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Abstract. Over the last 25 y, stream ecosystem theory has expanded to include explicitly the vertical
dimension of surface–groundwater linkages via the hyporheic zone and below alluvial floodplains.
Hydrological exchange between the stream and hyporheic zone mediates transport of products from the
biogeochemical activities within the sediments. Hot-spots of primary productivity in the surface stream
often result from upwelling nutrient-rich water. Conversely, downwelling surface water supplies organic
matter and dissolved O2 to hyporheic invertebrates and microbes, enhancing hyporheic productivity.
Many of the papers seminal to conceptual and empirical advances in hyporheic research have been
published in J-NABS, reflecting stream benthologists’ awareness of the relevance of processes and biota in
the hyporheic zone. However, major research gaps remain. One is the need for further empirical data to
test the predictions of several current conceptual frameworks that hypothesize conditions under which the
hyporheic zone might be expected to contribute most to surface stream metabolism, especially in large
rivers with shallow alluvial aquifers. A second is how to apply research findings about the functional
significance of the hyporheic zone to river restoration and conservation. Many activities that restore or
protect surface biota and habitats probably benefit hyporheic processes and fauna as well, but this
prediction should be tested. Last, hyporheic exchange and the biogeochemical processes within the
sediments occur across multiple hierarchical spatial scales, but we are yet to understand fully these
interactions or to extrapolate successfully across scales. J-NABS should continue to play a significant role in
publishing research on the hyporheic zone and extend the scope to include applications in river and
floodplain management and restoration.

Key words: hyporheic, river restoration, hydrological exchange, alluvial aquifer, subsurface inverte-
brates, biogeochemical transformations, human impacts, hydrogeomorphology.

The scientific disciplines of stream ecology and
benthology, aquatic biogeochemistry, hydrogeology,
geomorphology, and hydrology have entwined over
the last 25 y to advance our understanding of the roles

played by stream–groundwater interactions in the
hyporheic zone, the saturated interstices below the
stream bed and adjacent banks that contain some
proportion of channel water (White 199311). The
hyporheic zone can be viewed as a benthic dynamic
ecotone (Gibert et al. 1990 [Fig. 1], Vervier et al. 1992)
where hydrological, ecological, and biogeochemical
processes interact. These interactions influence key
stream ecosystem processes, such as primary produc-
tivity and nutrient cycling, in the surface stream (see
Mulholland and Webster 2010), and the sediments
harbor microbes and invertebrates (Brunke and Gonser
1997; Fig. 1) and are used by some fish for spawning
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(Pollard 1955 [Fig. 1], Greig et al. 2007). Explicit
incorporation of vertical hydrological connectivity in
conceptual models of stream ecosystems lagged
behind inclusion of the more obvious longitudinal
and lateral linkages (e.g., River Continuum Concept;
Flood Pulse Concept). However, several perceptive
authors flagged the probable importance of the
hyporheic zone early (e.g., Orghidan 1959 [Fig. 1],
Schwoerbel 1964, Williams and Hynes 1974 [Fig. 1]),
and its inclusion is now explicit in most contemporary
stream ecosystem models (e.g., Thorp et al. 2006).

Our review explores significant advances, many
described in seminal J-NABS papers, in our under-
standing of benthos and processes occurring in the
hyporheic zone and their significance to lotic ecosys-
tems. We review the development of relevant hydro-
logical, biogeochemical, and ecological themes (Fig. 1)
leading up to the 1993 special issue of J-NABS, before
examining several aspects in detail as they relate to
contemporary stream benthology, hydrology, and
biogeochemistry. The relevance and application of
this research to current management, conservation,
and restoration of rivers comprise our conclusions

because human activities have impaired many of the
functions of the hyporheic zone in rivers (Hancock
2002, Kasahara et al. 2009).

A Dynamic Ecotone Where Stream and Ground
Water Exchange

Defining the hyporheic zone

The hyporheic zone is popularly defined as the
saturated interstitial spaces below the stream bed and
adjacent stream banks that contain some proportion
of channel water (White 1993). Early attempts to
delineate the hyporheic zone were based on the
distribution of subsurface and surface invertebrates.
For example, Schwoerbel (1961; Fig. 1) considered the
hyporheic zone as a ‘middle zone’ between channel
waters above and true ground water below. Later
authors tried to refine this definition further based on
the vertical and lateral distribution of interstitial
invertebrates (e.g., Stanford and Gaufin 1974 [Fig. 1],
Williams and Hynes 1974, Williams 1989). However,
the diversity of hyporheic zone types (e.g., perched,
losing, or gaining reach configurations; Malard et al.

FIG. 1. A timeline of significant papers contributing to our understanding of the hyporheic zone and its functional significance.
Boldface indicates papers published in J-NABS.
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2002) and the many other factors governing hyporheic
invertebrate distribution (Fig. 2) confound any defi-
nition based solely on the distribution of mobile
organisms (Danielopol 1989 [Fig. 1], White 1993).

This problem prompted alternative or complemen-
tary definitions based on physicochemical variables.
Triska et al. (1989) used tracer studies to attempt to
delineate the hyporheic zone based on chemical
differences between channel and ground water. They
defined the ‘surface zone’ as the region immediately
beneath the bed that is chemically indistinguishable
from channel water and contains .98% channel
water. Beneath the surface zone, they recognized an
‘interactive zone’, containing 10 to 98% channel water,
the depth of which indicates the hydrologic boundary
of the stream. Although the arbitrariness of these
categories and their static nature would later attract

criticism (Vervier et al. 1992), this early definition was
a valuable application of hydrological criteria to help
define the hyporheic zone using the very factor that
drives many of the processes occurring within it.

The dynamic ecotone concept

One fruitful direction in describing the hyporheic
zone has been the concept of its role as a dynamic
ecotone (Gibert et al. 1990)—‘dynamic’ in that its
boundaries fluctuate in response to sediment charac-
teristics and hydrological exchange; ‘ecotone’ because
it bounds the stream above and groundwater below.
Gibert et al. (1990) highlighted the properties of
elasticity, permeability, biodiversity, and connectivity
of the hyporheic zone as governing its functional role
in streams. Elasticity reflects the degree to which the

FIG. 2. Simplified diagram of the interactions among variables across 3 overlapping spatial scales (macro = landscape–
catchment, meso = catchment–reach, micro = reach–sediment particle) that potentially influence the distribution and
composition of the hyporheos.
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size of the hyporheic zone fluctuates, given sediment
permeability and discharge characteristics. Permeabil-
ity refers to the extent to which water and materials
filter across the ecotone. The hyporheic zone acts as a
mechanical filter mediated by the sediments and
water flows, a biochemical filter controlled by
biological and chemical processes, and a photic filter.
Last, the connectivity that exists between the stream
and underlying ground water extends laterally below
banks and flood plains, sometimes for many meters
(Stanford and Ward 1988).

In a key Perspectives paper in J-NABS, Vervier et al.
(1992) extended this dynamic ecotone concept and
explored how permeability influenced the capacity of
the hyporheic zone to act as a sink for materials in the
2 adjacent systems. For example, coarse particulate
organic matter buried in the hyporheic zone during
floods (e.g., Metzler and Smock 1990) is temporarily
removed from the surface system. However, because
of biogeochemical activities in the hyporheic zone,
transformed nutrients and fine particulate organic
matter are liberated into the ground water and stream
water depending on the direction and magnitude of
vertical hydrological exchange. Vervier et al. (1992)
concluded that influence of the hyporheic zone on the
surface stream ecosystem depended on the elasticity,
permeability, biodiversity, and connectivity of this
dynamic ecotone; this conclusion was to become a
focus of subsequent research on the functional
significance of the hyporheic zone.

Where It Began: Discovery of
Hyporheic Invertebrates

Although scientists had been aware for several
centuries that many deep aquifers harbored aquatic
invertebrates adapted for life in a lightless world
(reviews in Gibert et al. 1994, Humphreys 2006), the
discovery of invertebrates in saturated sediments
below and alongside streams was comparatively
recent. Digging pits in gravel bars along several
European rivers and sieving the seepage yielded rich
hauls of invertebrates of both surface benthos (e.g.,
mayflies, stoneflies, chironomid midges) and intersti-
tial groundwater fauna, such as blind water mites,
isopods, and amphipods (Karaman 1935, Chappuis
1942; Fig. 1). Soon after, the use of hand pumps to
extract water from up to 1 m below the stream bed
(Bou and Rouch 1967; Fig. 1) demonstrated that this
fauna also occurred at substantial depths below the
stream in the ‘hyporheische Biotop’, a term coined by
Orghidan (1959) that literally translates into the
‘under+flow’ biotope. Subsequent studies (reviewed
in Brunke and Gonser 1997, Boulton 2000b) have

demonstrated that the saturated sediments of many
streams support a diverse invertebrate fauna, widely
known as hyporheos (Williams and Hynes 1974). The
discovery that the hyporheos could occur many
hundreds of meters from the channel (Stanford and
Gaufin 1974) was even more exciting and forced
stream ecologists to think laterally when considering
transfers of organic matter and energy in the
hyporheic zone (Ward et al. 1998).

Orghidan (1959) also suggested that hyporheic
sediments acted as a stable refuge for stream benthos,
an idea developed further by Williams and Hynes
(1974) in their ‘hyporheic refuge hypothesis’. This
hypothesis is tantalizing, but field and experimental
evidence supporting it is equivocal (Palmer et al. 1992,
Dole-Olivier et al. 1997, Olsen and Townsend 2005),
and it remains an intriguing paradox worthy of
further study. Colonization of the hyporheic zone by
stream benthos is probably a mixture of active
immigration and passive transport (Marmonier and
Dole 1986 [Fig. 1], Boulton et al. 1991). Living space,
dissolved O2, and food appear to be key resources
influencing the distribution of the hyporheos (Brunke
and Gonser 1997, Strayer et al. 1997), with the micro-
scale supply of energy and O2 mediated by meso-
scale factors of sediment matrix structure and
direction and strength of hydrological exchange with
the surface stream (Fig. 2). The food base in the
hyporheic zones of the Nyack Flood Plain (Middle
Flathead River, Montana) is a complex microbial
biofilm (Ellis et al. 1998); recent determination of its
composition has identified entire suites of previously
undescribed microbes (Lowell et al. 2009). Biological
interactions, such as competition and predation, also
are likely to govern the ecology of hyporheic
invertebrates, but there seem to be no published
studies of these interactions, despite the prevalence of
hyporheic predators in many streams (Boulton
2000b).

By the end of the 1970s, benthic stream ecology was
blossoming into a vibrant discipline integrating the
biogeochemical implications of the hydrological links
of the ‘stream and its valley’ (Hynes 1975) and
associated ground waters (Lee and Hynes 1977;
Fig. 1). Although efforts to define the boundaries
of the hyporheic zone precisely were already foun-
dering, its ecological significance to the surface
stream was becoming evident (Williams and Hynes
1974). Benthic ecologists were looking for new tools
to broaden their scientific horizons and became
increasingly willing to embrace the related disci-
plines of hydrogeology and biogeochemistry. The
time was ripe for innovative paradigms and novel
methods.
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Integrating Stream–Groundwater Hydrology and
Ecology: 1980s–1993

In 1983, Hynes published a seminal paper (Fig. 1)
that urged stream ecologists to learn more about
ground water because of its implications for under-
standing water balance and ecosystem metabolism in
running waters, especially where groundwater is an
important source of organic matter. He highlighted
the need for stream ecologists to develop a wider
appreciation of methods and paradigms in hydro-
geology and promoted the textbook by Freeze and
Cherry (1979) as a useful starting place. Concepts and
field techniques in hydrogeology must have appeared
particularly inaccessible to stream ecologists at this
time. However, one early hydrogeological paper that
probably played a crucial role in overcoming this
hurdle was Tóth’s (1963) idealized model of ground-
water flow paths across the landscape. In this model,
Tóth recognized 3 types of flow systems—local,
intermediate, and regional—that could be superim-
posed hierarchically within a groundwater basin.
Tóth (1963) conceptually illustrated the hierarchical
connections between streams and groundwater sys-
tems, and the paper had significant consequences for
later studies of stream–groundwater interactions
(Hancock et al. 2005, Poole 2010).

Part of the problem in the uptake of hydrogeologi-
cal approaches by stream ecologists apparently
resulted from a mismatch of scales. Groundwater
scientists tended to work at regional and catchment
scales, whereas most stream ecologists in the 1980s
were doing research at the stream-reach scale. The
need for finer-scale methods that stream ecologists
could use readily was soon filled by Lee and Cherry
(1978; Fig. 1), 2 hydrogeologists who described
simple, inexpensive methods to measure relevant
streambed characteristics, such as vertical hydraulic
gradient (VHG) and sediment hydraulic conductivi-
ties. Networks of small wells (minipiezometers) were
used to measure VHG as a strong indicator of the
potential direction and strength of vertical hydrolog-
ical exchange at scales of 1021 to 102 m, and this
method has been used widely (e.g., Boulton 1993,
Pepin and Hauer 2002, Wright et al. 2005). Another
seminal paper (Thibodeaux and Boyle 1987; Fig. 1)
graphically illustrated how stream flow could affect
VHG at a reach scale, prompting stream ecologists to
assess hydraulic and sediment properties to under-
stand benthic and interstitial nutrient dynamics
(Grimm and Fisher 1984 [Fig. 1], Triska et al. 1990,
Valett et al. 1990) and to seek associations with the
distribution of the hyporheos (e.g., Marmonier and
Dole 1986, Rouch 1988).

At the close of the 1980s, 2 significant J-NABS
papers came from a special issue on global stream
ecosystem theory, integrating hydrology and the
ecology of the hyporheos. The 1st, Danielopol (1989),
described long-term studies on the Danube alluvium
in the Vienna Basin where aquifer water flow is
largely governed by river flows. He proposed that the
surficial deposits of the gravel bars along the Danube
act as giant ‘trickling filters’ whose activity was
promoted by fluctuations in water level, and he drew
attention to the potential role of hyporheic inverte-
brates, such as the isopods Proasellus, in sustaining the
permeability of the sediments through feeding and
fecal pelletization. These suggestions led to experi-
ments demonstrating the roles of hyporheic fauna in,
for example, bioturbation (Mermillod-Blondin et al.
2000, Mermillod-Blondin and Rosenberg 2006) and N
cycling (Marshall and Hall 2004).

The 2nd paper, Ward (1989), was a framework for
lotic ecosystem theory that explicitly acknowledged the
vertical dimension of stream ecosystems to include the
hyporheic zone, elevating its significance to that of
lateral and longitudinal dimensions. Ward (1989)
added a 4th dimension, time, to account for temporal
variations in the interactions across these 3 spatial
dimensions and the role of disturbance in disrupting
pathways along these dimensions (see Stanley et al.
2010). Subsequently, this framework has proven useful
in ensuring that all 3 dimensions of the linkages of open
ecosystems, such as streams, are fully incorporated into
holistic studies of energy flow (e.g., Ward et al. 1998)
and contemporary paradigms (e.g., Thorp et al. 2006).

A timely special issue

A NABS workshop in 1991 resulted in the 1993 J-
NABS special issue ‘‘Perspectives of the Hyporheic
Zone: Integrating Hydrology and Biology’’ (volume
12, issue 1), that was to have a major influence on
hyporheic research. The issue opened with a descrip-
tion of the merger of ‘population–community’ studies
of the hyporheic zone that focused on its role as
habitat for invertebrates with ‘process–functional’
studies that viewed ecosystems from the perspective
of interacting physical, chemical, and biological
processes (Valett et al. 1993). To further set the stage,
Bencala (1993) described a revised hydrological view
of streams not as isolated ‘pipes’ but as multiple flow
paths into and alongside the stream channel that
serve as active bidirectional links. White’s (1993)
universal definition (discussed earlier) helped pro-
vide consistency in terminology, and his diagrams of
cross-sectional and longitudinal models have become
standard fare in papers reviewing the hyporheic zone.
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Stanford and Ward (1993; Fig. 1) posed their
‘hyporheic corridor concept’, which portrays the
stream as a series of dynamic convergences between
surface and ground water that alternately expand and
constrict because of geologic constraints along the
valley. The pattern of hydrologic exchange at this
whole-catchment scale is shaped by longitudinal
changes in the width and depth of the alluvial
sediments. Reach-scale control of surface primary
and secondary production by hyporheic biogeochem-
ical processes, which, in turn, determine surface
stream nutrient concentrations at upwelling sites
and influence processes in the riparian zone (see
Mulholland and Webster 2010), was predicted. These
reach-scale sequences were nested within the longi-
tudinal continuum from headwaters to lowland
rivers, which provided a catchment perspective for
assessing the functional significance of the hyporheic
zone to the surface stream ecosystem.

Other papers in the special issue exemplified an
ecohydrological approach to understanding the func-
tional significance of the hyporheic zone across a
variety of river types (Stanley and Boulton 1993) and
for microbial ecology (Hendricks 1993; Fig. 1). In a
northern Michigan river, bacterial activity and pro-
duction were enhanced in downwelling zones, where-
as anaerobic conditions in upwelling zones promoted
processes such as denitrification, ammonification, and
sulfate reduction (Hendricks 1993). Experiments were
advocated for improving our understanding of the
driving variables (Palmer 1993), but relatively few
have resulted (e.g., Boulton and Foster 1998, Sliva and
Williams 2005), and scope exists for more. Apart from
the practical problems of working within sediments
under water, the chief difficulty seems to be successful
extrapolation of conclusions drawn from experimental
chambers (e.g., Mermillod-Blondin et al. 2000, Mar-
shall and Hall 2004) to explain processes observed in
complex hyporheic zones of rivers and streams. The
special issue concluded by encouraging routine
assessment of hydrological processes in future studies
of the hyporheic zone (Hakenkamp et al. 1993), but
the urgent need for technological advances in hydrol-
ogy, tracer studies, and numerical modeling was
already clear.

An Era of Technological Advances: 1993 to
the Present

Hydrological exchanges at multiple scales in the
hyporheic zone

Exchanges of water between the stream and the
hyporheic zone are driven primarily by pressure
differences along surface–subsurface VHGs. Broad-

scale exchange arises from differences between the
stream and the surrounding groundwater level,
whereas small-scale hyporheic exchange is driven by
the interaction of flow and channel features (Elliott
and Brooks 1997; Fig. 3A). Channel features include
discontinuities in slope, such as riffle–pool sequences
(Harvey and Bencala 1993, Kasahara and Hill 2006),
steps formed by log jams (Lautz et al. 2006), and river
bends and meanders (Wroblicky et al. 1998, Kasahara
and Hill 2007, Cardenas 2009). At a finer scale, they
are irregularities in the stream bed, such as sediment
ripples (Thibodeaux and Boyle 1987) or submerged
stones or logs partly embedded in finer permeable
sediments (Wallace et al. 1995), that obstruct and
deflect the flow (Fig. 3B). Such irregularities produce
pressure variations at the sediment–water interface
that pump water into and out of the stream bed
(Elliott and Brooks 1997, Cardenas et al. 2004).

The exchange of water in natural gravel-bed
streams is typically complex, and turbulent stream
flow induces variable inputs of stream water into
near-surface regions of the bed (Fig. 3C) (D’Angelo et
al. 1993). Saturated hydraulic conductivity of the
sediments further controls the flux and depth of
hyporheic exchange (Storey et al. 2003). At reach or
larger scales, the geology of parent materials largely
governs saturated hydraulic conductivity of alluvial
sediments (Morrice et al. 1997), whereas at finer
scales, nonuniform clogging (colmation) by fines can
be more important (Packman and MacKay 2003;
Fig. 3B).

Evolving technologies for measuring hyporheic exchange

In the last 2 decades, hyporheic exchange across a
range of scales has been characterized with tracer
techniques and numerical hydrological modeling.
Tracer techniques entail injection of specific chemical
tracers or use of background chemical concentrations
as natural tracers. Since the Stream Solute Workshop
(1990), tracer injections have become a mainstream
approach to quantifying rates of hyporheic exchange
and nutrient processing. Analyses of ‘breakthrough
curves’ from stream injection of a nonreactive solute
tracer provide reach-averaged estimates of the rela-
tive size of the transient storage zone and exchange
rate (Bencala and Walters 1983). To estimate nutrient
retention, a conservative tracer and a nutrient are co-
injected into the stream and uptake lengths (the
average distance traveled by a solute) are calculated
by comparing plateau concentrations of the 2 tracers
(Triska et al. 1989). For instance, Valett et al. (1996) co-
injected a conservative (Br2) and a biologically active
tracer (NO3

2-N) into streams in 3 headwater catch-
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ments with contrasting geology and hydraulic con-
ductivities to study hyporheic nutrient retention.
Hyporheic exchange increased, whereas NO3

2 uptake
length decreased with increasing hydraulic conduc-
tivity.

Numerical hydrological modeling using hydromet-
ric data collected from a network of wells and
piezometers is another way to quantify hyporheic
exchange (Harvey and Bencala 1993, Kasahara and
Wondzell 2003). Wondzell and Swanson (1996a) used
the distribution of hydraulic heads and saturated
hydraulic conductivity measured from a network of
wells and a groundwater flow model (MODFLOW) to
quantify advective hyporheic flow and groundwater
inflow in a gravel bar of a 4th-order mountain stream.
The flux of hyporheic exchange quantified in this
study also was used to understand N cycling within
the reach (Wondzell and Swanson 1996b).

Transient storage models have been greatly refined
in the last decade. The original form is the combina-
tion of 1-dimensional advection–dispersion equations

with 1st-order mass exchanges between the main
channel and a transient storage zone (e.g., Morrice et
al. 1997). Subsequent modifications have included
accounting for unsteady stream discharge, incorpora-
tion of multiple transient storage zones, and inclusion
of diffusive solute transfers between the channel and
the hyporheic zone (Runkel et al. 1998, Choi et al.
2000, De Smedt 2007). Poole (2010) has extended
numerical modeling approaches to describe hypo-
rheic exchange across multiple spatial layers in 3
dimensions over time, an elegant development that
illustrates the complex nonlinear links across diverse
hyporheic habitat patches (Poole et al. 2006; Fig. 1).

Hydrological Exchange and Stream Ecosystem Pro-

cesses: the Basis of Contemporary Hyporheic
Zone Research

The potential for significant contributions from the
hyporheic zone to whole-stream metabolism was first
demonstrated by Grimm and Fisher (1984) in an

FIG. 3. The interactions of streambed topography and permeability, surface flow characteristics, distribution and size of
sediments, and presence of large rocks or cobbles influence the location and extent of vertical hydraulic gradient (VHG) across a
range of scales (multiple reaches) (A) and at the streambed surface (B) and within the bed (C), creating a shifting mosaic of
conditions in the hyporheic zone. Arrow thickness represents magnitude of hyporheic exchange, broken line approximates
groundwater table. In (C), O refers to oxygenated sediments, H refers to hypoxic regions.
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Arizonan desert stream. In this seminal study, rates of
benthic, deep sediment, and whole-stream metabo-
lism were assessed simultaneously in open-bottom
chambers, closed sediment cores, and from change in
dissolved O2 concentrations between 2 stations along
the stream. The results revealed that the hyporheic
zone of this highly productive desert stream contrib-
uted 40 to 50% of total ecosystem respiration, and
prompted Grimm and Fisher to suggest extension of
the traditional 2-layer conceptual model of stream
metabolism to include the contribution of the hypo-
rheic zone. A decade later, Findlay (1995; Fig. 1)
synthesised the early literature on surface–subsurface
hydrological exchange and proposed a classification
of streams based on the degree to which hyporheic
zones contribute to their total metabolism. This
classification reflected the relationship between the
proportion of total discharge passing through the
hyporheic zone and the rate of hyporheic metabolic
processes. The greatest potential contribution of the
hyporheic zone to total metabolism was hypothesised
to occur when both hyporheic discharge and hypo-
rheic metabolic activity are high. Findlay (1995)
concluded that physical factors controlling interstitial
velocities and pathways predominantly determined
the functional significance of hyporheic metabolism to
many whole stream ecosystems.

Following Findlay’s (1995) paper, numerous studies
confirmed that hyporheic metabolism can equal or far
exceed metabolism at the stream bed (Mulholland
et al. 1997, Naegeli and Uehlinger 1997, Battin et al.
2003). However, Craft et al. (2002) found that
microbial productivity was insufficient to support
invertebrate production in the hyporheic zone of the
Flathead River in Montana, USA, a result suggesting
that other metabolic processes, such as methanogen-
esis, might be contributing energy to higher trophic
levels. The organic fuel for hyporheic metabolism can
be dissolved organic C (DOC) from surface stream
water or ground water (Jones et al. 1995) or from
infiltration and burial of particulate organic matter
from the surface stream (e.g., Metzler and Smock
1990, see also Tank et al. 2010).

A landscape perspective—spatial mosaics and
varying hydrology

Several conceptual papers have extended Findlay’s
(1995) original framework, mainly by elaborating
spatial and temporal aspects (Fisher et al. 1998a,
Kaplan and Newbold 2000, Malard et al. 2002,
Stanford et al. 2005). The result has been incorporation
of empirical and theoretical evidence to demonstrate
how the spatial arrangement of patches of surface–

subsurface exchange affects overall stream metabo-
lism and heterogeneity in stream water variables,
such as nutrient concentrations and water tempera-
ture. For example, Fisher et al. (1998a) proposed that
the arrangement of sandbars and their associated
hyporheic flow paths in a desert stream would govern
stream-scale rates of N cycling. Earlier work had
demonstrated that NO3

2-rich water upwelling at the
end of hyporheic flowpaths promoted growth of
green algae in the surface stream between floods
(Grimm and Fisher 1989). As surface stream N
becomes consumed, green algae are replaced by N-
fixing cyanobacteria. Thus, a stream with numerous
sandbars and active hyporheic zones will cycle N
more rapidly than one with few sandbars and long
stretches of surface stream where N is fixed rather
than regenerated from the hyporheic zone.

Malard et al. (2002) built on the model by Fisher et
al. (1998a) and sought to link the functional signifi-
cance of the hyporheic zone with spatially well-
defined stream structures at a landscape scale. In
streams, a shifting mosaic of surface–subsurface
exchange patches is produced by the heterogeneous
arrangement of channel features, such as riffles and
bars, and of areas of different grain sizes and
sediment hydraulic conductivity. These patches vary
in hyporheic discharge and flowpath length, and in
turn, affect the type and intensity of metabolic
processes. Such mixtures of patches of different sizes
partly explain the heterogeneity of metabolic process-
es, which often combine the opposing processes of
oxidation and reduction within a single spatial unit of
a stream (even over a few millimeters).

Thus, the overall contribution to stream ecosystem
processes by the hyporheic zone might be controlled
by frequency and distribution of patch types. Alter-
ation of the configuration of the patch mosaic by
disturbances, such as seasonal or episodic floods
(Stanley et al. 2010), would contribute to temporal
heterogeneity. Because hyporheic metabolism is prob-
ably limited by supply of organic C or exhaustion of
terminal electron acceptors from the surface stream,
metabolic activity at the reach scale should be
enhanced by the occurrence of many small patches
with shorter hyporheic flow paths compared to few
large patches (Malard et al. 2002). This hypothesis
could be tested by manipulating the size, shape, and
spatial arrangement of gravel bars, especially during
stream restoration projects (see later).

Hyporheic function at multiple scales

Stanford and Ward (1993) already had set the stage
for considering hyporheic processes at multiple
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spatial scales with their conceptual model of how the
structure of the hyporheic zone might change along a
river. Integrating these multiple scales with Findlay’s
(1995) framework, Boulton et al. (1998) hypothesised
that different variables might influence the functional
significance of the hyporheic zone to streams at the
sediment, reach, and catchment scales, and they
sought hierarchical relationships among these con-
trolling variables across scales. At the sediment scale,
the main determinant of the functional significance of
the hyporheic zone is grain size distribution because it
governs bed permeability (Freeze and Cherry 1979)
and affects the hydrological linkage with the surface
stream and the supply of resources. Grain size
distribution also influences organic matter accumula-
tion, microbial abundance and activity, and interstitial
dissolved O2 concentrations (Strayer et al. 1997, Olsen
and Townsend 2003), controlling potential rates of
hyporheic metabolism.

At the reach scale, the scale at which most stream
ecologists have studied the hyporheic zone, the
principal driver appears to be hydrological exchange
and discharge. The lengths of the hyporheic flow
paths control the intensity and type of the metabolic
processes, which in turn, create longitudinal gradients
in the physicochemical environment along the flow
paths with feedbacks to the rates and types of reach-
scale metabolic processes (Boulton et al. 1998, Datry
and Larned 2008). Extending this concept to the
catchment scale, vertical and lateral components of
stream and groundwater interactions and their
variability are considered to be the principal variables
driving the functional significance of the hyporheic
zone to the surface stream (Boulton et al. 1998, Datry
et al. 2008).

Variable linkages across subsystems potentially affect
processing length

The Telescoping Ecosystem Model (TEM, Fisher et
al. 1998b; Fig. 1), predicts how streams retain,
transform, and transport matter among 4 subsystems:
the surface stream, the hyporheic zone, the parafluvial
zone, and the riparian zone. These 4 subsystems are
cross-linked primarily by exchange of water. The
hydrologic variable is ‘flow path length’, the distance
travelled by a parcel of water in one subsystem before
it enters another. ‘Processing length’ is defined as the
average distance required to process a given amount
of material, and summarizes flow path length and
rates of the many processes contributing to transfor-
mation of a specific material.

Comparison of processing lengths between the
hyporheic zone and surface stream illustrates their

relative significance and enables comparisons of the
functional significance of the hyporheic zone across a
range of stream ecosystems over time. The TEM
postulates that whole-ecosystem efficiency and the
significance of the subsystems are functions of the
disturbance regime; processing length increases when
disturbances disrupt a given subsystem. Processing
length then decreases during subsequent successional
change and recovery. Thus, processing lengths in the
subsystems ‘telescope’ according to the severity of
different disturbances, their linkages, and their rates
of recovery. An exciting future direction in hyporheic
research is to assess the applicability of this model in
streams with different disturbance regimes and with
different degrees of hydrological linkage across
subsystems. Poole et al. (2008; Fig. 1) recently mod-
elled riverine hydrologic spiralling to show the sub-
stantial control of the hyporheic zone on water and
solute flux, a result that emphasizes differing roles of
long and short hyporheic flow paths.

Future Directions in Research on the Hyporheic
Zone: Management Applications and

River Restoration

Streams and Ground Waters

In 2000, Streams and Ground Waters, edited by Jones
and Mulholland (2000; Fig. 1), synthesised the state of
research on stream–ground water interactions, and
thereby provided a useful benchmark against which
to judge advances in the last decade. One advance in
this book was the extension of Findlay’s (1995)
conceptual model by Kaplan and Newbold (2000)
who suggested a threshold of vertical exchange at
which either all bioavailable organic matter is
consumed or the capacity of the hyporheic zone to
metabolize organic matter is reached. Thus, either
vertical hyporheic exchange or the size of the
hyporheic zone might act as the primary limiting
factor on the significance of the hyporheic zone to
whole-system metabolism. Whether such a threshold
for the metabolism of bioavailable DOC is actually
achieved in nature and whether a similar threshold
exists for particulate organic C remains to be seen.
Given the fundamental significance of C for stream
ecosystems (Tank et al. 2010), this future research
direction is important.

Despite the last 2 decades of hydrologic and
biogeochemical research in the hyporheic zone,
Findlay and Sobzcak (2000) concluded that no
quantitative framework yet exists that predicts where
and when the hyporheic zone will play a major role in
overall stream metabolism. We also still lack the
ability to extrapolate metabolic data successfully from
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the sediment or plot scale (,1 m2) up to reach or
catchment scales; the spatial hierarchies proposed by
Ward (1989) and Boulton et al. (1998) remain elusive.
Progress is hampered by the need to combine costly
metabolism studies with simultaneous measures of
hydrology at appropriate scales and the consequent
hydrological modelling. Meta-analysis of total stream
metabolism budgets indicates that hyporheic zone
contributions can range from 40 to .90% (Battin et al.
2003) and that hyporheic size, residence time, and
vertical discharge interact to govern hyporheic me-
tabolism at sediment and reach scales (Fellows et al.
2001). Further empirical data spanning time and space
are needed to clarify this relationship.

Assessing the ‘health’ of the hyporheic zone

Another new direction that has emerged since
Streams and Ground Waters was published is the
potential for assessing the health of the hyporheic
zone in a manner equivalent to that used in surface
waters. Ecologists and hydrologists have long been
aware of the functional significance of the hyporheic
zone to stream ecosystems and the importance of
vertical hydrological exchange for maintaining biolog-
ical integrity, but they have been slow to communicate
these findings to river managers and policy developers
(Boulton 2000a, 2007, Woessner 2000; Fig. 1). Despite
widespread interest in the concept of stream health
(Meyer 1997), the notion of hyporheic health has
received little attention (Boulton et al. 2008).

Many human activities affect the hyporheic zone,
either through disruption of the hydrological exchange
pathways or via direct contamination (Mestrov and
Lattinger-Penko 1981, Hancock 2002, Kasahara et al.
2009). Even exotic surface species might impair
hyporheic zone function (Bickel and Closs 2008).
Effective indicators of hyporheic health must be easy
to measure, readily interpretable, relevant to societal
values and uses of the hyporheic zone (Boulton et al.
2008), and suitably sensitive. Boulton (2000a) proposed
measures of hydrological exchange, rates of interstitial
biogeochemical activity, and the biodiversity of the
hyporheos as 3 potential candidates. Using processing
length from the TEM (Fisher et al. 1998b) as a
functional measure of hyporheic health also might be
feasible. However, adoption of these potential mea-
sures of hyporheic health currently is limited by a lack
of baseline data and protocols (Hahn 2006).

Hyporheic zone restoration

Typically, river restoration focuses on surface
systems and their longitudinal and lateral connec-
tions, whereas the vertical dimension has been largely

ignored (Ward et al. 2001, Boulton 2007). If an intact
hyporheic zone underpins stream health in some
streams, hyporheic restoration in reaches where the
hyporheic zone is impacted by human activities is a
logical direction for management applications. In-
stream habitat enhancement projects often modify
stream channel morphology to improve habitat
structure (e.g., Lester et al. 2006, Crispell and Endreny
2009). These channel modifications increase bedform
roughness, heterogeneity of hydraulic conductivity,
near-bed turbulence, and channel sinuosity, all of
which induce hyporheic exchange flow in natural
streams. For example, logs across stream channels
produce a stepped longitudinal channel profile that
promotes hyporheic exchange (Wallace et al. 1995). In
a flume study, introduction of natural quantities of
wood doubled vertical hyporheic exchange and
increased the magnitude of the hyporheic zone (Mutz
et al. 2007), supporting the early proposition by Mutz
and Rohde (2003; Fig. 1) that restoring natural levels
of instream wood could enhance hyporheic exchange
in impacted streams. Assessment of hyporheic resto-
ration trajectories could be envisaged on a 2-dimen-
sional plot of the twin main ‘drivers’ of sediment
structure and VHG that seek to illustrate mechanisms
of response (Kasahara et al. 2009); currently, restora-
tion ecologists lack a simple model of the hyporheic
zone to use as a basis for predicting responses to
manipulation of the 2 key ‘drivers’.

Future research to assess the success of such
restoration at a catchment scale would also shed light
on large-scale processes that influence hyporheic zone
function. One ambitious experiment in river ecology
would be to restore 3-dimensional connectivity in a
large (,50,000 km2) dewatered, revetted, and pollut-
ed river ecosystem from headwaters to mouth.
Relevant steps could be: 1) model in 3 dimensions
the natural and severed connectivity for the entire
system (focusing on hyporheic exchange underpin-
ning a healthy alluvial river ecosystem), 2) evaluate
potential outcomes of 3-dimensional restoration to
yield a scientifically logical and economically viable
restoration strategy, 3) do the restoration, and 4)
quantitatively evaluate the outcome.

Conservation of the hyporheos and maintenance of
hyporheic processes

As early as 1989, Danielopol was calling for
protection of alluvial aquifers and their fauna, but
little heed seems to have been taken of his plea
(Boulton et al. 2003). Like Strayer (2006), we urge a
more holistic view of conservation efforts in rivers to
protect surface and subsurface systems and their
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fauna. Current inventories of the hyporheos of most
streams are inadequate to identify rare or threatened
species, but some assemblages of invertebrate taxa in
the hyporheic zone are surprisingly diverse (Rouch
and Danielopol 1997, Boulton 2000b) and should be
considered in management decisions about water
resource development in these areas (Boulton et al.
2003, see also Strayer and Dudgeon 2010). Even
intermittent streams can contain a rich hyporheic
biota (Datry et al. 2007 [Fig. 1], 2008). Intermittent
reaches act as temporal ecotones between terrestrial and
aquatic ecosystems and harbor a unique biota of
aquatic, semiaquatic, and terrestrial taxa that contrib-
ute substantially to overall biodiversity. This biota,
including the hyporheos, might be at risk from
management practices that seek to increase flow
permanence artificially (Datry et al. 2007), especially
because the hyporheic zone can be a refuge from
drying (DiStefano et al. 2009).

Large river floodplains and their aquifers and
hyporheic zones are the most endangered landscapes
on the planet (Tockner et al. 2008). Research,
conservation, and management of surface and
groundwater exchange processes in the context of
the catchments of these large alluvial floodplain
ecosystems are crucial (Stanford et al. 2005) and must
be undertaken despite logistic difficulties, which are
rapidly being overcome by new technologies and
modelling and mapping methods (Poole 2010).
Symposia and field-based workshops exploring ap-
plication of these technologies to surface water–
groundwater restoration strategies could focus on
human activities, such as gravel mining and river
regulation, that directly affect riverine and floodplain
hyporheic zones.

Conclusions

Many papers seminal to conceptual and empirical
advances in the field of hyporheic research (Fig. 1)
have been published in J-NABS, a fact that reflects the
relevance of processes and biota in the hyporheic zone
to stream benthologists. Most of this work has focused
on hydrological and biogeochemical processes. Stud-
ies of the association of the hyporheos with environ-
mental variables and hyporheic exchange still are
being done, but increasingly, the focus of these
studies is at the catchment rather than the reach
scale, taking advantage of new technologies and
modeling approaches.

One major need is for more empirical studies to test
the predictions of the bevy of conceptual models and
frameworks that have been proposed. In particular,
studies that extend over multiple sites and spatial

scales and that encompass at least the full suite of
hydrological extremes in a year will be valuable.
Integration of hydrological and ecological variables is
essential, and the recent advances in hydrological
modeling and sampling technology will play key roles
in this process. We also urge practical application of the
research findings on the significance of the hyporheic
zone to whole-stream ecosystem function, especially in
river restoration and conservation. J-NABS is well
placed to expand its scope to include more papers that
integrate research and management in protecting and
restoring rivers, and the social sciences of human
communication and environmental education about
the hyporheic zone are relevant in this context.
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