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Original article

Internal validation of predictive logistic regression models for
decision-making in wildlife management

Justin A. Gude, Michael S. Mitchell, David E. Ausband, Carolyn A. Sime & Edward E. Bangs

Predictive logistic regression models are commonly used to make informed decisions related to wildlife management

and conservation, such as predicting favourable wildlife habitat for land conservation objectives and predicting vital

rates for use in population models. Frequently, models are developed for use in the same population from which

sample data were obtained, and thus, they are intended for internal use within the same population. Before predic-

tions from logistic regression models are used to make management decisions, predictive ability should be validated.

We describe a process for conducting an internal model validation, and we illustrate the process of internal valida-

tion using logistic regression models for predicting the number of successfully breeding wolf packs in six areas in the

US northern Rocky Mountains. We start by defining the major components of accuracy for binary predictions as

calibration and discrimination, and we describe methods for quantifying the calibration and discrimination abilities

of a logistic regression model. We also describe methods for correcting problems of calibration and future predictive

accuracy in a logistic regression model. We then show how bootstrap simulations can be used to obtain unbiased

estimates of prediction accuracy when models are calibrated and evaluated within the same population from which

they were developed. We also show how bootstrapping can be used to assess coverage rates and recalibrate the end-

points of confidence intervals for predictions from a logistic regression model, to achieve nominal coverage rates.

Using the data on successfully breeding wolf packs in the northern Rocky Mountains, we validate that predictions

from a model developed with data specific to each of six analysis areas are better calibrated to each population than a

global model developed using all data simultaneously. We then use shrinkage of model coefficients to improve cali-

bration and future predictive accuracy for the area-specific model, and recalibrate confidence interval endpoints to

provide better coverage properties. Following this validation, managers can be confident that logistic regression pre-

dictions will be reliable in this situation, and thus that management decisions will be based on accurate predictions.

Key words: calibration, Canis lupus, confidence interval coverage, decision-making, discrimination, internal validation,
logistic regression, northern Rocky Mountains
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Logistic regression models are developed often in
wildlife management and management-related re-
search (Keating&Cherry 2004, Johnson et al. 2006,

Guthery & Bingham 2007). A common use of these
models is tomake informeddecisions,wheremodels
generated by data collected in the past are used to
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make predictions. Numerous applications of pre-
dictive logisticmodels are related towildlife habitat,
such as predicting favourable habitat for species
(Mladenoff et al. 1995, O’Brien et al. 2005), predict-
ing critical habitat for endangered species (Turner
et al. 2004), andpredicting species occurrence (Scott
et al. 2002). Other common applications include
estimating vital rates for use in predictive models of
population dynamics (White 2000, Williams et al.
2002:143-161 and 343-347).
Applications of logistic models include making

predictionsaboutfutureobservationsfromthesame
study area or study population. Using models gen-
erated with historical data to predict future events
can be problematic. Though models may fit histor-
ical data well, future circumstances may not be
sufficiently similar to allow for reliable predictions
from the logistic model. A danger also exists that a
model is overfit, which leads to biased predictions
(Harrell 2001:60-64, Randin et al. 2006). Further-
more, nothing assures that estimates of uncertainty
for model predictions will accurately reflect uncer-
tainty in the future. The ability of logistic regression
models to make good predictions should be eval-
uated before they are used in practice. Otherwise,
such models may lead to biased predictions and
misguided management decisions.
Fitting a model to data to estimate parameters

and test hypotheses about processes that may ac-
count for observed patterns in a data set differs
fundamentally fromdevelopingamodel intended to
make accurate predictions about the future (Copas
1983). To determine reliability of a model for mak-
ing predictions with new data, an unbiased evalua-
tion is needed todetermine the prediction error rate,
and identify shortcomings in a model that lead to
poor predictions (Miller et al. 1991).When this type
of evaluation is conducted for a model that will be
used to make predictions for the same population
from which it was developed, the process is called
internal validation (Harrell et al. 1996).
In our paper, we describe a process for internally

validating a predictive logistic regression model,
and illustrate the process with an example based on
the estimation of successfully breeding wolf packs
(BP) in the northern Rocky Mountains (NRM;
Mitchell et al. 2008). A wolf BP has been legally de-
fined as at least two adult wolves and twopups from
the same pack that survive until December 31 of the
year of reproduction (USFWS 1994).Mitchell et al.
(2008) developed logistic regression models design-
ed to estimate the number of BPs in theNRMbased

on the sizes of wolf packs, using data collected
through intensive monitoring from 1981 to 2005.
Recovery criteria for wolves in the NRM require
monitoring BPs (USFWS 1994). The capacity to
monitor the number of BPs intensively is expected
to diminish after federal delisting due to reduced
funding in state wildlife agencies, so these models
weredeveloped toassistwolfmanagers inpredicting
the number of BPs in the NRM using more easily
obtained information on pack sizes. Mitchell et al.
(2008) found that the relationship betweenpack size
and theprobability of a pack containing aBPvaried
across six analysis areas within NRM, and was in-
fluenced by levels of human-caused mortality and
wolf population dynamics unique to each area.
Mitchell et al. (2008)argued that aglobalmodel that
made use of all data from all areas to develop a
predictive equationwouldnotpredict thenumberof
BPs accurately across the NRM. The logistic BP
models which they developed were fit to historical
data and were intended to make predictions for the
same population using future data. However, the
relative predictive abilities of area-specific andglob-
al models were only evaluated using the same data
that were used to develop the models, and the pre-
dictive ability of the models was not validated. We
conducted an internal validation of the predictive
abilities of the models presented in Mitchell et al.
(2008).

Methods

Example context
Mitchell et al. (2008) developed twopredictive logis-
tic regression models for estimating the number of
BPs in each of six areas when the number and size of
wolf packs in those areas are known. One of these
models uses a common intercept and slope term to
estimate the number ofBP (globalmodel), while the
other uses intercept and slope terms unique to each
area to estimate the number of BP (area-specific
model, Table 1, Fig. 1). Both of thesemodels can be
used to rank the relative probabilities that multiple
wolf packsareBPs, and toestimate the total number
of wolf BPs in an area, T̂, using:

T̂ ¼
Xk
i¼4

ðni
�p̂iÞ;

where ni is the number of wolf packs of a given size
(for i i four wolves in order to meet the legal BP
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definition), p̂i is thepredictedprobability thatapack
of size i is a BP from the logistic model, and the
summation is over all observed pack sizes greater
than three wolves. The confidence interval (CI) esti-
mators for probabilities that wolf packs are BPs
presented inMitchell et al. (2008) used the standard
normal method as an approximation for binomial
data on the logit scale, then back-transformed CI
endpoints to theprobability (0-1) scale.Thismethod
is known to have coverage rates that do not match
the 100*(1 - a) nominal coverage rate, where a is
defined as the type I error rate, particularly for esti-
mated probabilities closer to 0 and 1 than to 0.5
(Jennings 1987).However, we chose to evaluate this
methodbecauseMitchell et al. (2008) recommended
its use with the BP estimators.
The model must be able to discriminate among

packswith high and low probabilities of being aBP,
have well-calibrated predicted probabilities across
the range of predictions, and have CIs for the num-
ber of BPs in each area with accurate endpoints. In
this case, two CIs are relevant. The two-sided 95%
CI will provide a standard and interpretable mea-
sureofoverallprecision intheestimate foreacharea.
One-sided 95% lower CIs can be used for manage-
ment purposes to provide a level of confidence as to
whether management activities have reduced the
number of wolf BPs below recovery criteria, given
uncertainty in the point estimates. If the number of
BPs is reducedbelowrecovery criteria,management
authority for wolves will be transferred from state
agencies to the federal government.

Mitchell et al. (2008) recommended that the area-
specificmodel be used for prediction rather than the
global model. We quantified the merits of this rec-
ommendationbasedonvalidationof predictive abi-
lities of the twomodels. Our validation consisted of
three steps: 1) choosing between global and area-
specificmodelsbasedonpredictionaccuracy ineach
analysis area, 2) improving calibration and predic-
tive ability of the selected model across the range of
predicted probabilities, and 3) calibration of the CI
endpoints of the selected model to match desired
coverage rates.

Internal validation of logistic models
Ourmethodfor internallyvalidating theaccuracyof
predictive logistic regression models consists of five
steps (Fig. 2). The first two steps are aimed at esti-
mating twodifferentmeasurementsofaccuracy, cal-
ibrationanddiscrimination, and thenext three steps
involve correcting for bias in estimates of accuracy,
improving accuracy, and improving confidence in-
terval coverage rates.

Accuracy of point estimates from logistic models
canbedividedconceptually into calibrationanddis-
crimination. Calibration describes whether predict-
ed probabilities are too high or too low relative to
true population values, whereas discrimination ref-
ers to the correct relative ranking of predicted pro-
babilities (Justice et al. 1999, Pearce&Ferrier 2000).
Forexample,aperfectlycalibratedmodelmightpre-
dict a survival probability of 0.2 for a given animal
when 0.2 of the animals in the population with the

Table 1. Estimated model coefficients and SEs for global and area-specific predictive logistic regression models presented in
Mitchell et al. (2008). Model parameters are on the logit scale and were estimated using maximum likelihood. Idaho was used as
the reference area for generating the global model and area-specific models. Parameter estimates for area-specific models other
than Idaho represent adjustments to the intercept and slope for the Idaho reference model, e.g. the model for NW Montana would
be (-0.90 -1.19)+((0.38+0.10) * pack size). SW Montana-CIEPA refers to the Central Idaho Experimental Population Area, as it
overlaps into Montana. SW Montana-GYEPA refers to the Greater Yellowstone Experimental Population Area, as it overlaps
into Montana.

Parameter Analysis area

Global model
------------------------------------------------------

Area-specific model
------------------------------------------------------

Parameter estimate SE Parameter estimate SE

Reference intercept Idaho -1.7 0.40 -0.90 0.75
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Area-specific intercept adjustment NWMontana . . -1.19 1.12

SWMontana-CIEPA . . -5.41 3.59

SWMontana-GYEPA . . -1.61 1.78

Wyoming . . -1.16 1.54

Yellowstone NP . . -0.78 1.14
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Reference slope, pack size Idaho 0.43 0.06 0.38 0.11
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Area-specific slope adjustment NWMontana . . 0.10 0.17

SWMontana-CIEPA . . 0.84 0.68

SWMontana-GYEPA . . 0.12 0.29

Wyoming . . 0.09 0.23

Yellowstone NP . . -0.01 0.16
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same characteristics actually survive. The samemo-
del might be poorly calibrated at higher predicted
probabilities if it predicts a survival probability of
0.9 for a given animal when 0.5 of the animals in the
population with the same characteristics actually
survive. This model would, however, have accurate
discrimination ability as higher probabilities of sur-
vival are predicted for animalswith higher observed
survival rates. Methodologies for more precisely
quantifying calibration and discrimination accu-
racy are described in the following.

Calibration
Methodology for assessing overall average calibra-
tion of a logistic model was introduced by Cox
(1958), and consists of developing a logistic model
using one data set. Calibration of the model can be
assessed using an independent data set of observed
values.Cox (1958) suggestedmodeling the observed
independent values as a function of their predicted
values, p̂i, obtained by applying the fitted model to
the independent data, using another logistic regres-
sion.The twoestimatedparameters in thismodel,b0

Figure1.Predictedprobabilities thatawolfpackcontainsasuccessfulbreedingpair (BP) inthenorthernRockyMountains.Predictions
are fromtheglobal (dashed line, repeatedoneverypanel) andarea-specific (solid lines)modelsfitbymaximumlikelihood, as inTable1.
The dot plots across the top and bottomof the panels represent the distribution and quantity of '1' and '0' data used to fit themodels in
each area, respectively. SWMontana-CIEPAand the SWMontana-GYEPA refer to theCentral Idaho experimental population area
and Greater Yellowstone experimental population area, respectively, as they overlap into Montana.
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and b1, are useful as measures of calibration of the
model to the independent data set, specifically to
examine the hypothesis that the observed propor-
tions in the independent data set are equal to the
predicted probabilities from the original model (i.e.
PrðYi ¼ 1Þ ¼ p̂i). The slope, b1, is a measure of the

direction and spread of the predicted probabilities.
Whenb1=1, the p̂i aregenerallycorrect. Ifb1>1, the
p̂i show the correct direction but do not vary
enough. If 0<b1<1, the p̂i vary too much. If b1<0,
the p̂i show the wrong direction, and if b1=-1, the
p̂i are exact complements of the true probabilities
(Pearce & Ferrier 2000). The intercept, b0, is a mea-
sure of the overall calibration of the model if b1=1,
andof the calibrationat p̂i=0.5 ifb1l1, because the
Cox model assumes b0 is a function of b1. If b0=0,
the p̂i are generally correct, the p̂i are too low if
b0>0, and the p̂i are too high if b0<0 (Pearce &
Ferrier 2000).

The methods created by Cox are useful measures
of the average calibration of the model. However,
as with any regression, the fitted model may be cor-
rect on average even though there are areas within
the range of predictor variables where the model
doesnotfitwell.x2-type testshavebeendeveloped to
test the average calibration for logistic regression
models(Hosmer&Lemeshow2000:147-156).These
methods do not necessarily illustrate what range(s)
of predicted probabilities have poor fit to the ob-
served data (Hosmer & Lemeshow 2000:151). An
accurate fit to the data across the range of predicted
probabilities from a logistic regression is often re-
quired, and the rangesofpredictedprobabilities and
covariates for which the fit of the model poorly
matches theobserveddataareof interest.Hosmer&
Lemeshow (2000:167-186) provide diagnostic mea-
sures for the leverage of individual covariate pat-
terns on model parameter estimates and goodness
of fit statistics to identify covariate patterns that
lead to poor model fit. Focusing instead on the
calibration of predicted probabilities, Harrell et al.
(1996) identify smoother functions on scatterplots
of observed vs predicted probabilities as simple,
graphical measures of the calibration of model pre-
dictions. One function that is readily available in
many statistical packages is locally-weighted re-
gression, the LOWESS smoother (Cleveland 1979,
1981). This function provides a visual representa-
tion of how well the predicted probabilities match
theobserveddata.Becausebothaveragemodel cali-
bration and adequate calibration across the range
of predicted probabilities are necessary for predict-
ing wolf BPs, we applied both the Cox method and
a LOWESS smoother to assess calibration of the
global and area-specific models for predicting wolf
BPs. We used the Design package (Harrell 2005) in
R 2.5.0 (R Development Core Team 2007) to con-
duct these analyses.

Figure 2. Flow diagram illustrating the steps of interval valida-
tion of predictive logistic regression models that are described
in the text. Calibration and discrimination are measures of
predictive accuracy and are defined in the text.
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If problems of calibration are identified using
the Cox regression or the LOWESS smoother ap-
proaches, the analyst has several options for ad-
dressing the problems, including shrinkage of pre-
dictions. Shrinkage describes the degree to which a
validation fit falls short of the original model fit
(Copas 1983), or equivalently the flattening of the
predicted vs observed plot away from the ideal 45x
line caused by overfitting (Harrell et al. 1996).Over-
fitting is a characteristic common tomaximum like-
lihood estimation, particularly for small data sets
where estimated regression coefficients can be in-
fluenced by noise (Copas 1983, vanHouwelingen &
LeCressie1990).Overfitting refers to theproblemof
estimated regression coefficients that are too large,
which causes model predictions to be too extreme
for future data (Steyerberg et al. 2000). Closely re-
lated to the concept of overfitting is the concept of
regression to themean, inwhich lowpredictionswill
be too low, high predictions will be too high, and
predictions closer to the overall mean will be more
accurate in future data (Efron & Morris 1977,
Harrell 2001: 62). Overfitting of model parameters
and regression to the mean can be addressed by
'shrinking' model coefficients toward zero (Hastie
et al. 2003:55-75).
For models containing multiple slope parame-

ters, certain parameters can lead to poorer fit than
others, and these parameters can be targeted for
shrinkage more than others to improve predictive
ability (Harrell 2001:64). Penalized maximum like-
lihood estimation ofmodel parameters is often used
for this purpose, and it consists of adding a penalty
term to the likelihood function relative to the size of
the coefficients in the logistic model (Harrell 2001:
64).Firth (1993,2006)demonstratedthat for logistic
regression, this penalty is equivalent to Jeffreys
(1946) invariant prior, and can be imposed itera-
tively in the maximization of the likelihood func-
tion, with larger penalties added to observations
that havemore influence. Because each observation
hasmore influence on parameter estimates in small-
er data sets, parameter estimates will be shrunken
more when there are less data available. Prediction
bias in maximum likelihood model estimates is
highest in smaller data sets (Efron & Morris 1977,
Harrell 2001:60-61). Hence, the shrinkage method
presented by Firth (1993) is commonly used to re-
duce prediction bias by shrinking model coeffici-
ents. The package brlr (Firth 2006) for R (RDevel-
opment Core Team 2007) provides access to this
method.

Discrimination
Awidely acceptedmeasure of discrimination ability
of a predictive model is the c index (for concor-
dance), which applies to predictions that are con-
tinuous, dichotomous, ordinal, and censored time-
to-event outcome predictions (Harrell et al. 1996).
In binary cases, c is equivalent to the area under the
Receiver Operating Characteristic (ROC) curve,
which is a common method of measuring the pre-
dictive ability of logistic regression models (Harrell
et al. 1996, Fielding & Bell 1997, Hosmer & Leme-
show 2000:160-164). We used c to measure the dis-
crimination ability of both the global and area-
specific models to predict wolf BPs. We used the
Design package (Harrell 2005) in R 2.5.0 (RDevel-
opmentCoreTeam2007) to conduct these analyses.

Unlike calibration, poor discrimination ability of
a particularmodel cannot be corrected analytically.
For this reason, discrimination ability should be a
focus of predictive model selection (Harrell et al.
1984).Hosmer&Lemeshow (2000:162) suggested a
sensible model should have c>0.7, as c=0.5 is the
discrimination ability that would be expected with
random guessing.

Internal validation based on calibration and
discrimination
For assessing measures of calibration and discrimi-
nation, the apparent accuracy of themodelmeasur-
ed by calculating accuracy measures on the exact
data set thatwasused todevelop themodel, is overly
optimistic even for new observations from the same
population (Copas 1983, Steyerberg et al. 2001). Sev-
eral options for conducting an internal validation
procedure have been developed and compared for
logistic regression, including k-fold cross-valida-
tion,thejackknife,split-samplevalidationandboot-
strapping (Lobo et al. 2008, Verbyla & Litvaitis
1989, Boyce et al. 2002, Steyerberg et al. 2001). The
most efficient procedure for logistic regression is
bootstrapping, because it makes use of the full data
set for training and testing models while providing
estimatesofpredictionerrorwithrelatively lowvari-
ability and minimal bias (Harrell 2001:95, Steyer-
bergetal.2001).Thebootstrapvalidationalgorithm
consists of (Efron & Tibshirani 1993:248-249): 1)
Estimate the apparent predictive ability (A) using
the original sample used to fit the model, 2) Draw B
bootstrap samples from the original sample, 3) For
eachbootstrapsample,fit themodel tothebootstrap
sample and measure the apparent predictive ability
(a), 4) Test the accuracy measure by applying the
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bootstrapmodel to the original sample andmeasur-
ing the accuracy (t), 5) Calculate the optimism (o)
in predictive ability for this bootstrap model as o=
a - t, 6) Obtain a stable estimate of optimism as the
mean optimism from the B bootstrap samples

O ¼
PB
i¼1

oi

B
;

and 7) Obtain an internally validated estimate of
predictive accuracy by subtracting the estimated
optimism from the apparent predictive ability:
V=A - O.
This algorithm can be used to internally validate

anymeasureofmodel calibrationordiscrimination.
For example, A might be defined as the intercept
term in the Cox (1958) measure of calibration de-
scribedabove.Then,aandtwouldmeasure thesame
quantity in the individualbootstrap samples and the
test (original) sample, o would measure the opti-
mism in the models developed from the individual
bootstrap samples, and O would measure the opti-
mism of the model calibration, as measured by the
intercept term in the Coxmethod, in the underlying
population that generated the sample. Note that if
this algorithm is used, the Cox (1958) and other
measures of calibration or discrimination can be
estimated without an independent data set. The
bootstrapcanalsobeused toestimateuncertainty in
the internally validated estimate of predictive accu-
racy. For example, bootstrap percentile CIs (Efron
&Tibshirani 1993:170-174) forVcanbeobtainedby
repeating the above algorithm in another bootstrap
resampling process, and using the desired percen-
tiles from the resulting distribution of O. In our
example, we applied this bootstrap algorithm to
validatemeasures of calibration and discrimination
in each analysis area, including the Cox regression
parameters, the LOWESS smoother, and c for both
the global and area-specific models. We used the
Design package (Harrell 2005) in R 2.5.0 (R Devel-
opmentCoreTeam2007) to conduct these analyses.

Assessing CI Coverage Rates
Probabilities predicted by logistic models are point
estimates, with uncertainty commonly depicted
using CI estimation. CIs provide a measure of cer-
tainty that a population value, m, falls in a range
specified by the interval, I. Intervals are defined
based on an acceptable level of error, a, such that
Pr{m2I}=1-a,where100*(1 -a)defines thenominal
coverage percent (Thompson 2002:29). However,

when aCI is calculated, actual coverage rates for the
intervals may not be specified by 100*(1 - a), as the
CI endpoints can be biased. For standard normal
CIs, this bias decreases at a rate of 1ffiffi

n
p , where n is the

sample size used to estimate the interval (Efron &
Tibshirani 1993:187).

A strategy for assessing actual coverage rates for
CI estimators that includes both estimating and
calibrating the accuracy of CI coverage rates makes
useof thebootstrap.Thedesiredprobabilitycharac-
teristics of CI endpoints are

Two-sided CI : Pr hjĥL

n o
¼ a

2
; Pr hjĥU

n o
¼

1� a

2
and

One-sided lower CI : Pr hjĥL

n o
¼ a;

where h is the true population value, ĥ is the point
estimatorof thatvalue,and ĥL and ĥU areestimators
of the lower (L) and upper (U) CI endpoints for h.
Based on these definitions, it may be possible to
construct a CI using a value lla that gives the
desired coverage rate with error level a (Efron &
Tibshirani 1993:264). Selection of l is accomplished
with the following bootstrap algorithm (Efron &
Tibshirani 1993:263-266): 1) Generate B bootstrap
samples from the original sample, 2) Compute the
l-level confidence point, ĥ

�
lðbÞ, for a grid of l values

that includes a for each bootstrap sample, 3) For
eachl, calculate theprobability thathwill bemissed
by the interval endpoint using

Pr� ĥjĥ
�
lðbÞ

n o
¼

PB
i¼1 Ci

B
;

whereCi=1 if ĥjĥ
�
lðbÞ andCi=0 otherwise, ĥ is the

estimated probability from the predictive logistic
model, and the summation is over the B bootstrap
samples, and 4) Find the value of l satisfying the
desired level of error, a.

Note that because the range of values for l in-
cludesa, the results of theabovealgorithmalso con-
tain information about the calibration of the CI
endpoint. If it is well calibrated, then the bootstrap
algorithm will choose l=a. If the procedure for
estimatingCIs is not well calibrated, then a solution
is offered for a correctly calibrated procedure. CIs
withbiasdecreasingata rateof 1ffiffi

n
p thatarecalibrated

using this procedure will have bias decreasing at a
rate of 1

n
(Efron & Tibshirani 1993:268). In our

example, following comparisons of the predictive
accuracy of the global and area-specific models to
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predict wolf BPs and selection of one model to use
for predictions with future data, we used this boot-
strapalgorithmtocalibrate two-sidedandone-sided
lower CI endpoints for estimates of the number of
BPs in each analysis area.Weused the boot package
(Canty & Ripley 2006) in R 2.5.0 (R Development
Core Team 2007) to conduct these analyses.
All analysesweredone inR2.5.0 (RDevelopment

Core Team 2007). In addition to the analysis pack-
ages mentioned above, we also made use of the
MASS(Venables&Ripley2002)andstats (RDevel-
opment Core Team 2007) packages.

Results

Choosing between global and area-specific
models
Thearea-specificmodel andglobalmodelshadsimi-
lar internally validated discrimination ability ac-
cording to the bootstrap validation algorithm (Fig.
3). In general, c ranged within 0.7-0.8 for both mo-
dels.This indicatesacceptablediscriminationability
for both models (Hosmer & Lemeshow 2000:162).
Bootstrap validation indicated that the ranges of
predicted probabilities by both the global and area-

Figure 3. Internally validated discrimination ability for the global and area-specific models presented in Mitchell et al. (2008), as
measured by c (or equivalently, the area under the ROC curve). Dashed line is a visual reference of c for the area-specific model. Bars
represent 95% bootstrap percentile CIs.
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specific models, as indexed by the Cox regression
slope, were similar and close to 1 in each area, sug-
gesting good calibration (Fig. 4). However, the
range of predicted probabilities in one area in SW
Montana was too narrow under the global model,
as indicated by a slope >1 in the Cox regression.
Bootstrap validation indicated that overall calibra-
tion of the area-specific model, as measured by the
Cox regression intercept term estimate, was gen-
erally closer to 0 than the estimates for the global
model (Fig. 5). The global model had overall pre-
dicted probabilities that were considerably too low
for Idaho (intercept>0) and considerably too high
(intercept<0) for the two areas in SWMontana.

Calibration of selected predictive model
The internally validated scatterplot smoother of the
observed vs predicted probabilities showed that
Idaho, NWMontana and Yellowstone NP had re-
markably well-calibrated model predictions from
thearea-specificmodel (Fig.6).Therewererangesof
the data thatwere notwell-calibrated in theGreater
Yellowstone Experimental Population Area in SW
Montana and Wyoming (see Fig. 6). Finally, al-
thoughmodel predictions seemedwell-calibrated to
observations in the Central Idaho Experimental
Population Area in SW Montana, sample sizes for
model developmentwere small, increasing concerns
about regression to the mean for future predictions

Figure 4. Internally validated calibration for the global and area-specificmodels presented inMitchell et al. (2008), asmeasured by the
Cox regression slope. Dashed line is the ideal value of 1. Bars represent 95% bootstrap percentile Cis.

360 �WILDLIFE BIOLOGY 15:4 (2009)

Downloaded From: https://bioone.org/journals/Wildlife-Biology on 07 May 2024
Terms of Use: https://bioone.org/terms-of-use



(see Fig. 6). Penalized maximum likelihood shrink-
age resulted in many model predictions that were
closer to the ideal 45x line in the two SW Montana
and theWyoming areas (Fig. 7), and smaller model
parameter estimates (Table 2). Some of the higher
predicted probabilities in these areas were also
shrunken to lower values, which were closer to the
global mean predictions and further from the ideal
45x line, consistent with regression to the mean (see
Fig. 7). This pattern was more evident in the SW
Montana areas than in theWyoming area. Shrunk-
en model predictions in the Idaho, NW Montana,
andYellowstoneNP closelymatched themaximum
likelihood estimates for these areas (see Fig. 7).

Calibration of CI endpoints
CI coverage rates for both the two-sided and one-
sided lower CI on predicted probabilities from the
shrunken, area-specific model were higher than the
nominal rates using the standard normal procedure
fromMitchell et al. (2008). This is illustrated by the
bootstrap procedure identifying that l>a is neces-
sary to provide nominal coverage rates for all three
CI points (see Table 2, Fig. 8). For the one-sided
lower and two-sided upper CI endpoints, l was ap-
proximately 2-3 times larger than thedesireda level,
while for the two-sided lower CI endpoint, l was
approximately 3-5 times larger than the desired a
level (see Table 2).

Figure 5. Internally validated calibration for the global and area-specificmodels presented inMitchell et al. (2008), asmeasured by the
Cox regression intercept. Dashed line is the ideal value of 0. Bars represent 95% bootstrap percentile CIs.
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Discussion

We have described and demonstrated procedures
for validating a logistic model that will be used to
make predictions in the future for the same under-
lyingpopulation that generated the sampledata.An
accurate predictive logistic model is one that is able
to discriminate between high and low probability
observations,onethatproducespredictedprobabili-
ties close to the observed probabilities in the popu-
lation, and one that has accurate measures of un-
certainty. In our example, wewere able to show that

anarea-specificmodel for estimatingwolfBPs in the
NRM had superior accuracy compared to a global
model. Mitchell et al. (2008) recommended that
area-specific models be used to make predictions
about the BP probabilities in each area, because the
processes that generated the data in each area were
too different to be captured by a global model. Our
analysis reinforced this recommendation in that
the predictions from the area-specificmodel are bet-
ter calibrated to the populations in each area than
are the predictions from the global model. In both
models, the only predictor of BP status for wolf

Figure 6. Internally validated calibration for the area-specific model presented in Mitchell et al. (2008), as measured by a LOWESS
smootheronascatterplotofobservedvspredictedvalues.Therugplotsacross the topof thefigures showthedistributionandquantities
of data used to fit themodel in each area. The dotted line is the apparent calibration curve (fit by theLOWESS smoother), and the solid
line is the bias-corrected calibration curve (i.e. validated calibration curve). The dashed line is the ideal 45-degree line.
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packs was the size of individual packs. In the area-
specificmodel,theestimatedrelationshipwasunique
to each analysis area, whereas in the global model,
the estimated relationship was the same in every
analysis area. Mitchell et al. (2008) discussed other
biological variables that likely influenced the rela-
tionship between BP and pack size in each analysis
area. Therefore, theremaybemore complexmodels
thatwould further improve the predictive accuracy,
becausetheywouldmorefullycapture thebiological
processes in each area.When and if thesemodels are

developed,themethodspresentedinthispapercould
be used to validate their predictive accuracy. The
purpose of our paperwas not to develop or evaluate
more complex, biological-process based models. It
was rather to demonstrate and apply a method for
evaluating the predictive accuracy of existing mod-
els, when these models are to be used to make de-
cisions for wildlife conservation and management
programs. Further, through detailed investigation
of area-specific model calibration, shrinkage of
model coefficients, and recalibration of the CI a-

Figure 7. Predictions for each area from the area-specificmodel fit bymaximum likelihoodand the shrunkenarea-specificmodel (fit by
penalized maximum likelihood). The rug plots across the top of the figures show the distribution and quantities of data used to fit the
model in each area. X’s are the predictions from the originalmaximum likelihoodmodel, and open circles are the predictions from the
shrunken model. Dashed line is the ideal 45-degree relationship.
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level, thearea-specificpredictivemodelwaschanged
substantially from the model that was estimated by
maximum likelihood procedures.
Despite the superiority of the area-specificmodel,

there were still some predictions that were not well
calibrated to the observed probabilities in some
areas.Model predictions were also based on a small
amount of data (<50 observations) for some areas.
The greatest of these problems, and therefore the
largest amount of shrinkage in the penalized maxi-
mumlikelihoodmodel coefficients,were in the areas
with the least data in SWMontana. Overfitting and
regression to the mean with maximum likelihood
estimationaremost likely in smalldata sets (Efron&
Morris1977,Steyerbergetal.2000).Whilesomepre-
dictions for the Wyoming data were also corrected

in thepenalizedmaximumlikelihoodshrinkagepro-
cedure, these data still showed substantial devia-
tions from the ideal 45x line of observed vs predicted
probabilities. This likely occurred because the pe-
nalized maximum likelihood model had similar as-
sumptions as the maximum likelihood model, in
that a logistic equation was estimated to represent
the process generating the observations. Mitchell
et al. (2008) assumed that the process generating the
observed BP data was a smooth logistic function of
pack size. Small packs in Wyoming, however, con-
tained more BPs than were predicted by the logistic
models and large packs contained fewer BPs than
were predicted. This suggests that the relationship
in Wyoming between pack size and the probability
that a pack contains a BP is not well represented by

Table 2. Model coefficients and CI error rates (a) to achieve 95% nominal coverage, for the maximum likelihood and penalized
maximum likelihood area-specific models to predict wolf BPs in the northern Rocky Mountains presented in Mitchell et al. (2008).
Model parameters are on the logit scale. Idaho was used as the reference area for generating the area-specific models. Parameter
estimates for area-specific models other than Idaho represent adjustments to the intercept and slope for the Idaho reference model,
e.g. the ML estimates for NW Montana would be (-0.90 -1.19)+((0.38+0.10) * pack size). ML estimates=Maximum likelihood
estimates with back-transformed, standard normal CIs. PML estimates=Penalized maximum likelihood estimates with calibrated
back-transformed, standard normal CIs. SW Montana-CIEPA refers to the Central Idaho Experimental Population Area, as it
overlaps into Montana. SW Montana-GYEPA refers to the Greater Yellowstone Experimental Population Area, as it overlaps
into Montana.

Parameter Management area

Model
-----------------------------------------------------

ML estimates PML estimates

Model coefficient vector Reference intercept Idaho -0.90 -0.81
---------------------------------------------------------------------------------------------------------------------------------------------------------------

Area-specific intercept adjustment NWMontana -1.19 -1.15

SWMontana-CIEPA -5.41 -3.74

SWMontana-GYEPA -1.61 -1.31

Wyoming -1.16 -0.94

Yellowstone NP -0.78 -0.72
---------------------------------------------------------------------------------------------------------------------------------------------------------------

Reference slope, pack size Idaho 0.38 0.36
---------------------------------------------------------------------------------------------------------------------------------------------------------------

Area-specific slope adjustment NWMontana 0.10 0.10

SWMontana-CIEPA 0.84 0.51

SWMontana-GYEPA 0.12 0.06

Wyoming 0.09 0.05

Yellowstone NP -0.01 -0.01

Alpha level for 95% confidence interval endpoints Lower 1-sided interval Idaho 0.05 0.11

NWMontana 0.05 0.11

SWMontana-CIEPA 0.05 0.11

SWMontana-GYEPA 0.05 0.11

Wyoming 0.05 0.12

Yellowstone NP 0.05 0.11
---------------------------------------------------------------------------------------------------------------------------------------------------------------

Lower 2-sided interval Idaho 0.05 0.20

NWMontana 0.05 0.16

SWMontana-CIEPA 0.05 0.24

SWMontana-GYEPA 0.05 0.16

Wyoming 0.05 0.19

Yellowstone NP 0.05 0.16
---------------------------------------------------------------------------------------------------------------------------------------------------------------

Upper 2-sided interval Idaho 0.05 0.10

NWMontana 0.05 0.14

SWMontana-CIEPA 0.05 0.10

SWMontana-GYEPA 0.05 0.16

Wyoming 0.05 0.10

Yellowstone NP 0.05 0.10
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a smooth logistic function, and perhaps a function
more flexible than a logistic functionmight result in
better predictions for this area. Whether or not a
more flexible function would result in better predic-
tions for these data depends on how unique these
observations are to this data set, or conversely, how
common such observations are in the underlying
population.
In our example, we employed shrinkage to im-

prove the predictive ability of the area-specific pre-

dictive model. Shrinkage methods are not panaceas
that produce perfect predictions for inadequate
models, but shrinkage estimationwill producemore
accurate predictions under the assumed model for
future data within the same pack size range dealt
with here (Copas 1983, Firth 1993). A feature of the
shrinkage predictions in our example is that larger
predicted probabilities were shrunken closer to the
global mean predictions as compared to maximum
likelihood model predictions, particularly in the

Figure8.ExampleofaCIendpointcalibrationfor thelower1-sided95%endpoint.Thesolid linerepresents theactualcoverageratesfor
therangeoflvaluesdepictedonthex-axis, asdeterminedby thebootstrap.Thedotted linedisplays the selectionofalvalue toachievea
coverage error rate of a=0.05. The dashed line represents the ideal line of perfect calibration of the CI calculation procedure.
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areaswith the fewest data. This occurred because of
the generally higher predicted BP probabilities for
packs in the size rangeof 8-13 animals in these areas.
These predictions were shrunken to be closer to the
mean predicted probabilities for these pack sizes, as
represented by the global model. This illustrates
how shrinkage predictions deal with the ubiquitous
regression to the mean problem, in which observed
probabilities in the future will be closer to the mean
than what was observed in the data set at hand
(Efron & Morris 1977, Harrell et al. 1996, Harrell
2001:62).Efron&Morris (1977),Whiteetal. (2002),
and others have identified that this ismore common
in small data sets due to higher sampling variances.
Actual coverage rates for CIs presented in

Mitchell et al. (2008) were higher than the nominal
rates thatwewere trying toachieve.This result is not
surprising given that coverage rates for the CI pro-
cedure described in Mitchell et al. (2008) is known
to have poor properties for predicted probabilities
close to 0 and 1 (Jennings 1987). Predicted prob-
abilities close to 1werepresent in every analysis area
under the area-specific model.
The outcome of the internal validation which we

conducted on the logistic models presented by
Mitchell et al. (2008) was to maximize the utility of
the area-specific model for making predictions with
future data. We used shrinkage to help ensure that
model predictions will be well calibrated to the ob-
servedproportionsofpacks thatcontainBPs,across
the full rangeof pack sizes consideredhere.Wehave
also made sure that the model can reliably predict
packs that have high and low probabilities of con-
taining BPs, and that estimates of uncertainty accu-
rately reflect the true amount of uncertainty. This
validation is no substitute, however, for evaluating
and improving themodelsusingdatacollected in the
future to ensure the models are performing ade-
quately. This would also serve to identify unanti-
cipated situations in which the models might not
work well. An assumption in our analysis is that
historical observations used to generate the models
and predictions from the models continue to apply
to the same underlying populations. This assump-
tion would be violated if the processes determining
the relationship between pack size and the prob-
ability of a pack containing a BP changed in the fu-
ture, resulting in differences between thewolf popu-
lations used to generate the models and those for
which models are being used to make predictions.
Disease outbreaks, major changes in prey density,
and extensive hunting and trapping harvest are ex-

amples of processes thatmight influence the validity
of this assumption. Evaluating model predictions
using future data from a continued intensive moni-
toring program will help identify such problems.
Model predictions can be re-evaluated and cali-
brated to match the new observations more closely
using temporal validation procedures (Justice et al.
1999, Altman & Royston 2000). Further, the ac-
curacy of the CI calibration we performed might
diminish if the distribution of pack sizes changes.
The normal approximation to the binomial CI has
better coverage properties for predicted probabil-
ities closer to 0.5 (Jennings 1987). Therefore, if in-
creasedhuman-causedmortality followingdelisting
results in smaller pack sizes, using amight result in
better coverage rates than what we observed.

Management implications
Both the analyses of the example presented in our
paper and the analysis methods themselves have
implications for wildlife management. Our analysis
of the models for estimating BPs presented by
Mitchell et al. (2008) suggests that an area-specific
model will provide robust and reliable estimates
for the NRM wolf population into the future. We
recommend that managers use the shrunken, area-
specific model to estimate the number of BP, and
rank the relative probabilities that several packs are
BPs, provided that the underlying wolf population
canbeconsideredthesamepopulationthatwasused
to generate the model. To temporally validate this
assumption, we recommend that the predictive ac-
curacy of the model be evaluated as the intensive
field-monitoring program continues in the near fu-
ture. Further, we recommend that this assumption
be evaluated as major changes in the population
dynamics of wolves in these areas occur in the futu-
re, possibly resulting fromdisease outbreaks,major
changes in prey density, extensive hunting and trap-
ping harvest, or other factors.

More generally, the issues of prediction accuracy
that arose inourexampleare the same issues thatare
faced by any prediction method that depends on
statistical models. Some of the methods we have
presented can be directly extended to other para-
metric as well as non-parametric predictive models
(Hastie et al. 2002, Hochachka et al. 2007). For
example, the measures of discrimination we used
can be applied to any prediction method for con-
tinuous, dichotomous, ordinal and time-to-event
outcomes (Harrell et al. 1996). The calibration con-
cepts that we described were specific to ordinary
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logistic regression, but they can be applied to time-
to-event predictions (Harrell 2001:493-494) and
Resource Selection Functions (Johnson et al. 2006)
with some modification. Other measures of model
calibration also exist for linear regression (Harrell
2001: 91) and case-control sampling designs in lo-
gistic regression (Hosmer & Lemeshow 2000:248-
250). The bootstrap validation methods we used
can be used for any prediction method that is based
on data (Efron & Tibshirani 1993:237-255, Harrell
2001:95). However, when it is known that data will
follow a particular parametric structure, estimation
of prediction error and accuracy can be more effi-
ciently achieved using covariance-based penalties
rather than nonparametric, resampling-based opti-
mismestimates (Efron2004). Suchpenalties include
Akaike’s Information Criterion (AIC), which is a
tool for selecting thebestpredictivemodel fromaset
of alternativemodels (Akaike1981).Thesemethods
offer more accurate estimates of future predictive
ability at the cost of more assumptions, which may
be appropriate for some situations. Further, the
accuracy of the covariance-based penalties is as-
ymptotic, and these methods are subject to the
many biases that can arise in small data sets col-
lected under realistic field conditions. Conversely,
the methods we have presented focus on a practical
applicationofpredictivemodels, andprovideasolid
basis to examine if a predictivemodel fit to real data
will suffice for the purpose for which it was devel-
oped. If amodel is to beused forpredictive purposes
related to wildlife management, we propose that a
predictive logistic model selected using covariance
penalties be evaluated with the methods we present
here. Such efforts will enhance the credibility of
management decisions, and more fundamentally
will maximize the odds that decisions based on
model predictions will achieve management goals.
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