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ABSTRACT—Apical ectodermal ridge (AER)-mesoderm interaction is important for morphogenesis in the
developing chick limb bud. Genes whose expression is dependent upon the presence of AER, are likely to
play important roles in the AER-mesoderm interaction. We report here the gene expression pattern of the
chick homolog of the 67 kDa laminin binding protein (LBP), which is a non-integrin laminin receptor whose
function relates to cell attachment, spreading, and polarization. Northern analysis showed that a single 1.4
kb transcript exists in stage 20 limb buds and which is dramatically reduced 24 hr after removal of AER. In
situ hybridization analysis revealed that the chick 67 kDa laminin binding protein gene (cLbp) was expressed
in the mesodermal region overlapping the Msx7-expressing domain and in the AER in early stage limb buds.
Expression in the mesoderm was gradually restricted to the distal region underneath the AER as develop-
ment proceeds. The expression in the limb mesoderm couid be induced by local application of FGF-2 which
could thus mimic the AER functions. These results indicated that the expression of cLbp depends on AER
signals and that the 67 kDa non-integrin receptor binding to laminin plays a role in the AER-mesoderm

interaction.

INTRODUCTION

During the development of the chick limb bud, a recipro-
cal interaction takes place between the apical ectodermal ridge
(AER) and the underlying mesoderm. The AER is responsible
for inducing wing outgrowth and maintaining the underlying
mesoderm in a labile, undifferentiated state. These undiffer-
entiated and proliferating cells underlying the AER compose
a region referred to as the “progress zone” which is the site of
positional fate assignment in the limb (Summerbell et al., 1973).
The limb bud mesoderm, on the other hand, maintains both
the specialized morphology and functional properties of the
AER (Hinchliffe and Johnson, 1980; Fallon ef al., 1983). Al-
though the morphogenic importance of the AER-mesodermal
interaction is now well established, the underlying mechanisms
are not yet fully understood. Growth factors, homeobox-gene
products, and the extracellular matrix (ECM) are all strongly
implicated in the signaling process of the AER-mesodermal
interaction (see for example Tomasek and Brier, 1986;
Muneoka and Sassoon, 1992).

A number of growth factors, including FGF-2, which is a
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member of the fibroblast growth factor (FGF), are expressed
in the AER and the distal mesoderm of the developing limb
bud (Ralphs et al., 1990; Niswander ef al., 1993; Savage ef
al., 1993; Crossley et al., 1996). It has been shown that FGF-
2 can mimic the growth stimulating effects of the AER on
progress zone cells (Riley et al., 1993; Fallon et al., 1994).
These studies suggest that FGF-2 could substitute for some
AER functions.

The msh-like homeobox-containing gene, Msx7, is nor-
mally expressed in the AER and the progress zone in early
stage limb buds (Yokouchi et al., 1991). Expression in the
progress zone is controlled by signals emanating from the
AER (Ros et al., 1992), and mesodermal expression of Msx1
can be maintained by FGF-2 (Watanabe and Ide, 1993). Msx1
has therefore been considered to be involved in AER-meso-
dermal interactions by maintaining progress zone cells in an
uncommitted state (Robert et al., 1991; Ros et al., 1992).

The role of the ECM in morphogenetic tissue interactions
has been studied extensively. ECM components regulate many
aspects of cell behavior including motility, morphology and
gene expression (Adams and Watt, 1993). In addition, the
ECM can regulate the expression and activity of certain growth
factors, including members of the FGF family (Yamaguchi et
al., 1990; Streuli et al., 1993; Mason, 1994). Therefore matrix
molecules may act both directly and indirecily to regulate cell
behavior during development. Laminin, a major component
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of the basement membrane and extracellular matrix, functions
in cell adhesion, proliferation, and differentiation (Timpl, 1989;
Mecham, 1991). The glycoprotein laminin is involved in can-
cer metastases, as well as tumor invasiveness (Terranova et
al., 1983; Wewer et al., 1986), and malignant cells often dis-
play aberrations in this protein (Kanemoto et al., 1990;
Yamamura et al., 1993). It is also clear that laminin plays cru-
cial roles in lung morphogenesis (Schuger et al., 1990). in
chick limb bud laminin is expressed in the subectodermal base-
ment membrane, especially at the base of the AER (Critchlow
and Hinchliffe, 1994), indicating a possible role of laminin in
AER-mesodermal interaction.

Originally isolated from extracts of mammalian cells the
67 kDa laminin binding protein (67 kDa LBP) has been stud-
ied as a prototypic non-integrin ECM receptor (Wewer et al.,
1986). This protein binds the peptide sequence YIGSR, found
in the B1 chain of iaminin, with higher affinity than the integrins
(Graf et al., 1987; Bushkin-Harav et al., 1995; Landowski et
al., 1995a). It has also been demonstrated that the expres-
sion of the 67 kDa protein and its mRNA is down-regulated by
the differentiation of human colon carcinoma cells (Yow et al.,
1988; Mafune et al., 1990) and human neuroblastoma cells
(Bushkin-Harav et al., 1995), and that hence its interaction
with laminin might play a role in the attachment and spread-
ing of carcinoma cells (Cixe et al., 1991; Hand et al., 1985;
Wewer et al., 1987) and the polarization of MDCK cells (Salas
et al., 1992).

In order to study genes with important functions in AER-
mesodermal interaction, an AER-free limb bud cDNA library
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(AER(-)) subtracted from a stage 20 wing bud cDNA library
(AER(+)) was screened. Sequencing of nine cDNA clones,
which were specific to or enriched in AER(+) library, revealed
three to be mitochondrial genes, two genes encoding respira-
tory enzymes, one ribosomal gene, and two genes which
showed no significant homology to known proteins. The ninth
clone was a partial cDNA of the 67 kDa laminin binding pro-
tein gene.

The purposes of the present work are to describe the
expression pattern of the chick LBP gene (cLbp) in the limb
bud, and to analyze the regulation of its expression by the
AER and FGF-2 in an attempt to extend our knowledge about
the significance of cLBP in AER-mesodermal interaction.

MATERIAL AND METHODS

Subtractive PCR

The subtractive PCR was carried out as described by Nakayama
et al. (1996). RNA was extracted from wing buds at stage 20 (AER(+))
and wing buds 24 hr after AER removal (AER(-)), by the acid
guanidinium thiocyanate-phenoi-chloroform (AGPC) method
(Chomczynski and Sacchi, 1987). Poly(A)" RNA was purified from
each sample on oligotex-dT 30 super (Takara), and double-stranded
cDNAs were synthesized using a cDNA synthesis kit (Pharmacia).
cDNAs were the digested with restriction enzyme Rsal (Takara) to
produce fragments for subtraction. The digested DNA fragments of
AER(+) and the AER(-) were ligated respectively with M13-forward
(gtaaaacgacggccagtgag) and M13-reverse (cggaaacagctatgaccatg)
adapters. An AER(+) specific library was constructed by subtraction
of AER(-) from AER(+), then amplifying by PCR using M13-reverse
primer to amplify specifically subtracted AER(+). The amplified frag-
ments were subcloned into pCR-TMI plasmid vector (Invitrogen). Se-
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Fig. 1. (a) Schematic diagram of chick 67 kDa laminin binding protein cDNA (cLbp). The full length cDNA map is drawn according to GenBank
X94368. The boxed region indicates the transiated portion. Clone SUB44 was obtained by subtractive PCR, which overlapped the sequence
from —69 to 472 of cLbp. (b) Northern blot analysis. poly(A)* RNA (10 ug/lane) from stage 20 limb buds (AER(+)) (lane 1) and the wing buds 24
hr after AER removal at stage 20 (AER(-)) (lane 2) were loaded. The blot was hybridized with the SUB44 probe after final washes of the filters in
0.1 x SSC, 0.1% SDS at 45°C. The probe detects a single band of about 1.4 kb. The blot was rehybridized with a chicken B-actin probe to control

for RNA content in each lane.
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quences of the clones were determined by the dideoxy chain-termi-
nation method using a sequencing kit (Amersham) and auto sequencer
(HITACHI).

Databases were searched with the BLAST program (Altschul et
al., 1990) using the NCBI network service.

FGF-2 appilication in the chick wing bud mesoderm

Stage 20 wing buds were dissected and placed in 1% trypsin for
30 min. at 4°C to remove the ectoderm (Aono and Ide, 1988). The
denuded mesoderm fragments were kept in F12 medium (Nissui)
containing 1% FCS at 37°C.

For FGF-2 application, Affi-Gel beads (200-250 um diameter;
Bio-Rad) were soaked in 2 pl of 0.1 ug/ml FGF-2 (R&D systems) for
at least 1 hr at room temperature before application. A small slit was
made in the denuded mesoderm with a needie and a bead was in-
serted into it. The operated mesoderm fragments were incubated in
the F12 medium containing 1% FCS under conditions as reported
previously (Aono and Ide, 1988) for 24 hr, fixed in 4% paraformalde-
hyde and then examined for gene expression.

In situ hybridization

In situ hybridization was performed using digoxigenin-labeled
probes following the procedures of Yokouchi et al. (1991), and whole-
mount in situ hybridizations were carried out as described by Yonei et
al. (1995).

RESULTS

The SUB44 cDNA clone was obtained by subtraction of
the AER(-) cDNA from AER(+) cDNA library. By sequence
analysis the clone was identified as fragment of the chick
laminin binding protein gene (cLbp) (Fig. 1a). Northern blot
hybridization analysis revealed that the cLBP mRNA was en-
riched but not specific in AER(+) (Fig. 1b).

Expression pattern of cLbp in developing embryo

The spatial expression pattern of cLbp was determined
by in situ hybridization. We hybridized adjacent sections with
the prospective sense and anti-sense probes for cLbp frag-
ment, SUB44 (Fig. 1a). Control embryos hybridized with a
sense probe did not show signals (not shown).

Remarkable expression of cLbp in stage 24 embryos
could be observed in branchial arches (maxillary, mandibu-
lar, and hyoid arch), dermomyotome, and in the distal margin
of limb buds (Fig. 2a). In sections through the otocysts, cLbp
was expressed in the mesoderm of the hyoid arch, being es-
pecially strong in areas underneath ectoderm (Fig. 2b). Weak

Fig. 2. Analysis of cLbp expression in stage 24 chick embryo. (a) Whole mount views. Arrowheads indicate myotome. (b) Transverse section
at the hindbrain level, and (c¢) at the trunk level. dr, dorsal root ganglia; hb, hindbrain; hy, hyoid arch; ma, maxillary; md, mandibular; my,
myotome; n, neural tube; nt, notochord; ot, otocyst; pr, pharynx. Bars= 1mm for (a); 100 um for (b) and (c).
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expression was also observed in the neural tube and the oto-
cyst. In sections through the trunk, cLbp was strongly ex-
pressed in the neural tube, dorsal root ganglia, and nerve roots
(Fig. 2¢). Neural crest and notochord was negative. The dor-
sal lateral region of the somite was positive, though the scle-
rotome was negative at this stage (Fig. 2c). The precursors of
the limb musculature (arrowheads in Fig. 3c), which emigrated
from the dermomyotome into the limb bud (Chevallier et al.,
1977; Williams and Ordahl, 1994), were positive. Mesone-
phrons also expressed cLbp strongly.

The expression patterns of cLbp in various tissues of stage
16-29 embryos are summarized in Table 1. The expression in
dermatome decreased by stage 25. The differentiating scle-
rotome was positive until stage 18 (cf. Fig. 3a, b). The other
tissues showed the same expression pattern throughout
stages 16 to 29.

Expression pattern of cLbp in the developing limb bud
The prospective wing mesoderm of stage 16 embryos
did not express cLBP mRNA (not shown). The expression

was first detected at stage 18 in the whole mesoderm of the
limb bud (Fig. 3a), but not in the flank region (Fig. 3b).The
prospective AER was positive (arrow in Fig. 3a), but non-ridge
ectoderm was negative. In stage 20 limb buds, cLBP mRNA
was transcribed broadly in the mesoderm of the distal region,
being most abundant in the cells underneath the dorsal ecto-
derm (Fig. 3c). The AER, especially cells at the epidermal-
mesodermal interface, was positive (arrow in Fig. 3c), whereas
non-ridge ectoderm was negative. Hybridization to a horizon-
tal section (Fig. 3d) showed no difference in expression along
the anteroposterior axis of limb bud. The expression was
gradually restricted to the distal margin during limb develop-
ment. At stage 24, expression remained in the region of the
distal mesoderm underneath the ectoderm, but disappeared
in the proximal mesoderm (Fig. 5e). In the proximal region the
expression was observed the skeletal muscle, but not in the
developing skeletal elements including the perichondrium (Fig.
5f). By stage 29, cLbp expression had decreased (Table 1).

Fig. 3. cLbp expression in developing wing bud (see text). Adjacent section at the wing bud level (a), and trunk level (b) of a stage 18 embryo.
Arrow indicates the prospective AER. dm, dermomyotome; sc, sclerotome; mn, mesonephros. (¢) Transverse section from stage 20 embryo
through the wing region. Arrow indicates AER. Arrowheads indicate the precursors of the limb musculature. mn, mesonephros. D, dorsal; V,
ventral. (d) Horizontal section of a wing bud in stage 20 embryo. This section is at a slightly dorsal level and so does not contain the AER. A,
anterior; P, posterior; Di, distal; Pr, proximal. (e) Transverse section of a wing bud in stage 24 embryo, Arrow indicates AER. (f) Parasagittal
section at the proximal region of a stage 24 wing bud. Arrowheads indicate skeletal muscles. Bars = 300 um for (a) and (b); 500 um for (¢)-(f).
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Table 1. Summary of cLbp expression*

Stage
16 18 22 25 29
Limb
Ectoderm - +/d +/d +/d -
Dorsal nd - - - -
Ventral nd - - - -
AER nd + + + nd
Mesoderm - + +/d +/d +
Peripheral nd + + + +
Muscle mass nd nd nd + +
Chondrogenic core nd nd nd - -
Trunk

Neural tube + + + + +
Peripheral nerves + + + + +
Dorsal root ganglia + + + + +
Neural crest - - - - -
Notochord - - - - -

Somite
Myotome + + + + +
Sclerotome + + - - -
Dermatome + + + + +
Mesonephros nd + + + +

*: —, not stained; £, weekly stained; +, stained; +/d, stained distally
but not proximally; nd, not determined.

AER-dependent expression of cLbp

The cLBP mRNA significantly decreased in the AER-free
limb bud as compared with normal controls, suggesting a pos-
sibility that cLbp transcription could be maintained by the AER.
Msx1 is expressed in the AER and in the mesoderm under-
neath it (Yokouchi et al., 1991}, and expression is controlled
by signals emanating from the AER (Ros et al., 1992). There-
fore, we compared cLbp and Msx1 expression patterns by
whole mount in situ hybridization.

cLbp expression was stronger in the marginal zone of
the limb bud, but disappeared in the flank region (Fig. 4a).
The expression pattern was similar to that of Msx7 in early
stage limb buds (Fig. 4b). At stage 25, expression was ob-
served in areas distal to the autopodium, and also remained
in the posterior marginal zone (Fig. 4c). These patterns were
broader than the Msx7 expression which was restricted to the
distal margin and the interdigits (Fig. 4d). Both cLbp (5 cases;
Fig. 4e) and Msx1 (3 cases; Fig. 4f) expressions were dra-
matically reduced in the limb bud 24 hr after surgical removal
of the AER at stage 20. This result supports data from North-
ern hybridization (cf. Fig. 1b). However, the expression of cLbp
could still be observed 12 hr after AER removal (not shown),
whereas the expression of Msx1 was undetectable in the dis-
tal mesoderm by 6 hr after the operation (Ros et al., 1992).

FGF-2 has been shown to mimic the functions of the AER
(Riley et al., 1993; Fallon et al,, 1994). To determine whether
FGF-2 is able to induce cLbp expression in the mesoderm of
stage 20 limb bud, a heparin bead soaked in FGF-2 (0.1 pug/
ml) was applied to the mesodermal mass lacking an AER (7
of 10 cases). After 24 hr, expression was induced in the me-
soderm surrounding the FGF-2 bead (Fig. 5a), whereas little
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signal was detected in control fragments (8 cases; Fig. 5b).

DISCUSSION

Characteristics and possible role of cLBP in developing
limb bud

The 67 kDa laminin binding protein (67 kDa LBP) was
originally isolated from the extracts of mammalian cells by
affinity chromatography on laminin-Sepharose columns
(Wewer et al., 1986). This protein binds the peptide sequence
YIGSR, found in the B1 chain of laminin, with higher affinity
than the integrins (Graf ef al., 1987; Bushkin-Harav et al., 1995;
Landowski et al., 1995a), and might play a role in cell attach-
ment, spreading, and polarization (Hand et al., 1985; Wewer
et al., 1987; Cixe et al., 1991; Salas et al., 1992). A partial
cDNA clone for the human 67 kDa LBP was originally se-
lected from an expression library by screening with a mono-
clonal antibody raised against human laminin (Wewer et al.,
1986). Subsequently, full-length cDNA clones were obtained,
from various mammals, by investigators specifically interested
in laminin binding proteins (Rao et al., 1989; Grosso et al.,
1991), as well as groups studying gene expression in trans-
formed cells (Yow et al., 1988; Satoh et al., 1992a, b; Kondoh
et al., 1992), translational control in mouse cells (Chitpatima
et al., 1988), and development of the embrycnic eye (Rabacchi
et al.,1990). All the cDNAs obtained encode proteins of esti-
mated molecular weight between 32-34 kDa, which corre-
sponds to the 32 kDa precursor of the 67 kDa LBP in human
cells (Landowski et al., 1995b), and the amino acid sequences
are highly conserved. These proteins lack the signal se-
quences or simple hydrophobic domains that would be ex-
pected in a typical trans-membrane protein (Grosso et al.,
1991). cLBP had no distinct N-terminal signal peptide se-
quence following the putative initiation site (GenBank X94368).
However, Landowski et al. (1995a) shows the expression
of the 67 kDa LBP on the cell surface using a homotypic
overexpression system. It appears to form a homodimer of 32
kDa subunits (Landowski et al., 1995b), associates with mem-
branes and interacts with elements of the cytoskeleton (Brown
et al., 1983; Massia et al., 1993; Keppel and Schaller, 1991).
These observations suggest that LBP function may be de-
pendent on posttranslational modifications responsibie for
surface localization and laminin-binding characteristics
(Landowski et al., 1995a).

In chick limb bud, laminin is present in all regions of the
subectodermal basement membrane as a clearly defined line
and also in the distal mesoderm (Critchlow and Hinchiliffe,
1994). We showed that cLbp was localized in the AER and
the distal mesoderm underneath it (Fig. 3e), whereas $1
integrin, which is a subunit for laminin receptors (von der Mark
et al., 1991; Sonnenberg et al., 1993; Thorsteinsdottir et al.,
1995), localized along the entire epidermal-mesodermal in-
terface (Critchlow and Hinchliffe, 1994), suggesting that cLBP
might have different roles from the integrin receptor in epider-
mal-mesodermal interaction. Salas et al. (1892) shows that
the 67 kDa LBP is involved in the acquisition of apical polarity



974 K. Hara et al.

Fig. 4. Comparison of cLbp and Msx1 expression in limb buds. During early stages of limb development cLbp is expressed in the peripheral
zone, overlapping Msx1. Shown are whole-mount in situ hybridizations of stage 22 limb buds probed for cLbp (a), Msx1 (b). At stage 25 cLbp
expression (c) is broader than Msx7 expression which is restricted to the distal margin and interdigit regions (d). Both cLbp (e) and Msx1 (f)
expression were dramatically reduced in the limb bud 24 hr after AER removal at stage 20. Bars = 500 um.

of MDCK cells. These results indicate that cLbp might trans-
duce an ECM-signal to the cell responsible for the organiza-
tion of the apical region in the limb bud. In addition there is
evidence that the ECM also plays a role in establishing mor-
phological differences between AER and non-ridge epithelia
in the limb bud (Tomasek and Brier, 1986). cLBP may there-
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fore also participate in maintaining the special AER structure.

The expression of cLbp in the muscle precursors (cf. Fig.
3c) and muscle masses (cf. Fig. 3f) might be of significance in
relation to the formation of the muscle masses in the limb
bud. Laminin is concentrated in the muscle masses in the limb
bud (Solursh and Jensen, 1988; Critchlow and Hinchliffe,
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Fig. 5. Effect of FGF-2 on cLbp expression in chick limb mesodermal cells. (a) Bead (asterisk) presoaked in PBS containing FGF-2 (0.1 pg/mi)
was implanted in the limb mesoderm from which ectoderm was removed in advance. (b) Control case with PBS-loaded bead (asterisk). Bars =

100 pm.

1994). Previous works have shown that laminin substratum
could enhance myoblast adhesion, promote myoblast prolif-
eration, and migration (Kuhl et al., 1982, 1986; von der Mark
and Kuhl, 1985; Ocalan et al., 1988). Furthermore Foster et
al. (1987) showed that rat skeletal myoblasts become respon-
sive in terms of increased proliferation and differentiation to a
laminin substratum at a particular stage during development.
Since B1 integrin was not synthesized in the muscle masses
in the wing bud (Critchlow and Hinchliffe, 1994), our data may
support a role for cLBP as a functional receptor of laminin in
regulating the proliferation, migration, and formation of the early
muscle formation during limb morphogenesis.

On the other hand, previous studies suggested the pos-
sibility that 67 kDa LBP may have another function, serving a
role in control of translation. Cytosolic protein (p40) from mouse
cells, which is associated with ribosomes and polysomes, has
shown similarity to the 67 kDa LBP (McCaffery et al., 1990;
Auth and Brawerman, 1992). Several groups have also iden-
tified proteins from rat (Tohgo et al., 1994), sea urchin
(Rosenthal and Wordeman, 1995), flies (Melnick et al., 1993),
and yeast (Davis et al., 1992; Ellis et al.,, 1994; Demianova et
al., 1996) with extensive sequence similarity to the 37/67 kDa
LBP, and have shown that these proteins are apparently com-
ponents of the ribosomal translational machinery.

Relation of cLbp expression o mesodermal cell differen-
tiation in chick limb bud

Chick limb development depends on the continuous pres-
ence of the AER (Saunders, 1948; Summerbell, 1974a, b).
Reciprocal interactions with the AER promote the growth of
the underlying mesoderm (progress zone) and maintain it in
an undifferentiated state (Globus and Vethamany-Globus,
1976; Solursh et al., 1981). FGF-2 is present at high concen-
trations during the early stage of chick limb bud development
(Munaim et al., 1988; Seed et al., 1988; Savage et al., 1993),
and it has been shown to mimic the effects of AER (Riley et
al., 1993; Fallon et al., 1994). Msx1 is normally expressed in
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the AER and the progress zone mesoderm in early stage wing
buds (Hill et al., 1989; Robert et al., 1989; Davidson et al.,
1991; Yokouchi et al., 1991). The expression in the limb me-
soderm is controlled by signals emanating from the AER (Ros
et al., 1992; Robert et al., 1991), and FGF-2 has been shown
to maintain Msx1 expression (Watanabe and Ide, 1993; Wang
and Sassoon, 1995). Though the role of this protein itself in
developing limb buds is at present unclear, myogenic cell lines
that constitutively express Msx1 have been shown to become
differentiation-defective (Song et al., 1992; Woloshin ef al.,
1995). These observations are consistent with the hypothesis
that the AER is involved in the maintenance of the underlying
mesoderm in an undifferentiated state via the regulation of
Msx1 gene expression.

We showed that excision of the AER reduced the cLbp
transcription level and that FGF-2 could recover the expres-
sion in mesodermal cells in a similar manner as Msx7 (Ros et
al., 1992), indicating that cLbp expression in the limb meso-
derm could be maintained by FGFs emanating from the AER.
However cLbp expression remained in the distal mesoderm
12 hr after excision of the AER (not shown), although by this
point Msx1 was undetectable (Ros et al., 1992). The expres-
sion patterns of cLbp and Msx1 differ during normal develop-
ment: expression of Lbp is broader than that of Msx1. These
findings suggest that cLbp expression would not be regulated
through the Msx1 cascade. cLbp expression in the chick limb
bud was distributed as a gradient with the highest levels dis-
tally, and almost overlapped the Msx7 expression pattern.
cLBP transcripts are also found in undifferentiated mesoderm
at the tips of the facial primordia in a similar fashion to Msx7
(Brown et al., 1993). It has been demonstrated that the in-
creased amount of 67 kDa LBP upregulates properties of
malignant cells such as high metastatic potential and rapid
growth (Cixe et al., 1991; Hand et al., 1985; Wewer ef al,
1987), and that the expression of the 67 kDa LBP and its mRNA
are dramatically reduced in differentiated neuroblastoma cells
(Bushkin-Harav et al., 1995) and colon carcinoma (Yow et al.,
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1988; Mafune et al., 1990). It therefore appears that the level
of the 67 kDa LBP is closely related to cell differentiation, indi-
cating a possibility that cLBP has a role in maintaining the
progress zone mesoderm in an undifferentiated state during
the development of the chick limb bud.
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