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Vaulx-en-Velin, F-69518, France; Centre National de la Recherche Scientifique (CNRS), UMR5023
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Abstract. Benthic invertebrates have important ecosystem engineering functions (bioturbation and
biodeposition) in freshwater and marine benthic systems. Bioturbation and biodeposition affect the
metabolism of the water–sediment interface through modification of water–sediment fluxes or organic-
matter enrichment of sediments by biodeposits. The functional significance of these processes depends
strongly on the type of invertebrate activities (the functional traits of the invertebrates) and on the
modulation of this activity by environmental conditions. The aim of my article is to propose a common
framework for the role of bioturbation/biodeposition in benthic habitats of both marine and freshwater
environments. In these ecosystems, hydrological exchanges between the water and sediments (interstitial
flow rates) control the microbial activity inside sediments. The ability of ecosystem engineers to influence
benthic microbial processes differs strongly between diffusion-dominated (low interstitial flow rates) and
advection-dominated (high interstitial flow rates) habitats. Bioturbation/biodeposition may play a role in
diffusion-dominated habitats where invertebrates can significantly modify water and particle fluxes at the
water–sediment interface, whereas a slight influence of ecosystem engineers is expected in advection-
dominated habitats where fluxes are predominantly controlled by hydrological processes. A future
challenge will be to test this general framework in marine and freshwater habitats by quantifying the
interactions between the functional traits of species and the water–sediment exchanges.

Key words: ecosystem engineers, benthic habitats, microbial activity, hydrological exchanges.

General Context

Water–sediment interfaces are dynamic zones that
regulate the fluxes of organic matter, nutrients, and
contaminants between the water column and sedi-
ments in marine and freshwater ecosystems (Palmer
et al. 1997, Covich et al. 2004). At these interfaces,
ecological processes are mediated through complex
interactions between the abiotic characteristics of
sedimentary habitats and the activities of resident
organisms (Giller et al. 2004). Microorganisms are the
key actors of biogeochemical processes in sedimenta-
ry habitats (Sundbäck et al. 2004, Battin et al. 2008),
but the feeding and bioturbation actions of meio- and
macroorganisms can have a marked effect on micro-
bial activities in sediments (Kristensen et al. 1985,
Aller 1994, Rosenberg 2001). Many examples have

highlighted the key ecological role played by ecosys-
tem engineers (Jones et al. 1994) in marine, lake,
estuarine, and stream habitats (Rhoads 1974, Krantz-
berg 1985, Statzner et al. 2000, Meysman et al. 2006).
As ecosystem engineers, organisms that redistribute
particles and modify water fluxes at the water–
sediment interface affect the availability of electron
acceptors (e.g., dissolved O2), organic matter, and
nutrients to sedimentary microorganisms (Kristensen
2000, Mermillod-Blondin and Rosenberg 2006). Bio-
turbation and biodeposition are 2 major engineering
processes occurring at the water–sediment interface of
freshwater and marine ecosystems.

Bioturbation and Biodeposition Processes

Bioturbation is related to several activities of
benthic organisms, including sediment reworking
caused by burrowing activities, construction of tubes1 E-mail address: mermillo@univ-lyon1.fr
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and burrows, and irrigation of these biogenic struc-
tures (Gerino et al. 2003). Biodeposition is the settling
of feces and pseudofeces produced by suspension-
feeding animals (Haven and Morales-Alamo 1966)
and by organisms that convert coarse particulate
organic matter into fecal pellets (Joyce and Wotton
2008). My paper is focused on the implications of
these 2 processes for understanding particle transport
(sediment reworking, feces and pseudofeces deposi-
tion) and water exchanges (permeability change,
bioirrigation) at the water–sediment interface. These
2 physical changes are major modulators of microbial
activities and biogeochemical processes in marine and
freshwater benthic habitats.

The potential for bioturbation/biodeposition to be
critical processes in terrestrial and aquatic environ-
ments has been recognized since Darwin and his
seminal work on earthworms and soil formation
(Darwin 1881 in Meysman et al. 2006). In aquatic
ecosystems, scientific research on these processes
really began in the middle of the 20th century and
was focused on lake (reviewed by Krantzberg 1985)
and marine sediments (reviewed by Rhoads 1974).
The role of bioturbation/biodeposition in stream and
river sediments was studied later (e.g., Chatarpaul
et al. 1979) and has received less attention than in lake
and marine benthic systems (Boulton et al. 2010).
Consequently, the coupling between bioturbation/
biodeposition processes and biogeochemical process-
es has been quantified unequally among aquatic
ecosystems. My goal was to use the literature to: 1)
review the main effects of bioturbation/biodeposition
on benthic microbial activities, 2) describe how these
effects are linked to the functional traits (mode of
bioturbation/biodeposition) of invertebrates, and 3)
propose a conceptual framework linking the func-
tional significance of bioturbation/biodeposition on
biogeochemical processes with the physical structure
of the benthic habitats.

General Influences of Bioturbation and
Biodeposition Processes on Biogeochemical
Processes at the Water–Sediment Interface

In marine, lake, and wetland habitats, bioturbation
by invertebrates that build and irrigate biogenic
structures (tubes, burrows) increases the area avail-
able for solute exchange and oxic/anoxic boundaries
(Aller 1983, Forster and Graf 1995, Vopel et al. 2003,
Lewandowski et al. 2007, D’Andrea and DeWitt 2009).
Consequently, bioturbation may increase the aerobic
respiration of sedimentary microorganisms by up to
250% (Kristensen 2000, Mermillod-Blondin et al. 2004,
Karlson et al. 2005, Quintana et al. 2007) and can

significantly influence the fluxes of nutrients (NO3
2,

NH4
+, PO4

32, SO4
22, Fe) and dissolved organic matter

at the water–sediment interface (Caliman et al. 2007,
Lewandowski et al. 2007). Bioturbation processes also
significantly influence the fate of pollutants (metals,
organic pollutants) and emission of greenhouse gases
(N2O, CH4) at the water–sediment interface (Ciutat
et al. 2005, Granberg et al. 2005, 2008, Lagauzère et al.
2009, Stief and Schramm 2010). The influence of
biodeposition on sedimentary biogeochemical pro-
cesses has been reported from environmental studies
designed to determine the effect of mussel and oyster
cultures on marine benthic habitats (e.g., Chamberlain
et al. 2001, Callier et al. 2006). Most of these studies
showed that organically rich feces and pseudofeces
accumulate at the water–sediment interface and
create reducing conditions in the sediment (Nizzoli
et al. 2005, Lindqvist et al. 2009). This organic-matter
enrichment stimulates O2 uptake by microorganisms
at the sediment surface (Heilskov and Holmer 2001)
and often increases the flux of nutrients at the water–
sediment interface (Christensen et al. 2003, Gibbs et al.
2005, Giles and Pilditch 2006). However, the effect of
biodeposition on benthic fauna is dependent on
suspension-feeder densities. At high densities, high
rates of biodeposition affect macrofaunal diversity by
reducing O2 availability at the water–sediment inter-
face (Commito and Boncavage 1989). At low densities,
the organic-matter enrichment by biodeposits has a
positive influence on macrofaunal diversity by pro-
viding an important resource for benthic species
without producing unfavorable anaerobic conditions
(Norkko et al. 2001). The benthic–pelagic coupling
induced by biodeposition also influences pollutant
dynamics because contaminated particles in free
water are accumulated in fecal pellets and pseudo-
feces and deposited at the sediment surface (Cho et al.
2004, Schaller et al. 2010).

These patterns of the influences of bioturbation and
biodeposition on biogeochemical functioning at the
water–sediment interface mainly arose from studies
performed in benthic habitats with fine sediment
texture and low physical exchange of water between
free and interstitial water like standing-water areas
of lakes, ponds, and marine offshore areas where
hydrological exchanges between free water and
interstitial water are dominated by water diffusion.
In contrast, the influence of bioturbation and biode-
position on biogeochemistry has been poorly studied
in advection-dominated benthic habitats like areas of
streams, rivers, and shallow estuaries, which are
characterized by important hydrological exchanges
between free water and interstitial water (Boulton
et al. 2002). Despite the scarcity of studies performed
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in advection-dominated systems, Mermillod-Blondin
and Rosenberg (2006) stressed that the physical
features (advection-dominated vs diffusion-dominated
systems) of the water–sediment interfaces interact with
the species’ bioturbation mode to drive microbial
processes (O2 uptake, N cycling) in sediments. Thus,
research on the engineering functions of benthic
animals and their modulation by environmental
factors must be integrated to understand the influence
of bioturbation/biodeposition processes on the metab-
olism of benthic ecosystems (Bulling et al. 2008).

Ecosystem Engineering Functions: the Functional
Group Approach

The bioturbation/biodeposition functions of ben-
thic invertebrates vary strongly according to their
biological traits (mode of feeding, mode of locomo-
tion, ingestion–digestion mechanisms, ecophysiology;
Pearson 2001, Hughes et al. 2005). Functional groups
(functional group = a group of species having similar
effects on major ecosystem processes; Chapin et al.
1992) have been widely developed (e.g., Pearson 2001)
and used to simplify the description of community
roles in ecosystems. For instance, benthic species in
river ecosystems often are classified into functional
feeding groups according to their roles in organic-
matter processing (Cummins 1974, Cummins and
Klug 1979). With respect to bioturbation processes,
invertebrates belong to distinct functional groups
according to their mechanical activities that modify
sediment properties and influence biogeochemical
processes (Gerino et al. 2003). Five functional groups
of bioturbators have been defined in soft-bottom
sediments (François et al. 1997, 2002): 1) biodiffusors
are organisms whose activities on the surface result in
random sediment mixing; 2) upward conveyors and
3) downward conveyors are organisms whose feeding
activities (ingestion and egestion) move sediment
vertically upward or downward, respectively; 4)
regenerators are digging organisms that relocate
sediment and generate open burrows that fill with
surface particles when abandoned; and 5) gallery-
diffusors are organisms that build extensive galleries
of burrows that are irrigated by biotic activities. This
functional group approach considers 4 functional
traits (sediment mixing rate, burrowing depth, bio-
genic structure produced, and bioirrigation rate of
tubes and burrows) that are the most relevant to
assess the influence of bioturbators on biogeochemical
processes (aerobic microbial activity, nutrient fluxes)
in marine and freshwater diffusion-dominated sedi-
ments (Banta et al. 1999, Michaud et al. 2005, Caliman
et al. 2007). For instance, animals that produce and

irrigate deep burrows and galleries (gallery-diffusers),
such as the polychaete Nereis sp. in marine sediments
or the oligochaete Tubifex tubifex in wetland sedi-
ments, stimulate aerobic microbial activities and N
fluxes at the water–sediment interface (Svensson et al.
2001, Michaud et al. 2005, Mermillod-Blondin and
Lemoine 2010). In contrast, animals, such as bivalves,
that mix sediments without creating biogenic struc-
tures have a lower influence on fluxes and microbial
activities occurring in sediments (Pelegri and Black-
burn 1995a, Michaud et al. 2006). Mermillod-Blondin
et al. (2002) demonstrated that the bioturbation modes
of freshwater invertebrates determine their influence
on biogeochemical processes in advection-dominated
sediments. Gallery-diffusers (tubificid worms) stimu-
lated microbial activities in sediments, whereas
biodiffusors (Asellus aquaticus) did not (Mermillod-
Blondin et al. 2002). Therefore, a common classifica-
tion of bioturbation groups based on quantification
of functional traits can be developed in diffusion-
dominated and advection-dominated habitats of
marine and freshwater environments.

To my knowledge, no functional-group classifica-
tion has been developed to characterize the role of
different suspension-feeders on benthic biogeochem-
ical processes through feces and pseudofeces produc-
tion. The mode of biodeposition is comparable for all
suspension-feeder species, but the biodeposition rate
(quantity of feces and pseudofeces produced) may
differ strongly among species and groups of species
(Rhoads 1974, Zhou et al. 2006). Moreover, the effects
of biodeposition on benthic processes are related to
the quality of organic matter and the quantity of
biodeposits, which are influenced by the rate of fecal
pellet production and the quality of the ingested
particles (Hughes et al. 2005, Gergs et al. 2009). By
considering suspension-feeding efficiency and biode-
position rate of benthic species, one could develop a
functional-group classification for the biodeposition
process similar to the classification developed for
bioturbation. Thus, the effect of benthic invertebrates
on microbial processes at the water–sediment inter-
face could be associated with 5 major functional traits
that summarize the intensity of bioturbation/biode-
position process exhibited by a species at the water–
sediment interface (see functional traits indicated in
Fig. 1). However, such a functional approach cannot
be used without considering the variability of envir-
onmental factors, such as hydrodynamics (Chamber-
lain et al. 2001, Biles et al. 2003), food resources
(Hansen and Kristensen 1998, Spooner and Vaughn
2006, Lauringson et al. 2007), temperature (Ouellette
et al. 2004, Przeslawski et al. 2009), and contaminants
(Mulsow et al. 2002, Lagauzère et al. 2009). All
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modulate bioturbation/biodeposition processes in
aquatic ecosystems. The degree of hydrological
exchanges occurring at the water–sediment interface
appears to be the main factor influencing the potential
contribution of bioturbation/biodeposition on biogeo-
chemical processes in marine and freshwater benthic
habitats (Boulton et al. 2002, Mermillod-Blondin and
Rosenberg 2006). I propose to develop a qualitative
scheme of the role of bioturbation/biodeposition on
microbial processes in benthic environments based on
the hydrological characterization of the habitats rather
than on their membership in marine or freshwater
ecosystems.

Patterns of Hydrological Exchanges Modulate the
Significance of Bioturbation/Biodeposition

Processes in Benthic Habitats

The biogeochemical processes occurring at the
water–sediment interface in standing- and running-
water ecosystems are driven mainly by hydrological

exchanges between surface and interstitial layers
(Forster et al. 1999, Fellows et al. 2001, Boulton et al.
2010). The magnitude of hydrological exchanges
dictates the availability of dissolved O2, nutrients,
and organic C for microorganisms (reviewed by
Brunke and Gonser 1997). In a comparison between
advection-dominated and diffusion-dominated sys-
tems, Mermillod-Blondin and Rosenberg (2006)
showed that microbial respiration at the water–
sediment interface in microcosms was 23 higher in a
hyporheic system with a permanent water infiltration
than in a system characterized by diffusion-dominated
conditions. Benthic systems range from low to high
hydrological exchanges in relation to hydrodynamics
and sedimentary structure (Palmer et al. 1997), so the
ability of ecosystem engineers to influence microbial
processes will depend on the benthic habitat studied.
Boulton et al. (2002) hypothesized that invertebrates
can act as ‘‘direct vectors’’ of water and materials in
lentic systems (diffusion-dominated habitats), whereas
they act only as ‘‘modulators’’ of water fluxes in lotic

FIG. 1. The interactions between hydrological properties of the habitats and the engineering activities (bioturbation and
biodeposition) of invertebrates dictate the biogeochemical processes at the water–sediment interface. X indicates that the
influences of benthic invertebrates on hydrological exchanges and sediment properties are highly linked with the functional traits
of the organisms.
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systems (advection-dominated habitats). This concep-
tual view suggests a greater influence of bioturbation
in diffusion-dominated than in advection-dominated
systems (Hakenkamp and Palmer 2000). This predic-
tion was confirmed by bioturbation studies reported
from both marine and freshwater benthic habitats. In
high hydrological exchange zones like the hyporheic
zone of streams, the modification of microbial respira-
tion by invertebrate bioturbation ranges between 220
and +50% (Pusch and Schwoerbel 1994, Marshall and
Hall 2004, Mermillod-Blondin and Rosenberg 2006).
The degree of respiration change depends on the
bioturbation traits of the species tested (sediment
mixing rate, burrowing depth, production of U-shaped
tubes or galleries of burrows; Mermillod-Blondin et al.
2002). These results were linked to the low ability
of bioturbators to influence sediment permeability and
interstitial flow rates (Boulton et al. 2002). In con-
trast, bioturbation by U-shaped tube burrower and
gallery-diffusor invertebrates may increase microbial
respiration at the water–sediment interface of diffusion-
dominated systems by up to 250% (Pelegri and Black-
burn 1995b, Svensson and Leonardson 1996, Karlson
et al. 2005, Mermillod-Blondin et al. 2008). In these
systems, production and irrigation of deep burrows
(gallery-diffusion) may increase the flux of water in
sediments by up to 2000% (Rasmussen et al. 1998).
These results illustrate clearly that the potential contri-
bution of bioturbation to benthic microbial processes
varies across the spectrum of hydrological conditions.
Therefore, I propose a conceptual model that takes into
account the hydrological properties of benthic habitats
and the functional traits of invertebrates to allow a better
prediction of bioturbation/biodeposition effects on
sediment biogeochemistry (Fig. 1). In advection-domi-
nated habitats, hydrological exchanges between surface
and interstitial water are little affected by invertebrate
bioturbation, and the contribution of bioturbators to
microbial processes is reduced. In diffusion-dominated
habitats, the opposite is observed because the physical
hydrological exchanges are low and can be dramatically
affected by bioturbators, depending on their bioturba-
tion functional traits (Fig. 1; Mermillod-Blondin and
Rosenberg 2006).

In the scheme presented in Fig. 1, use of the
hydraulic exchanges at the water–sediment interface
to evaluate the significance of bioturbation can be
applied to the different habitats of a river (riffles,
pools, erosion zones, sedimentation zones). For
example, when hydrological exchanges at the water–
sediment interface are impaired by fine sediment
deposition (Schälchli 1992, Wood and Armitage 1997),
hydrological exchanges in sediments will be low and
deep burrowing by the tubificid worm Tubifex tubifex

could efficiently restore hydrological exchanges and
aerobic biogeochemical processes in sediments (No-
garo and Mermillod-Blondin 2009). Thus, the signif-
icance of bioturbation on sedimentary microbial
processes is dependent on the hydrological-exchange
context.

This modulation of engineering function by hydro-
logical exchanges at the water–sediment interface has
been poorly studied in the process of biodeposition.
Nevertheless, the effects of biodeposition are strongly
influenced by hydraulic conditions that determine the
zones of biodeposition in aquatic ecosystems. For
example, the fecal pellets produced by suspension-
feeding invertebrates living in high-flow conditions
(e.g., blackflies in streams) are flushed away from the
site of production and deposited in zones of low flow
(Malmqvist et al. 2001, Wotton and Malmqvist 2001,
Wharton et al. 2006). Similarly, the influence of
shellfish farming on marine sediments is influenced
by hydrodynamics that modulate the sedimentation
rate of biodeposited material (Callier et al. 2006).
Therefore, the significance of biodeposition intensity,
as with bioturbation traits (Fig. 1), is likely to be
highest in zones of low-energy hydrological condi-
tions associated with diffusion-dominated microhab-
itats (where deposition occurs).

Conclusions

My paper presents a general qualitative frame-
work linking the significance of bioturbation/bio-
deposition processes to the hydrological character-
istics of the water–sediment interfaces. This
approach focuses on the local characteristics of the
water–sediment interfaces and the functional traits
of benthic invertebrates. My hope is that the
approach will be used in both marine and freshwater
sciences. However, this marine–freshwater bridge must
be tested on a wide range of habitats ranging from deep-
sea bottom to stream riffles. If characterization of
hydrological exchanges occurring at the water–
sediment interface can be done easily through tracer
experiments, one major challenge in future studies will
be to quantify the functional traits of the benthic species
(right panel of Fig. 1) and their influences on ecological
processes. Moreover, these functional traits may be
modulated by environmental conditions. For example,
Nogaro et al. (2009) and Michaud et al. (2010) clearly
showed that the biogenic structures produced by
benthic animals and their contributions to water fluxes
at the water–sediment interface can be strongly influ-
enced by the organic-matter content of the sediment.
Thus, assessing the role of benthic ecosystem engineers
in marine and freshwater ecosystems will require
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determining the complex relationships between the
physical habitat, the microbial compartment, and the
activities of the benthic fauna. A combination of
experimental and modeling work is probably the most
promising method to quantify the importance of
ecosystem engineers on the biogeochemical functioning
of aquatic ecosystems.
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