to generate
monthly precipitation data. These steps are illustrated in
Figure 2 and described in more detail below.

The RF model

RF is an ensemble learning technique for classification
and regression tasks that consists of a collection of N trees
fH1(X),H2(X), …,HN(X)g, where fX 5 x1, x2, …, xpg is a p-
dimension input vector. For an input vector X, N
outputs were generated according to each tree, Y1 5

H1(X), …, YN 5 HN(X), where Yn is the nth tree output
variable, n 5 1, …, N. The final outcome is the average
of the results of all the trees (Breiman 2001; Liaw and
Wiener 2002).

Three parameters need to be determined in the
process of building the model: ntree, the number of
regression trees grown corresponding to a bootstrap
sample of the observations; mtry, the number of different
predictors tested at each node of a tree; and nodesize, the
minimal size of the terminal nodes of the trees. The RF
regression algorithm performs as follows (Liaw and
Wiener 2002):

N Randomly draw ntree bootstrap samples xi (i5 bootstrap
iteration) with replacement from the training data set.
The elements not included in Xi are referred to as out-
of-bag (OOB) data for that bootstrap sample.

N For each bootstrap sample, grow an unpruned re-
gression tree with the modification that at each node,
randomly sample mtry of the predictors, and choose the
best split from among those variables.

N Predict new data (OOB elements) by averaging
predictions of the ntree trees.

N The OOB samples in the training data were used to
estimate prediction error, in which the OOB samples
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were predicted by the respective trees and by aggre-
gating the predictions. The OOB estimate of the error
rate was calculated as follows (Cutler et al 2012):

MSEoob~
1
N

XN
i~1

yi{f̂ oob Xi½ �
� �

2 ð1Þ

where f̂oob-(xi) is the OOB prediction observation i.
The RF algorithm can also generate a measure of

variable importance by looking at how much prediction

error increases when OOB data for that specific predictor
variable are permuted while the values of other predictors
are kept unchanged. These variable importance values are
then used to rank the predictors in terms of their relative
contribution to the regression model.

Training the nonparametric regression model

Six predictors were involved in the RF algorithm: EVI,
elevation, slope, aspect, latitude, and longitude (Ranhao et
al 2008). All the predictor data sets had been resampled to

FIGURE 2 Workflow for statistical downscaling and calibration of TRMM 3B43 annual precipitation data.
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0.25 3 0.25u resolution by pixel averaging and reprojected
onto the identical projection of the TRMM. The new data
sets were separated into a training set and a test set. The
training data were fed into the RF algorithm to establish
a nonparametric regression model based on relationships
between precipitation and environmental predictors. We
employed a measure called mean decrease in accuracy
(Equation 1) (Liaw and Wiener 2002; Cutler et al 2012) by
using the R package ‘‘randomForest’’ to rank predictor
importance. The test set was used to evaluate the model
performance at coarse resolution.

Downscaling TRMM 3B43 annual precipitation data

The nonparametric regression model built in the
previous step was used in the downscaling of TRMM 3B43
annual precipitation data. The downscaling method used
in this study was developed on the basis of earlier studies
(Immerzeel et al 2009; Jia et al 2011; Duan and
Bastiaanssen 2013; Park 2013), in which TRMM 3B43
precipitation values were decomposed into deterministic
trends and stochastic residuals. The downscaling
procedure was as follows:

N Annual precipitation at 0.25u was predicted for 2001–
2012 using the nonparametric regression model.

N The residual values for 2001–2012 were computed by
subtracting the predicted annual precipitation from
the original TRMM annual precipitation data.

N Because the residual data are regularly spaced and the
spline interpolator is typically used for this kind of
data (Immerzeel et al 2009; Duan and Bastiaanssen
2013), and the tests showed that the simple spline
tension interpolator generated a smoother map than
other methods (such as kriging and inverse distance
weighting), the residual maps were interpolated into
a resolution of 1 km using bilinear interpolation.

N The annual downscaled precipitation values at 1-km
resolution for 2001–2012 were estimated from EVI,
altitude, slope, latitude, and longitude at 1-km resolu-
tion using the nonparametric regression models
trained for every year.

N Downscaled precipitation products were corrected by
adding the residual values.

Calibrating downscaled precipitation data

The additive calibration method developed by Condom et
al (2011) and Duan and Bastiaanssen (2013) was used to
calibrate downscaled precipitation values to minimize the
difference between them and measured precipitation
from rain gauges. The calibration procedure was as
follows:

N The differences between the downscaled precipitation
values and the precipitation measures from rain gauge
stations were computed.

N The point-based difference values were interpolated
into a resolution of 1 km using latitude, longitude,
and elevation of the rain gauges with a simple
kriging interpolation technique, which is typically
used with data of this type. Testing also showed that
simple kriging outperformed other interpolation
methods, such as spline and inverse distance
weighting.

N Precipitation values downscaled at 1-km resolution
were corrected to obtain the final calibrated pre-
cipitation by adding the above difference values.

Disaggregating annual precipitation data into

monthly data

Duan and Bastiaanssen (2013) developed a simple
fraction method derived from original TRMM 3B43
monthly data to downscale TRMM 3B43 data at monthly
scales. The 1-km annual downscaled precipitation was
finally disaggregated into 1-km monthly precipitation
values using this fraction function. The procedure was as
follows:

N The monthly fractions, which were used to disaggre-
gate the annual precipitation, were defined as

Fractioni,j~
TRMMoriginal, i,jPn
i~1 TRMMoriginal, i,j

ð2Þ

where TRMMoriginal,i,j is the precipitation that occurs
during the ith month (n 5 12) of the jth year (j 5 2001,
2002, …, 2012) as estimated from the original TRMM 3B43
data.

N Because the fractions are regularly spaced like residual
values, the fractions map of 0.25u resolution was
interpolated into a spatial resolution of 1 km using
a simple spline tension interpolator.

N The annual downscaled precipitation values at 1-km
resolution were disaggregated into monthly down-
scaled precipitation values by multiplying the fraction
values.

N The downscaled monthly precipitation values were
calibrated with rain gauge data using an additive
calibration method similar to that described above.

Validation

The accuracy of the downscaled products at annual and
monthly scales was validated against the in situ measures
from the rain gauge stations that were not used for
calibration. Here, we calculated the coefficient
determination (R2), the root mean square error (RMSE),
the mean absolute error (MAE), and the bias. They were
defined as follows (Equations 3, 4, 5, and 6):
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R2~

Pn
i~1 Oi{ �Oð Þ

Pn
i~1 Pi{�Pð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 Oi{ �Oð Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 Pi{�Pð Þ
p

 !2

ð3Þ

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i~1

Oi{Pið Þ2

n

s
ð4Þ

MAE~

Pn
i~1 Oi{Pij j

n
ð5Þ

Bias~

Pn
i~1 PiPn
i~1 Oi

{1 ð6Þ

where Pi is the value of the original TRMM 3B43 data,
downscaled precipitation values, or final calibrated
precipitation values extracted at the location of the ith
rain gauge, Oi is the observed precipitation from the ith
rain gauge, n is the total number of rain gauge stations
used for validation, P̄ is the average value of the estimated
precipitation, and Ō is the average observed value.

Results and discussion

Annual results and discussion

We evaluated the model’s performance in different
climatic conditions by testing the downscaling and
calibration procedure for 4 randomly chosen years: 2 wet
years (2008 and 2012) and 2 dry years (2002 and 2006).
Figure 3 shows the agreement between the annual
TRMM 3B43 precipitation values and values produced by
the regression model at a spatial resolution of 0.25u. All
models for the 4 years passed the significance test (R2 5

0.98 and P , 0.0001), and slight underestimations were
found where the annual TRMM precipitation values were
419 mm/y for the 4 years. However, NDVI values tend to
reach saturation (Martiny et al 2006) when the annual
precipitation is above 1200 mm/y. A good correlation
between rainfall and geospatial variables (NDVI and
DEM) has been found for semiarid and arid areas (R2 5

0.79–0.85) (Jia et al 2011; Duan and Bastiaanssen 2013).
The initial testing analysis in this study also showed that
the EVI-based model outperformed the NDVI-based
model, especially for areas with more rainfall. A possible
reason for this is that the EVI exhibits less saturated
signals for high biomass conditions in humid areas. Our
approach gives the best agreement between observed and
predicted precipitation over a large area extending from
arid to humid conditions.

We derived the annual precipitation at 1-km resolution
with the downscaling–calibration procedure using NDVI,
EVI, and 6 other predictors (Figure 4; see also Supplemental
data, Figure S1; http://dx.doi.org/10.1659/MRD-JOURNAL-
D-14-00119.S1). In the results, hotspots (regions that

receive more precipitation than their surroundings)
shown in the original TRMM precipitation map were
better preserved in the downscaled map inferred with the
EVI-based method than in the map based on the NDVI-
based method. A number of similarities in spatial
distribution in the estimated precipitation data can be
seen in Supplemental data, Figure S2 (http://dx.doi.org/10.
1659/MRD-JOURNAL-D-14-00119.S1). Less precipitation
occurs in the western part of the Tibetan Plateau (annual
precipitation is approximately 800–1000 mm);
precipitation generally increases from northwest to
southeast. The annual precipitation values show
precipitation maxima of more than 2000 mm in the
southern part of the plateau during the period covered by
the study, even in dry years. Furthermore, more annual
precipitation could be observed in the southwestern and
eastern part of the plateau.

Original annual TRMM data and downscaled data
without calibration obviously overestimated precipitation
compared with rain gauge data. This result is consistent
with previous research by Duan and Bastiaanssen (2013).
Downscaled precipitation data with calibration achieved
better agreement with rain gauge data than downscaled
data without calibration for all years. The statistical
indicators of the original, downscaled, and calibrated
TRMM 3B43 precipitation data, validated against data
from the rain gauge stations set aside for independent
validation, are shown in Table 1.

Table 1 also shows that comparing original TRMM
3B43 and ground-measured precipitation, the R2 ranges
from 0.45 to 0.73 with a mean of 0.7. The original TRMM
product shows a large bias value (around 0.2). The RMSE
ranges from 135.17 to 287.50 mm, and the MAE ranges
from 102.28 to 178.39 mm. The downscaling methods
improved the accuracy with increased R2 and reduced
RMSE, MAE, and bias values for all 12 years, and
considerable improvement could be observed in the wet
years. This indicates that the downscaling procedure is
indeed a step toward greater accuracy in assessing coarse-
resolution precipitation data (Duan and Bastiaanssen
2013). However, the downscaled approach without
calibration removes little of the bias in the estimates; the
bias ranged from 0.3 to 0.1.

Table 1 also indicates that the calibrated downscaled
method significantly improved results for the dry years:
the average fitting R2 was improved from 0.74 to 0.77
after calibration was applied to the original TRMM. For
the wet years, the average R2 was improved from
approximately 0.70 to 0.76. Furthermore, the maximum
RMSE for all years decreased from 252.69 mm to 215.10
mm and MAE from 169.62 mm to 144.54 mm. An average
bias of 0.07 for all the years was achieved, whereas the
original TRMM product had lower accuracy, with an
average bias of 0.21 and downscaled precipitation with an
average bias of 0.19. This suggests that the downscaling
and calibration procedure does correct the bias between
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TRMM rainfall amount and measured quantities at gauge
stations. It should be noted that only a few rain gauge
stations exist in the western part of the Tibetan Plateau,
and this inevitably limits the efficacy of the calibration
method and the accuracy of the final rainfall data sets for
this part of the plateau.

The importance of input predictors for the RF model
is illustrated in Figure 5, which shows that the EVI,
latitude, longitude, and elevation are key elements for
statistical downscaling. For the whole study area, latitude
contributes more to the model simulation than the other
predictors.

Monthly results and discussion

The annual downscaled precipitation values with RF
regression were disaggregated into 1-km monthly data
using the fraction function (Equation 2). We randomly
split monthly rain gauge data into 2 sample sets. The first
set was used to calibrate the monthly disaggregated
precipitation data using the additive calibration method.
The second set was used as an independent validation set
to test the method’s performance by testing the
downscaling and calibration procedure for the same
randomly chosen years (2008 and 2012 for wet years and
2002 and 2006 for dry years). We compared monthly data

FIGURE 3 Comparison of annual precipitation data from TRMM 3B43 and estimates based on random forest regression models.
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FIGURE 4 Comparison of precipitation estimates derived with EVI- and NDVI-based methods. Original annual precipitation data from TRMM 3B43 are at 0.25u
resolution for 2006; other products are at 1-km resolution. The circles in the TRMM 3B43 map denote regions that receive more precipitation than
their surroundings.

TABLE 1 Original (O), downscaled (D), and final calibrated (C) TRMM 3B43 precipitation data validated against data from independent rain gauge stations on the
Tibetan Plateau for 2001–2012a) (Table 1 extended on next page).

Wet years Dry years

2001 2002 2006 2009 2003 2004

Mean_C 591.63 552.12 459.31 646.92 505.03 452.94

Mean_D 625.54 621.93 491.67 672.18 590.23 490.16

Mean_O 634.13 631.05 503.76 574.80 588.08 675.31

R2_C 0.80 0.77 0.79 0.71 0.59 0.78

R2_D 0.76 0.76 0.77 0.66 0.48 0.77

R2_O 0.73 0.65 0.76 0.33 0.63 0.45

RMSE_C 215.10 152.89 98.63 205.01 152.67 98.94

RMSE_D 252.69 182.00 116.41 235.65 208.76 116.69

RMSE_O 263.65 218.66 135.17 280.71 205.49 287.50

MAE_C 144.54 113.74 69.93 134.99 117.71 69.71

MAE_D 169.62 117.91 86.72 151.71 149.59 85.14

MAE_O 178.39 127.10 102.28 163.48 132.53 177.64

Bias_C 0.22 0.00 0.02 0.20 0.04 0.04

Bias_D 0.29 0.13 0.13 0.25 0.22 0.13

Bias_O 0.31 0.14 0.16 0.32 0.14 0.25
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from the rain gauges with the corresponding values from
the original TRMM 3B43 and downscaled and calibrated
values (Figure 6). Downscaled and calibrated monthly values
were in good agreement with measured rain gauge data (R2

5 0.78, RMSE 5 24.59 mm, MAE 5 13.61 mm, bias 5 0.01).
Similar results were also observed for downscaled monthly
values without calibration (R2 5 0.78, RMSE 5 24.65 mm,
MAE 5 13.81 mm, bias 5 0.04). Downscaling alone already
improved accuracy with increased R2 and reduced RMSE,
MAE, and bias values, compared with original monthly
TRMM 3B43 data (R2 5 0.73, RMSE 5 31 mm, MAE 5 16
mm, bias 5 0.17). The fraction-calibrated downscaling
method dramatically improved the average bias value from
0.17 to 0.01. That means it is valid to use this method to
estimate monthly values for the complex plateau area.

Figure 7 shows time series of the mean monthly
precipitation, R2, RMSE, MAE, and bias for the 4
randomly chosen years. To make comparisons among
different months by considering monthly variations in
rainfall, we computed the MAE (as a percentage of the
mean value from corresponding rain gauge observations).
Downscaled monthly precipitation data agreed well with
measured monthly rain gauge data (Figure 7A). The R2

for the growing season (February to June) and the season
in which deciduous trees turn color and lose their leaves
was higher than that for the other seasons (July to

January) (Figure 7B). The RMSE and bias values had
almost the same variation pattern (Figure 7C–E). MAE
values reached a peak in the dry season, whereas low
values occurred in the wet season. This is consistent with
findings by Duan and Bastiaanssen (2012) that their
method made fewer errors in the wet season and more in
the dry season. Calibrated downscaling significantly
improved TRMM 3B43 data (Figure 7E). The winter
months (December to February) showed more errors, with
an average bias higher than 0.63, whereas bias values
lower than 0.13 were often observed in other months.
Figure 7E also suggests that the disaggregation method
can reduce the MAE and bias for almost all seasons,
though overall the improvement is not remarkable.

Conclusions

In this study, we developed a nonparametric downscaling
method to qualify the spatial distribution of precipitation
on the Tibetan Plateau, an area for which ground
observations are lacking. We tested the performance of
the nonparametric statistical model and found that it
gives the best agreement between original and predicted
TRMM precipitation (all R2 5 0.98). An additive
calibration procedure was carried out to remove the
discrepancy between the point measurement and

Dry years

2005 2007 2008 2010 2011 2012

Mean_C 539.26 512.31 516.78 545.84 462.22 535.17

Mean_D 581.51 555.04 557.81 621.53 567.45 626.45

Mean_O 577.19 571.40 559.69 616.33 577.49 639.63

R2_C 0.77 0.85 0.85 0.71 0.70 0.69

R2_D 0.76 0.82 0.82 0.57 0.53 0.61

R2_O 0.51 0.68 0.71 0.51 0.51 0.49

RMSE_C 157.60 127.27 127.86 145.32 122.30 181.87

RMSE_D 179.40 160.59 162.32 219.04 177.97 230.64

RMSE_O 204.98 190.81 193.26 228.68 186.17 266.81

MAE_C 107.13 92.26 93.65 97.44 93.41 126.26

MAE_D 125.62 116.81 118.05 152.76 121.37 149.89

MAE_O 135.13 122.52 128.11 151.89 125.57 166.53

Bias_C 0.11 0.09 0.03 0.10 20.05 0.02

Bias_D 0.20 0.18 0.18 0.25 0.16 0.20

Bias_O 0.19 0.18 0.19 0.24 0.19 0.22

a) R, correlation coefficient; RMSE, root-mean-square error; MAE, mean absolute error.

TABLE 1 (extended) Original (O), downscaled (D), and final calibrated (C) TRMM 3B43 precipitation data validated against data from independent rain gauge
stations on the Tibetan Plateau for 2001–2012a) (Table 1 began on previous page).
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downscaled precipitation estimation. We found the
disaggregation procedure with calibration, which was
used to produce monthly precipitation, can reduce the
MAE and bias for almost all seasons but did not greatly
improve the overall accuracy of precipitation estimates at
the monthly scale. The final annual and monthly rainfall
data at 1-km resolution over the Tibetan Plateau for 2001
to 2012 were obtained using the integrated downscaling–
calibration method.

Because the study covered an area, the Tibetan
Plateau, with a variety of climate conditions and complex
topography, the technique it tested is likely to also be
effective elsewhere in the world. However, a number of
important limitations need to be considered.

First, although most of the precipitation occurs in the
rainy season, snow is the main form of precipitation in
some Tibetan Plateau regions. This can affect the
accuracy of the precipitation data, and thus affect the
efficiency of the algorithm, in the following ways:

N The presence of snow and/or ice greatly changes the
reflectance of the land surface and contaminates the
vegetation index (Shen 2011).

N As indicated by its name, TRMM was primarily
designed to measure tropical rainfall. Snow and ice on
the ground scatter microwave energy in a similar
fashion to ice crystals and raindrops in the atmo-
sphere, so the precipitation estimates may perform
poorly during the winter (Yin et al 2008).

N The final precipitation data are not robust because
rain gauges can be disturbed by wind and blocked by
snow or ice (Adam and Lettenmaier 2003).

Secondly, this study did not investigate the application
of downscaling techniques to water bodies and urban
areas, though the method gives fine precipitation
estimates in those areas. Precipitation over water bodies
can be derived because the method in essence is an
ensemble decision-tree model with several geospatial
predictors. Even if the EVI value is very low or negative,
the method still can generate precipitation data for those

FIGURE 5 Importance of geospatial predictors for precipitation downscaling
illustrated by the mean decrease in accuracy of attributes as assigned by
the RF.

FIGURE 6 Comparison of monthly precipitation measured by rain gauge stations
with (A) original TRMM 3B43 data; (B) downscaled data; (C) calibrated data.
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FIGURE 7 Time series for statistics for 2002, 2006, 2008, and 2012 for all stations used in validation: A) mean monthly precipitation; B) R2; C) RMSE; D) MAE;
E) bias.
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areas. However, the accuracy of the precipitation
estimates over water bodies could not be assessed because
there are no rain gauges there.

Finally, we cannot completely explain the variability and
interaction of geospatial factors and the precipitation
dynamic, and some of the predictors may not well explain
the variance of the estimates. And most of the rain gauge

stations used in this study are in the south and east part of
the Tibetan Plateau, which may affect the performance of
GDA calibration. A natural progression of this work would
be to account for bias correction of snowfall measurement
and geophysical mechanisms of precipitation, and assess the
performance and utility of these techniques in other parts
of the world.
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Supplemental data

FIGURE S1 The range (mean 6 standard deviation) of R2

and RMSE for predictions using the EVI- and NDVI-based
methods. Annual precipitation (A) . 0 mm/y; (B) . 1000
mm/y; (C) . 2000 mm/y.
FIGURE S2 Annual precipitation on the Tibetan Plateau
at spatial resolution 1 3 1 km for 2001–2012, aggregated
from the final calibrated TRMM 3B43 precipitation.
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