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INTRODUCTION

Dispersal is an important event for the survival of any 
organism against environmental changes (e.g., Travis et al., 
2013); thus, even sessile metazoans usually have dispersal 
forms (e.g., larvae) in their life cycle. The larvae swim or drift 
in the water column, eventually attach to suitable substrates, 
and metamorphose into sessile forms. Substrate selection 
for sessile organisms is usually deterministic, because they 
are unable to leave the substrate and choose a different sub-
strate following metamorphosis. Moreover, early post-
settlement mortality is influenced by several factors that are 
typically linked to the microenvironment, such as distur-
bances, physiological stress, competition, and predation 
(Hunt and Scheibling, 1997). Therefore, the choice of the 
substrate is crucial for these organisms. For example, ascid-
ian larvae generally exhibit negative phototaxis during the 
later part of larval life and settle on shaded sites (Tsuda et 
al., 2003; Salas et al., 2018), which is likely associated with 
ascidians not surviving on exposed sites where strong solar 
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radiation damages the animals (Bingham and Reyns, 1999; 
Bingham and Reizel, 2000) or having more spicules and/or 
UV-absorbing substances for light protection (e.g., Hirose et 
al., 2006). Ascidian larvae exhibit thigmotactic behavior 
(Rudolf et al., 2019). On substrates, larvae explore and touch 
the surface with the tips of their adhesive papillae (Zeng et 
al., 2019a). Once ascidian larvae adhere to the substrate via 
adhesive substances secreted from their adhesion papillae, 
they cannot leave the substrate again. Therefore, substrate 
selection is crucial for ascidian survival. On the other hand, 
biofouling of the sessile organisms causes economic dam-
ages for fishery, port facilities, and other human activity as 
well as environmental problems. Therefore, controlling larval 
settlement has emerged as a critical issue that requires 
attention (e.g., Bannister et al., 2019). The use of toxic sub-
stances to reduce settlement can potentially result in envi-
ronmental pollution (e.g., Cima and Varello, 2021; Tokur and 
Aksoy, 2023). If controlling settlement can be attained 
through the substrate preference of the larvae, this could be 
a more environmentally friendly approach for combating bio-
fouling. Larval substrate preferences have been studied in 
some sessile animals, focusing on the properties of the sub-
strate surface, such as surface structures and wettability 
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(reviewed in Rittschof et al., 1998; Brady and Singer, 2000; 
Scardino and de Nys, 2011; Aldred and Clare, 2014; Hirose 
and Sensui, 2021).

The nano-scale nipple array, often referred to as the 
moth-eye structure, is an array of protrusions that are 100 
nm or less in height and found on the surface of various 
metazoan taxa. This structure, first described in a nocturnal 
moth’s compound eye, forms a gradient of refractivity, lead-
ing to a reduction in light reflectance, known as the moth-
eye effect (Bernhard, 1967). Although nano-scale nipple 
arrays have been reported in marine invertebrates such as 
tunicates (Hirose et al., 1997; 1999), echinoderms (Holland 
and Nealson, 1978), annelids (Hausen, 2005), parasitic 
copepods (Hirose and Uyeno, 2014), and entoprocts (Iseto 
and Hirose, 2010), these nanostructures in phylogenetically 
distant taxa are thought to have evolved convergently 
because of differences in the histological organization of 
integumentary tissues. Nanoscale nipple arrays also reduce 
light reflection in water, although this effect is less significant 
than that in terrestrial environments because of the relatively 
small differences in the refractive indices between seawater 
and animal tissues (Kakiuchida et al., 2017). Furthermore, 
this nano-structure is considered to be a multifunctional one. 
Employing synthetic materials that imitate this structure has 
demonstrated that nipple arrays can decrease the surface 
adsorption and adhesion forces (Uesugi et al., 2022), reduce 
bubble attachment (Hirose et al., 2013), and suppress immu-
nocyte activity (Ballarin et al., 2015). Interestingly, ascidian 
larvae prefer a flat surface to the nano-scale nipple array for 
settlement (Hirose and Sensui, 2019), suggesting that the 
larvae may sense nano-scale roughness on the substrate 
surface directly or indirectly. The ascidian larvae employ 
adhesive papillae to explore the surface of the substrate and 
then secrete adhesive material for settlement from the tips of 
the papillae, which are also sensory organs with various 
senses (reviewed in Pennati and Rothbaecher, 2015). To 
clarify whether ascidian larvae show different preferences 
for surface nano-structures of different sizes, we performed 
a substrate selection assay for test plates made from the 
same materials. For this assay, we fabricated three types of 
periodic nano-folds with different heights and pitches.

MATERIALS AND METHODS

Animals
Mature individuals of the ascidian Phallusia philippinensis 

were collected by hand at Yonabaru Marina, which is located on the 
east coast of Okinawajima Island (Japan). The individuals were 

temporarily reared at approximately 25°C in an aquarium until fur-
ther use.

Fabrication of nanoimprinted plates
Three types of periodic nano-folds with different sizes were 

prepared for the substrate selection assay because the fabrication 
of nano-scale nipples or pillars is practically difficult owing to tech-
nical and facility restraints. They were replicated onto a transparent 
polymer according to the procedures described by Sakai et al. 
(2019). Briefly, the surface-relief structure was fabricated on a pho-
tosensitive azobenzene polymer film (poly-orange tom-1, Tri 
Chemical Laboratories) spin-coated on a glass plate (S-1111, 
Matsunami). Holographic surface-relief gratings were created on 
the polymer film using two-beam interference exposure with a cir-
cularly polarized diode pumped solid state (DPSS) laser (Samba, 
Cobolt) at 532 nm. The periods of the interference fringes were set 
to 600, 1000, and 2000 nm by adjusting the angle between two-
beam. Negative replicas of the grating structure were then made on 
transparent thermoset silicone rubbers (ELASTOSIL RT601 A/B, 
Wacker Asahikasei Silicone). The thermally cured silicone rubbers 
were used as molds for UV nanoimprinting of the periodic nano-
folds. The transparent silicon mold was placed on a glass plate 
coated with liquid UV-curable resin (NOA61, Norland Products), 
and the resin was cured by UV irradiation. The surface structures of 
the UV-imprinted plates were observed using atomic force micros-
copy (AFM) (Nanocute, SII Nanotechnology). The nanoimprinted 
plates were cut into 12.5 ×  16.5 mm with a glass cutter. We pre-
pared four types of plates with different height of folds and pitch of 
the folds. They were Flat (no folds), Small (120 nm in height, 600 nm 
in pitch), Medium (200 nm in height, 1000 nm in pitch), and Large 
(400 nm in height, 2000 nm in pitch) (Fig. 1). The water wettability 
on the plates was 80°–90° in contact angle, and considerable dif-
ferences in wettability were not observed with the size of the nano-
structures.

Substrate selection assay (Fig. 2)
This assay was essentially the same as that described by 

Sensui and Hirose (2020). Seven P. philippinensis individuals were 
dissected, and eggs and sperm were collected from the oviduct and 
sperm ducts in their hermaphroditic bodies. Sperm were briefly 
incubated in high-pH artificial seawater (pH 9.0) to activate their 
motility. The eggs were inseminated with activated sperm from 
another individual and rinsed with artificial seawater 15 min after 
insemination. The larvae hatched 12–13 h after insemination, fol-
lowing incubation at 24–25°C.

Each of the four types of test plates (Flat, Small, Medium, 
Large; 12.5 ×  16.5 mm) were fixed on the outer bottom of a plastic 
dish (53 mm diameter) with a double-coated adhesive tape, and the 
remaining plastic surfaces were masked with a super-hydrophilic 
film (SH2CLHF, 3M) to prevent larval settlement on the dish surface 
other than the test plates. The inner surface of a glass dish (inner 
diameter, 55 mm) was coated with 1.5% agar to prevent larval set-

Fig. 1. AFM images of periodic nano-folds on test plates. (A) Flat (no nano-folds). (B) Small (120 nm in height, 600 nm in pitch). (C) Medium 
(200 nm in height, 1000 nm in pitch). (D) Large (400 nm in height, 2000 nm in pitch). Note that the scale differed between the height and 
horizontal directions.
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tlement, and 15 mL of artificial seawater containing 500–2000 
freshly hatched larvae was added to the dish. The plastic dish hold-
ing the four test plates was then floated on the seawater in this glass 
dish. The dishes were placed inside a tin box to shield them from 
light and reduce the evaporation of seawater, and incubated for 24 
h at 24–25°C. After incubation, we photographed each plate and 
counted the number of larvae that settled on each test plate from 
digital images. A marginal zone of 0.3 mm width on each test plate 
was excluded from the count to avoid irregular settlement due to the 
edge effect. Nine sets of assays were performed simultaneously.

Statistical calculations were performed using R software (R 
Core Team, 2024). The difference in the ratio of larval settlement 
among the test plates was tested using one-way ANOVA. Manly’s 

resource selection index uses the ratio of usage to availability of 
resources and evaluates selectivity using Bonferroni confidence 
intervals based on a chi-square test (Manly et al., 2002). Selection 
indices for each substrate were calculated to test for significant 
preference for settlement using the Resource Selection Program 
(Okamura et al., 2004) for R, and pairwise comparison of the indi-
ces was performed with Bonferroni correction.

RESULTS AND DISCUSSION

The larvae of P. philippinensis settled on all the test 
plates in all nine sets of assays, whereas the number of set-
tlements varied among the plates. As the number of larvae 
placed in the glass dish differed among the sets, the total 
number of settlements in each set varied from 330 to 1356. 
Therefore, we compared larval settlement as the ratio of lar-
val settlement on each test plate to total settlement in each 
set (Fig. 3, and see Supplementary Table S1). The ratios 
varied considerably among the sets of the assay, and one-
way ANOVA test did not support significant differences 
among the test plates (P =  0.096). The Manly’s resource 
selection indices and the Bonferroni confidential intervals of 
each test plate (index; interval) were as follows: Flat (1.16; 
1.06–1.26), Small (0.79; 0.70–0.87), Medium (1.08; 0.98–
1.17), and Large (0.98; 0.89–1.07). Accordingly, significant 
preferences were supported for Flat (positive preference) 
and Small (negative preference). Pairwise comparison of the 
resource selection indices with Bonferroni correction sup-
ported that Small was significantly less selected than any 
other substrate, and Flat was significantly more selected 
than Small and Large (P <  0.01) (Fig. 4).

The larvae of P. philippinensis appeared to prefer flat 
surfaces over surfaces with periodic nano-folds for settle-
ment and showed a negative preference for the folds of 120-
nm height. Owing to the difficulty in fabricating nano-scale 
nipple arrays of different sizes, we fabricated and used peri-
odic nano-folds rather than nipple arrays in the assays. As 
observed in the negative preference for nano-scale-nipple 
arrays (Hirose and Sensui, 2019), substrate preference was 
also observed in the periodic nano-folds, indicating that the Fig. 2. Schematic representation of the substrate selection assay.

Fig. 3. Ratio of larval settlement on each substrate to total settlement (%) in each of the nine sets of assays. Averages of larval settlement 
per square centimeter in each set are shown in parentheses above the bars.
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nano-folds can be functional nano-structures. Periodic 
nano-folds have also been found on animal body surfaces, 
such as the colonial ascidian Clavelina spp. (Hirose et al., 
1990; Sakai et al., 2019) with a presumed enhancement in 
the reduction of bubble adhesion and light reflection (Sakai 
et al., 2019).

Significant differences in the selection indices of nano-
folds of different sizes indicate that larvae can not only 
detect the presence or absence of nanostructures, but also 
distinguish between nanostructures of different sizes. The 
three types of periodic nano-folds fabricated herein (i.e., 
Small, Medium, and Large) were geometrically similar (dif-
fering only in size). The larvae may directly sense these dif-
ferences in size or indirectly sense the difference in surface 
properties due to the size of the nano-folds. On the sub-
strate for settlement, swimming larvae often touch the sub-
strate surface with the tips of their adhesive papillae as if 
examining the surface properties. Microvilli or cellular pro-
cesses are extended from the tip of the adhesion papillae of 
larvae (e.g., Dolcemascolo et al., 2009), and they likely 
sense the properties of the substrate surface. Adhesive 
papillae have both sensory and secretory functions (Pennati 
and Rothbaecher, 2015) and each papilla projects nerve 
bundles to the cerebral ganglion of the larva (Imai and 
Meinertzhagen, 2007; Zeng et al., 2019b). In ascidian larvae, 
polymodal sensory perception is involved in adhesion and 
metamorphosis on the substrate (Hoyer et al., 2024), and the 
larvae likely use various types of sensory information for 
substrate selection. However, it remains unclear how larvae 
recognize and discriminate between surface nanostruc-
tures.

Substrate material and surface roughness are known to 
affect biofouling. The formation of centimeter-scale topo-

graphic complexity by the addition of mussel and oyster 
shells to concrete resulted in drastic changes in the species 
composition of benthic communities (Queiroz et al., 2024). 
Chase et al. (2016) demonstrated that substrate selection by 
ascidian larvae was influenced by both the species of ascid-
ian and the material of the substrate, and they suggested 
that the micro-scale roughness of the surface might play a 
role in determining preference. On the other hand, Groppelli 
et al. (2003) found that the preference of ascidian larvae var-
ied based on the mineral content of the substrate but did not 
observe significant differences in preference based on the 
micro-scale roughness of the surface. In the bivalve Mytilus 
galloprovincialis, the size of the micro-scale surface struc-
tures has a significant effect on larval settlement, with low 
settlement rates on flat and 10–20 μm high structures and 
significantly higher settlement rates on structures 40–80 μm 
and 300–1000 μm in height (Carl et al., 2012). In the present 
study, ascidian larvae showed a positive preference for 
smooth surfaces over nanostructured surfaces, but it should 
be considered that the mechanisms of substrate selection 
are different on nano- and micro-structured surfaces, as well 
as in different animals. Although superhydrophobic coatings 
with nanoscale roughness have been shown to have effec-
tive anti-fouling properties against a broad spectrum of foul-
ing organisms (Scardino et al., 2009), considering that this 
property is due to their extraordinary wettability, it is difficult 
to compare them with those in the present study. Since the 
larvae had a significantly negative preference for the Small 
(height, 120 nm; pitch 600 nm) for settlement among the par-
allel nano-folds tested here, the size is likely important for 
the surface properties provided by nano-structures. Although 
nipple heights are 200 nm or more in some terrestrial insects 
(e.g., Spalding et al., 2019), the nano-scale nipple arrays 
found on aquatic metazoans are usually approximately 100 
nm or less in height, suggesting a functional constraint for 
the size of nano-structures. In other words, to reduce the 
fouling of settlers with a negative preference for nanostruc-
tures of approximately 100 nm (or less) in height, organisms 
may have nano-structures of similar sizes on their body sur-
faces to reduce biofouling.

Substrate preference assays using periodic nano-folds 
revealed that ascidian larvae recognize nano-scale differ-
ences and show significantly negative selectivity, especially 
for nano-folds 120 nm in height. This is the first report to 
demonstrate that planktonic larvae of sessile animals recog-
nize differences in nanostructure size during substrate 
selection for settlement. It is uncertain whether larvae can 
directly sense nano-scale differences in dimensions or 
whether they can sense differences in the physical proper-
ties of the substrate surface owing to nano-structures. In 
either case, understanding why larvae discriminate between 
nano-differences and select for settlement is a crucial factor 
in effectively managing ascidian biofouling without using 
harmful methods.
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