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A field test of unconventional camera trap distance sampling to 
estimate abundance of marmot populations
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DE-79106 Freiburg, Germany. – LC, B. Sudolska, S. Giacomelli and L. Pedrotti, Stelvio National Park, Bormio, Italy. – S. Sivieri, Istituto Oikos, 
Milano, Italy.

The increasing use of remote motion-sensitive photography recently led to an extension of distance sampling (DS) to 
accommodate camera trap data. Camera trap distance sampling (CTDS) has been proposed as a promising tool to estimate 
animal abundance, if temporally limited availability for detection is accounted for. However, the performance of CTDS 
in different field situations, and its reliability when single still images are used instead of videos or bursts of images remain 
untested. We used Alpine marmots Marmota marmota in the Stelvio National Park (Italy) to address three aims: 1) compare 
estimates of availability bias-corrected CTDS when using single still images with different set-ups to define sampling effort. 
For the ‘user-manual’ set-up we used values of θ [angle of view] and t* [recovery time, i.e. the shortest interval at which an 
animal can be detected] specified by the camera user manual. For the ‘empirical’ set-up we estimated θ and t* empirically. 
2) Compare estimates of CTDS and line DS, both corrected for availability bias based on marmot behavior. 3) Compare 
estimates of CTDS corrected for availability bias with estimates obtained with capture–mark–recapture (CMR), account-
ing for the effective trapped area. Our results suggest that: 1) CTDS with ‘user-manual’ set-up underestimated population 
size compared to the ‘empirical’ set-up; 2) ‘empirical’ CTDS estimates were similar to those of line DS, but CTDS had 
lower precision; 3) availability bias-corrected CTDS underestimated abundance compared to CMR. Assessing camera set-
tings empirically is crucial to reduce bias in CTDS estimators when single still images are used. Videos should be preferred 
as they allow choosing predefined snapshot moments and do not rely on settings that cannot be changed. Overall, our 
results support the use of CTDS as an alternative to DS, although proper availability-bias corrections and many cameras 
are needed to ensure accuracy and acceptable precision.

Keywords: abundance, availability bias, capture–recapture, Marmota, passive monitoring

Estimating spatial and temporal changes in population 
abundance is a key issue in wildlife research and manage-
ment (Williams et al. 2002, Fryxell et al. 2014). Investigat-
ing the effects of variation in environmental conditions or 
management strategies, for example, often requires a reliable 
assessment of associated changes in animal population size 
in space and/or in time (Yoccoz et al. 2001). Detecting all 
animals in a given survey, however, is challenging, and not 
accounting for imperfect detection would return a biased 
estimator. If the relationship between counted animals and 
true population size is known, relative abundance indexes 
may suffice for management or research purposes (Thomp-
son  et  al. 1998). When the interest is in estimating abso-

lute population size, however, imperfect detection must be 
explicitly accounted for (Williams et al. 2002).

Several methods have been developed to estimate detection 
probability in animal populations, either based on marked or 
unmarked individuals (reviewed by: Seber 1982, Schwarz 
and Seber 1999, Pollock et al. 2002). Closed capture–mark–
recapture (CMR) models are widely used to estimate absolute 
population size in wildlife studies (Williams et al. 2002), but 
the costs of marking and resampling animals often make these 
methods unsuitable for large scale or long-term monitor-
ing. Furthermore, heterogeneity in capture probabilities is a 
major problem that may bias CMR estimators, if not properly 
accounted for (Senar et al. 1999, Huggins 2001). Consider-
able effort has thus been invested in developing methods of 
abundance estimation that do not require individual identi-
fication, including – among the others – multiple observers, 
N-mixture models and distance sampling (Williams  et  al. 
2002, Greenwood and Robinson 2006). In particular, distance 
sampling (DS) has found wide application in abundance esti-
mation of several taxa, including birds (Marques et al. 2007), 
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cetaceans (Zerbini et al. 2007), carnivores (Ruette et al. 2003) 
and herbivores (Jathanna  et  al. 2003). Distance sampling 
inherently accounts for imperfect detection by estimating a 
detection function g(x) to describe the probability of detecting 
an animal as a function of its perpendicular distance x from 
transects or radial distance x from points (Buckland  et  al. 
2001, Thomas et al. 2010). To obtain reliable estimates, vari-
ous assumptions must be met: all animals on the transect line 
are detected, animals are randomly and evenly distributed 
throughout the surveyed area, animals do not move before 
detection, and measurements (angles and distances) are exact 
(Buckland et al. 2001, Thomas et al. 2010).

In distance sampling surveys, the probability of detecting 
animals is often estimated from direct sightings (Buckland et al. 
2015), which may be difficult and expensive to perform in 
remote areas, or when low animal densities reduce sample size 
for reliable estimation of detection probability (Marques et al. 
2013). Over the past years, there has been a growing interest 
towards the application of passive distance sampling surveys 
such as sonar, radar and acoustic surveys (Marques et al. 2013, 
Buckland et al. 2015, Sebastián-González et al. 2018). Com-
pared to human observers, passive monitoring systems allow 
the automatic collection of a greater amount of data even in 
remote areas, thus favoring detection of uncommon species. 
Additionally, they are less sensitive than human observers to 
factors that affect detection (Marques et al. 2013).

Camera trapping is one of the most widely used passive 
methods to survey wildlife populations (Rovero and Zim-
merman 2016). Several approaches have been proposed to 
estimate absolute abundance using unmarked individuals 
trapped by cameras, e.g. N-mixture models (Royle 2004), 
the random encounter model (Rowcliffe  et  al. 2008), the 
spatial count model (Chandler and Royle 2013), and time 
to event, space to event and instantaneous sampling models 
(Moeller et al. 2018). Recently, Howe et al. (2017) expanded 
the use of distance sampling to accommodate camera trap 
data (camera trap distance sampling: CTDS). The rationale 
of CTDS is that, when the PIR (passive infrared) sensor of 
a camera is more likely to detect an animal moving close to 
the sensor than an animal moving further away from the 
sensor, a detection function can be fitted to the distribution 
of distance of animals from the camera. In CTDS, sampling 
effort can be obtained by discretizing the number of times an 
animal can be potentially detected over a specified deploy-
ment period, using predetermined snapshot moments sepa-
rated by short time intervals t (e.g. < 3 s). In practice, camera 
traps should be set in video mode or with long ‘bursts’ of still 
images, to ensure that animal locations are recorded at times 
that align with predefined snapshot moments, i.e. every t 
seconds (Howe et al. 2017).

Capture probability or detection probability (Pcapture; 
Pdetection) estimated with capture–recapture or distance sam-
pling methods are conditional upon three other probabili-
ties: Parea, the probability that the target animals occupy the 
survey area; Ppresence, the probability that the target animals 
occupying the area are present at the time of survey; Pavail-

ability, the probability that the target animals occupying the 
area and present at the time of survey are available for detec-
tion (Nichols et al. 2009, Schmidt et al. 2017). While Parea 
and Ppresence can be assumed to be approximately equal to 1 
through appropriate sampling design, Pavailability and Pdetection 

may be hampered by several factors such as the behavior of 
the target species, methodological issues, observer experi-
ence and habitat complexity (O’Donnell et al. 2015). Under 
the assumption that individuals are temporarily unavailable 
at random (i.e. all individuals have an equal probability of 
being unavailable for capture) during the closed CMR study 
period, all animals should have a non-negligible chance to be 
exposed to capture; therefore, probability of availability and 
detection probability in CMR would be confounded with 
each other (Pavailability × Pcapture) (Kendall 1999). CMR mod-
els would thus estimate an effective probability of capture 
for animals in a closed ‘superpopulation’, and the estimated 
abundance would correspond to the sum of animals that are 
always available in the survey area, plus those that move in 
and out of it, or through it (Kendall 1999). Distance sam-
pling methods, on the other hand, are not robust to tem-
porary unavailability, and they return estimates of animals 
available for detection at any one instant in time (Buck-
land et al. 2015). If availability is not perfect (i.e. < 1), cor-
rection factors should therefore be applied to DS estimates 
to obtain absolute population size (cf. Buckland et al. 2015). 
For example, in a recent survey of western chimpanzees 
Pan troglodytes verus, a semiarboreal primate, Cappelle et al. 
(2019) used the estimates of the proportion of time animals 
spent active on the ground (or at camera height) to correct 
the abundance estimates obtained with CTDS. Likewise, 
Howe et al. (2017) explained that temporally limited avail-
ability for detection will always need to be considered and 
accounted for when using CTDS.

The performance of CTDS, however, remains to be 
tested in various field situations (Moeller et al. 2018, but see 
Bessone et al. 2020). Furthermore, although the use of videos 
or long ‘bursts’ of images is recommended to align observa-
tions to predetermined snapshot moments at specific times 
of day (Howe et al. 2017), researchers and wildlife managers 
might find this set-up inconvenient and may prefer to use 
single still images recorded when the camera is triggered (e.g. 
to maximize battery-life, save space on memory cards or time 
for data-processing). If single still images are used instead of 
videos or long ‘bursts’, the chosen interval corresponds to 
the lowest recovery time t* between subsequent images. The 
interval t* is thus quite different from the definition of t in 
the CTDS estimator of Howe  et  al. (2017), and recorded 
times will hardly align to predetermined snapshot moments 
at specific times of day, unless recovery time is very short 
(e.g. < 1 s). The reliability of CTDS when time alignment of 
observations is violated has never been tested. Furthermore, 
the use of single images can cause underestimation of the 
angle of view θ (Rowcliffe et al. 2011) which, in turn, would 
return a biased estimator. While, with videos, neither t nor 
θ need to be estimated empirically, CTDS with single still 
images assumes that proper values of θ and t* are chosen 
to define sampling effort. However, the theoretical values of 
θ and t* reported in the camera user manual information 
may not correspond to the realized values of θ and t* in the 
field, which can be estimated empirically. Our aim in this 
paper is thus threefold. 1) After accounting for availability 
bias using the proportion of time spent being active by ani-
mals (cf. Cappelle  et  al. 2019), we first compare estimates 
from CTDS using single still images obtained with differ-
ent set-ups to define sampling effort: ‘user-manual’ versus 
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‘empirical’, i.e. using theoretical values of θ and t* specified 
by the camera user manual information versus values of θ 
and t* estimated empirically. 2) We then compare estimates 
from CTDS corrected for availability bias with estimates 
from traditional line DS, also corrected for availability bias. 
3) Finally, we compare estimates from CTDS corrected for 
availability bias to estimates obtained with capture–mark–
recapture models.

These methods were tested in a population of Alpine 
marmot Marmota marmota, a diurnal, highly social, territo-
rial and semifossorial rodent inhabiting open mountainous 
areas in central and southern Europe (Armitage 2014). We 
expect that: 1) ‘user-manual’ and ‘empirical’ availability bias-
corrected CTDS estimators should return similar results, 
under the assumptions that user-manual information is reli-
able; 2) CTDS and DS estimators corrected for availability 
bias should return similar results (cf. Howe et al. 2017, Cap-
pelle et al. 2019); 3) after accounting for the effective trapped 
area, CTDS estimators corrected for availability bias should 
return similar results to CMR estimators, as both should 
provide reliable assessment of absolute population size in 
marmots (cf. Corlatti et al. 2017, Cappelle et al. 2019).

Material and methods

Study area

The study site is located in the Lombardy sector of the Stel-
vio National Park, Central Italian Alps (46°54′N, 10°41′E) 

(Fig. 1) and extends over 37.6 ha on a S–E exposed slope 
between 2341 and 2671 m a.s.l. Vegetation is mainly repre-
sented by alpine and boreal meadows of Carex curvula and 
Nardus stricta. The climate is typical of mountainous regions, 
with harsh winters and mild summers (average temperature 
ranging from −12°C in January to 23°C in July, own data). 
To define the boundaries of the study site, we first identified 
an area with apparently homogeneous marmot distribution, 
based on preliminary visual observations conducted walking 
along trails across the area. We then created a minimum con-
vex polygon (MCP) connecting the peripheral main burrows 
(which corresponded to the locations of the outer traps used 
for CMR, see description below). Finally, we created a buffer 
around the MCP, with a span of 83 m, corresponding to the 
radius of an average home range size for Alpine marmot (~2.2 
ha: Armitage 2014), to approximate the effective trapped area 
(see CMR description below). This approach should ensure 
that Parea and Ppresence are approximately 1 and it should allow a 
fair comparison between (CT)DS and CMR estimates.

Capture–mark–recapture

Eight occasions of CMR were conducted within one ses-
sion between 6 and 16 June 2019, soon after the marmots 
emerged from burrows after hibernation. Two-door Toma-
hawk’s traps (n = 20) were evenly distributed over the study 
site (Fig. 1), in close proximity to the main burrows, to 
maximize the likelihood of capturing individuals. Traps were 
baited with dandelion flowers Taraxacum officinalis, and re-
baited after each capture event. Within each occasion, traps 

Figure 1. (a) Location of the Stelvio National Park (green area, central Italian Alps); (b) location of the study site (red area) in the north-
western part of the Stelvio National Park; (c) distribution of line transects (dashed black lines), camera traps (red cameras) and trapping 
locations (blue dots) within the boundaries of the study area (continuous black line). In (c), numbers indicate the ID of line DS transects.
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were kept open between 08:00 h and 20:00 h, and capturing 
effort was constant throughout the closed sampling session. 
Captured individuals were marked permanently by injection 
of a Tracer Bayer transponder pit and with different combi-
nations of coloured ear-tags. Animals were not sedated and 
the entire manipulation process always took less than 30 min. 
Captures were always made with the assistance of a veterinar-
ian, and after receiving authorization from ISPRA (the Ital-
ian Institute for Environmental Protection and Research). 
At the end of the CMR session, an 8-column capture history 
was built for each individual, based on the occurrence (1/0) 
of capture–recapture events within each occasion.

Classic CMR modelling suffers an ‘edge effect’, namely 
the effective area trapped is larger than the trap grid area, 
and includes the entire home range of animals (White et al. 
1982). To reduce the edge effect and approximate the effec-
tive trapped area, we created a buffer around the MCP of 
the trap grid, using the radius of an average home range size 
for Alpine marmot (Fig. 1c). As in Corlatti  et  al. (2017), 
capture data were analysed with the eight closed-population 
additive models of Otis et al. (1978), which allow for dif-
ferent parametrizations of capture probability: M0 (uni-
form), Mt (time-varying); Mb (with behavioural response); 
Mh (with individual heterogeneity); Mtb (time-varying with 
behavioural response); Mth (time-varying with individual 
heterogeneity); Mbh (with behavioural response and indi-
vidual heterogeneity); Mtbh (time-varying with behavioural 
response and individual heterogeneity). The closure assump-
tion was approximated by the short timeframe used for the 
primary session of capture (10 days). Data analysis was con-
ducted with a full likelihood approach using the package 
‘RMark’ (Laake 2013) with R ver. 3.6.1 (<www.r-project.
org>) in R Studio 1.2.5019 (RStudio Team 2019). Individ-
ual heterogeneity in capture probability was approximated 
using 2-mixture modelling (White 2008). The eight models 
were ranked based on their values of AICc (Akaike’s infor-
mation criterion corrected for small samples), and averaged 
to obtain final estimates (Burnham and Anderson 2002 ).

Availability bias correction

Pdetection estimated with distance sampling methods is condi-
tional upon animals being available for detection. Pavailability, 
in marmots, is hampered by the semifossorial behavior of the 
species. Normally, at any one instant in time, only a fraction 
of the marmots living in the survey area is outside of the 
burrows, thus only surface-dwelling animals will be available 
for detection, irrespective of the distance of animals from 
the transect (i.e. Pavailability < 1). Correction factors such as 
the percentage of time spent by animals inside and outside 
of burrows could be applied to obtain absolute estimates of 
population size with distance sampling methods. This, how-
ever, requires additional field effort or reliable knowledge of 
the species’ surfacing behavior.

Cappelle  et  al. (2019) approximated the proportion of 
animals available for detection using the number of videos 
obtained per hour, assuming that at the peak of their activity 
all animals were available for detection. More generally, under 
the assumption that at the peak of the daily activity cycle all 
animals are active, the proportion of active time corresponds 
to the ratio between the area under the activity curve (AUC) 

and the area within the rectangle defined by the maximum 
of the curve (AUR) (Rowcliffe et al. 2014). This approach 
was adopted to estimate Pavailability in our study, assuming that 
the proportion of time spent being active approximates the 
proportion of time spent by marmots being outside of bur-
rows (i.e. being available for detection).

Marmot activity cycle was assessed using time data con-
verted to radians, extracted from still images collected between 
23 and 30 June 23 during CTDS (see the description of CTDS 
data collection). We used a 30-min interval between pictures 
to consider events as independent (cf. Rovero and Zimmer-
mann 2016). Activity density was estimated by fitting a cir-
cular normal distribution to the data with von Mises kernel 
using the R package ‘overlap’ (Ridout and Linkie 2009). In its 
basic form, this function returns a mean value for activity den-
sity. To estimate uncertainty, 1000 non-parametric bootstrap 
samples were generated with replacement from the original 
dataset, and the same kernel function was applied iteratively 
(cf. Fig. 2). For each bootstrap sample i (1 < i < 1000), the 
proportion of time spent being active by animals within the 
timeframe of distance sampling data collection was calculated 
as AUCi/AURi in the time interval 08:00–20:00 h (cf. Fig. 2), 
using the R package ‘pracma’ (Borchers 2019). Mean and SE 
for the proportion of active time were extracted from these 
1000 values (Rowcliffe et al. 2014), and used to correct the 
estimates obtained with CTDS and line DS. Specifically, the 
mean abundance and SE estimated with CTDS and line DS 
were divided by the estimated mean and SE of the propor-
tion of time spent being active in the interval 08:00–20:00 h, 
using the R package ‘propagate’ (Spiess 2018), which allows 
for uncertainty propagation using higher-order Taylor expan-
sions and Monte Carlo simulations.

Camera trap distance sampling

Point transect distance sampling with camera traps was 
conducted between 23 and 30 June. A total of 13 cameras 
(ScoutGuard SG-560C) were randomly deployed over the 
study area (Fig. 1c). Random points were generated within 
the boundary of the study site with a Geographic Informa-
tion System software (QGIS ver. 3.8, <http://qgis.osgeo.
org>), setting the minimum distance between points at 50 
m. Each camera was mounted at a height of ca 0.4 m, a value 
that should represent a good compromise between reducing 
the possibility that marmots pass beneath the camera at short 
distances, and the possibility to detect distances over which 
animals could be detected. Cameras were mounted with the 
same orientation N–W (cf. Howe  et  al. 2017), and set at 
medium sensitivity. Radial distances of photographed mar-
mots from the camera were initially estimated by comparing 
their locations to those of markers placed at fixed distances 
(1, 3, 5, 7 and 9 m) along the midline of the camera field 
of view (Fig. 3) (cf. Hofmeester et al. 2017). Then, observa-
tions between 0–1, 1–3, 3–5, 5–7, 7–9 m and beyond were 
binned, as measurements became imprecise at larger dis-
tances. CTDS requires the calculation of sampling effort at 
each camera point k, i.e. the number of snapshot moments 
weighted by the fraction of a circle covered by the camera. 

Sampling effort was defined as e
T

tk
k=

q
p2

 where θ was the 

angle covered by the camera (in radians), Tk the period of 
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camera deployment, t the unit of time used to determine a 
finite set of snapshot moments within Tk (Howe et al. 2017). 
In this study, the value of t was approximated by t*, i.e. the 
lowest non-zero interval between single still images allowed 
by the camera. It is worth recalling that recovery time t* is 
conceptually quite different from t defined in Howe et  al. 
(2017), as the recorded times using t* will hardly align to 
predetermined snapshot moments at specific times of day.

First, the period of deployment Tk was defined as the 
total sampling time (in seconds) at camera k between 23 and 
30 June, assuming that daily sampling time was restricted 
between 08:00 h and 20:00 h. The sampling time between 
20:01 h and 07:59 h was excluded a priori from analysis for 
two reasons: first, marmots are diurnal animals, and they 
spend their nights in burrows, thus they are unavailable for 
detection during nighttime (cf. Fig. 2); second, the timeframe 
08:00–20:00 h corresponds to the time of data collection with 
line DS, thus ensuring full comparability between distance 
sampling methods. For each camera, Tk was calculated from 
one hour after deployment, to allow for marmots’ habitua-
tion to the presence of the device, until one hour before dis-
placement, to avoid potential bias caused by the presence of 
the operator (Howe et al. 2017). Distance data were censored 
accordingly, and modelled with two different set-ups, ‘user-
manual’ and ‘empirical’. For the ‘user-manual’ set-up, θ was 
assumed to be 52° (0.908 radians) and t* was assumed to be 5 
s, i.e. the theoretical values specified by the user manual infor-
mation. For the ‘empirical’ set-up, θ and t* were estimated 
empirically: θ was assessed by walking in front of the cam-
era, perpendicularly to the midline of the field of view, and 
measuring the distance from the operator to the midline that 
triggered the PIR sensor, using the camera in setup mode. This 
procedure was repeated 10 times (walking five times from the 
left and five times from the right) at different perpendicular 
distances (5 and 10 m); the angle of view was calculated for 
each of the 20 trials using basic trigonometric formulas, and 
its mean value used as an estimate for realized θ. As the inter-
val between images triggered by motion should be affected by 
distance (owing to missed detections with increasing distance 
from the camera), the ‘empirical’ value of t* was defined as the 

shortest interval between images taken by walking randomly 
in front of the camera at different distances between ca 0.5 
and 10 m, for 5 min, keeping the camera recovery time set at 
5 s (as in the ‘user-manual’ set-up). Finally, for both set-ups, 
detection was modelled with conventional distance sampling 
using the same functions of Howe et al. (2017): half-normal 
with 0, 1 or 2 Hermite polynomial adjustment terms; hazard 
rate with 0, 1 or 2 cosine adjustments; uniform with 1 or 2 
cosine adjustments.

To obtain final estimates, models were first ranked 
according to their information criterion values. Violations of 
the independence assumption of CTDS data would intro-
duce overdispersion (Howe  et  al. 2019) and, under these 
circumstances, AIC (Akaike’s information criterion) is likely 
to select overly complex models (Buckland  et  al. 2001). 
Howe  et  al. (2019) recently proposed a more robust two-
step model selection procedure based on: 1) the selection 
of the models with the lowest value of QAIC (quasi-AIC) 
within each key function, where the overdispersion param-
eter (c-hat) is calculated from χ2/df, i.e. the ratio between 
the χ2 statistics of the most parametrized model for each 
key function and its degrees of freedom; 2) the choice of 
the lowest χ2/df value across QAIC-selected models. When 
the estimate of c-hat is < or equal to 1, the traditional AIC 
model selection approach should be justified. Models were 
considered competitive if they had delta (Q)AIC ≤ 2 and 
non-significant p-values for the χ2 goodness-of-fit test, and 
they were averaged to obtain final estimates (Burnham and 
Anderson 2002). Final estimates of population size within 
the assumed effective trapped area were obtained correct-
ing averaged mean and SE by the availability bias estimates, 
accounting for uncertainty propagation.

Line distance sampling

Line transect sampling was conducted between 2 and 7 July 
2019. A total of six linear transects, with an average length of 
430 m (± 43 SD), were placed according to an opportunistic 
design that allowed to safely walk the study site, while ensur-
ing homogeneous coverage of the area (Fig. 1c). Transects 

Figure 2. Kernel density estimate (with bootstrap 95% CI for the 95th percentile) of daily activity cycle of marmots in the study area in June 
2019. Vertical dashed black lines indicate the timeframe (08:00–20:00 h) used for estimating availability and collecting data with distance 
sampling and CMR methods; horizontal dashed red lines indicate the estimated uncertainty of activity peak. Blue bars represent night hours.
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could not be distributed randomly due to the ruggedness 
of the terrain. This form of opportunistic design, however, 
is unlikely to bias the estimator, as the visibility from the 
transects ensured full coverage of the study site. Over the 
survey period, transects were walked sequentially from 1 to 
6 (Fig. 1c). Each transect was walked once per day over five 
consecutive days (except for one transect, which was walked 
only on four days) to increase encounter rate, by the same 
operator (SV), for an overall effort of 12.5 km. Each survey 
took about 3 h to complete data collection, and surveys were 
conducted between 08:00 h and 20:00 h. Perpendicular dis-
tances to each individual (or groups of individuals) from the 
transects were collected with a laser rangefinder. Although 
transects were fairly close to each other, possibly increasing 
the chance of observing the same animals, double counts, 
per se, are not a cause of bias if such counts correspond to 
different transects (Buckland  et  al. 2001). To analyze the 
data, estimation was performed using conventional distance 
sampling without covariates (cf. Corlatti et al. 2017) weigh-
ing by stratum effort, since one transect was replicated 4 
times instead of 5. We started from uniform, half-normal 
and hazard-rate key functions, adding cosine adjustment 
terms to the models until there was no improvement in AIC 
(Buckland et al. 2001).

Fitted models were ranked based on their AIC values 
and validated using the χ2 goodness-of-fit test. As in CTDS, 
models were considered competitive if they had delta AIC 
≤ 2 and non-significant p-values for the χ2 goodness-of-fit 
test, and they were averaged to obtain final estimates (Burn-
ham and Anderson 2002). Final estimates of population size 
within the assumed effective trapped area were obtained cor-
recting averaged mean and SE by the availability bias esti-
mates, accounting for uncertainty propagation.

For both CTDS and line DS, detection functions and 
abundance were estimated with the R package ‘Distance’ 
(Miller et al. 2019).

Results

Capture–mark–recapture

During capture–mark–recapture, we had a total of 70 capture 
events with 48 individually marked animals. The ‘best’ model 
was M0 (Table 1), but inference was made on the full list of 
eight models. Model averaging returned an estimate of n = 76 
individuals within the assumed effective trapped area, with 
95% CI between 60 and 120, and a CV of 18% (Fig. 5).

Availability bias correction

Marmots were particularly active in the morning, between 
08:00 h and 11:00 h, with a second lower peak of activity in 
the afternoon, between 17:00 h and 19:00 h. No marmots 
were photographed during night hours (Fig. 2). Availability 
bias correction assumes that the proportion of time active 
equals the probability of availability. The estimated mean 
proportion of time spent being active by marmots between 
08:00 h and 20:00 h was 0.67. The estimated SE for active 
time, obtained with bootstrap resampling, was 0.074. These 
values were used to correct distance sampling estimators for 
availability bias.

Camera trap distance sampling

In the time interval 08:00–20:00 h we collected a total of 
417 photos with marmots in them, and for each photo we 

Table 1. Model selection estimates for the eight capture–mark–
recapture models of Otis et al. (1978) fitted to investigate absolute 
abundance of Alpine marmot in the study site within the Stelvio 
National Park in June of 2019. The table reports values of Akaike’s 
information criterion corrected for small sample size (AICc), delta 
AICc values from the best model (ΔAICc), Akaike’s weights (Weight), 
number of parameters (Num. par.) and deviance. All models were 
selected for averaging.

Model AICc ΔAICc Weight
Num. 
par. Deviance

M0 61.61 0.000 0.643 2 50.971
Mb 63.59 1.984 0.231 3 50.923
Mh 65.68 4.074 0.084 4 50.971
Mbh 67.69 6.080 0.031 5 50.923
Mt 73.28 11.670 0.002 9 48.190
Mtb 74.46 12.851 0.001 10 47.263
Mth 77.50 15.898 0.000 11 48.190
Mtbh 77.69 16.085 0.000 12 46.246

Figure 3. Distance of marmots from the camera trap was estimated 
by comparing animal locations to those of markers placed at fixed 
distances (1, 3, 5, 7 and 9 m) along the midline of the camera field 
of view. Data were binned over the same distance intervals. In (a) 
the animal does not appear to be affected by markers; in (b) the 
animal seems to show positive behavioral response.
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recorded the distance between animals and cameras. The 
theoretical values of θ (52°, 0.908 radians) and t* (5 s) 
reported in the user manual were not reliable, since field 
tests suggested a realized θ of 42° (0.733 radians) and a 
realized t* of 13 s. Consequently, the realized mean encoun-
ter rate (mean number of marmots photographed per 13-s 
time interval) across all cameras was 0.002 ± 0.002 SD. 
We had difficulties in data collection because of the mal-
functioning of some cameras: one camera failed after one 
day of data collection and was not considered for analysis. 
One camera failed after two days and the pole of another 
camera was bent by cows after five days. For the two latter 
cameras, we included in the analysis only the data collected 
before the last picture was taken or the pole was bent, cen-
soring the sampling effort accordingly. Exploratory analysis 
revealed other data collection issues. A large portion (about 
55%) of the dataset consisted in observations above 9 m 
and up to 50 m, well outside the range of the camera sen-
sors (< 20 m). The fact that detections increased in the last 
bin resulted in poor model fit, and we right-truncated data 
at 9 m (cf. Buckland et al. 2015). As the c-hat calculated 
from χ2/df returned values < 1 for all the most parame-
trized models within each key function, the use of AIC for 
model selection should be justified. The lowest AIC value 
was returned by a model assuming a half-normal detection 
function with no adjustments (Table 2, Fig. 4a), but sev-
eral models had delta AIC within 2 (Table 2). For θ = 52° 
and t* = 5 s, the averaged model returned an abundance of 
seven marmots within the assumed effective trapped area, 
with SE of 2.64 and a CV of 36%, while for θ = 42° and 
t* = 13 s, the averaged model returned an abundance of 24 
marmots, with SE of 8.51 and a CV of 36%. After correct-
ing for availability and uncertainty propagation in the esti-
mate, for θ = 52° and t* = 5 s we obtained an abundance of 
11 individuals within the assumed effective trapped area, 
with 95% CI between 3 and 19 and a CV of 39% (Fig. 5); 
for θ = 42° and t* = 13 s we obtained an abundance of 36 
individuals with 95% CI between 11 and 64 and a CV of 
37% (Fig. 5).

Line distance sampling

Over all replicates of line transect DS we collected a total  
of 108 observations (n = 122 marmots), with an expected 
group size of 1.12 (± 0.05 SE). The average number of 

Table 2. Camera (point transect) models fitted to estimate available marmot abundance in the study area within the Stelvio National Park in 
June 2019. The table reports angles of view assumed for the cameras (θ, in degrees), unit of time used to determine the shortest distance 
between single still images (t*, in s), key functions (Key), adjustment types (Adj.: – = no adjustment; Cos = cosine), orders of adjustment 
(Order), Akaike information criterion values (AIC), delta-AIC values from the best model (ΔAIC), significances of χ2 goodness of fit test (χ2-p), 
abundance estimates (N) with standard error (SE), coefficients of variation (CV). In bold, models selected for averaging.

θ t* Key Adj. Order AIC ΔAIC χ2-p N SE CV

52° 5 Half-normal – – 555.49 0.00 0.464 6 2.01 0.32
Uniform Cos 2 555.61 0.12 0.727 7 2.57 0.34

  Half-normal Herm 3 557.03 1.54 0.799 9 3.35 0.39
  Hazard-rate Cos 2 557.04 1.55 0.781 9 3.22 0.37
  Uniform Cos 3 557.04 1.55 0.781 9 3.33 0.39
  Half-normal Herm 2 557.27 1.78 0.311 6 2.12 0.34
  Hazard-rate Cos 3 558.96 3.47 NA 8 4.38 0.57
  Hazard-rate – – 575.42 19.93 <0.001 4 1.24 0.33
42° 13 Half-normal – – 555.49 0.00 0.464 20 6.47 0.32
  Uniform Cos 2 555.61 0.12 0.727 24 8.29 0.34
  Half-normal Herm 3 557.03 1.54 0.799 28 10.79 0.39
  Hazard-rate Cos 2 557.04 1.55 0.781 28 10.36 0.37
  Uniform Cos 3 557.04 1.55 0.781 28 10.74 0.39
  Half-normal Herm 2 557.27 1.78 0.311 20 6.82 0.34
  Hazard-rate Cos 3 558.96 3.47 NA 25 14.10 0.57
  Hazard-rate – – 575.42 19.93 <0.001 12 4.00 0.33

Figure 4. (a) Probability density from half-normal detection func-
tion without adjustments, returned by the best fitting model for the 
distances collected with CTDS in June 2019; (b) uniform detection 
function with 2 cosine adjustments, returned by the best fitting 
model for the distances collected with line DS in June–July 2019.
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observations per replicate was 21.6 (± 4.39 SD). Distance 
data were right-truncated at the 5% of the largest observa-
tions (Buckland  et  al. 2001). The model assuming a uni-
form detection function with 2 cosine adjustments (Fig. 
4b) had the lowest value of AIC, but nearly all other models 
had delta AIC within 2 (Table 3). Model averaging yielded 
an abundance of 22 marmots within the assumed effective 
trapped area, with SE of 5.59 and CV of 25%. After cor-
recting for availability and uncertainty propagation in the 
estimate, we obtained an abundance of 33 individuals with 
95% CI between 16 and 52 and a CV of 28% (Fig. 5).

Discussion

Camera traps are increasingly used in wildlife monitoring for 
different purposes. When the interest is in assessing popula-
tion size, testing the reliability of statistical methods under 
different field conditions is necessary to avoid biased estima-
tors (Moeller et al. 2018). In this study we aimed to explore 
the reliability of an unconventional application of camera 
trap distance sampling, where single still images instead of 
videos or long ‘bursts’ of images were used (cf. Howe et al. 

2017). Our results showed that, 1) when the theoretical val-
ues provided by the user manual information were used to 
set θ and t*, CTDS severely underestimated abundance com-
pared to CTDS with values of θ and t* estimated empirically. 
2) ‘Empirical’ CTDS yielded estimates of abundance similar 
to those obtained with traditional line distance sampling, 
albeit the precision of CTDS estimator was poor. 3) Despite 
correcting for availability bias, CTDS and line DS severely 
underestimated population size compared to capture–mark–
recapture, within the assumed effective trapped area.

Properly assessing sampling effort is crucial when CTDS 
is used. An appropriate value for t (interval between snapshot 
moments), for example, is necessary to define the number 
of times an animal can be potentially detected. Howe et al. 
(2017) recommended to choose values of t < 3 s and to set 
cameras in video-mode, as this would allow to align recorded 
images with pre-specified snapshot moments. When using 
single still images instead of videos, however, it is not pos-
sible to define intervals of time t that allow to align recorded 
images with specific snapshot moments. The reliability of 
CTDS when using the recovery time t* (the shortest inter-
val at which an animal can be detected) instead of t (sensu 
Howe et al. 2017) to assess sampling effort has never been 

Figure 5. Abundance estimates of the marmot population in the study site within the Stelvio National Park, obtained using different meth-
ods (CMR, availability bias-corrected ‘user-manual’ CTDS, availability bias-corrected ‘empirical’ CTDS, availability bias-corrected line 
DS) in June–July 2019. Blue marker indicates the CMR point estimate, red markers point estimates obtained with distance sampling 
methods. Vertical lines represent 95% confidence intervals.

Table 3. Line transect models fitted to estimate available marmot abundance in the study area within the Stelvio National Park in July 2019. 
The table reports used key functions (Key), adjustment types (Adj.: – = no adjustment; Cos = cosine), orders of adjustment (Order), Akaike 
information criterion values (AIC), delta AIC values from the best model (ΔAIC), significances of χ2 goodness of fit test (χ2-p), abundance 
estimates (N) with standard error (SE), coefficients of variation (CV). In bold, models selected for averaging.

Key Adj. Order AIC ΔAIC χ2-p N SE CV

Uniform Cos 2 1031.43 0.00 0.420 21.7 5.06 0.23
Half-normal Cos 2 1031.98 0.55 0.417 24.0 5.80 0.24
Half-normal Cos 3 1032.37 0.94 0.516 21.5 5.69 0.26
Hazard-rate – – 1032.44 1.01 0.353 21.0 5.48 0.26
Hazard-rate Cos 2 1032.46 1.03 0.437 23.4 6.03 0.26
Uniform Cos 3 1032.96 1.53 0.361 23.5 5.87 0.25
Half-normal – – 1035.07 3.64 0.170 18.4 3.96 0.22
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tested. In our study, the lowest non-zero value of t* provided 
by the camera user manual information (5 s) turned out 
unrealistic, as the value of t* estimated empirically was much 
larger (13 s). This inconsistency had major consequences on 
the final CTDS estimates, as shorter time intervals increased 
sampling effort, thereby lowering abundance estimates. Our 
results highlight the importance of testing for the realized 
value of t* in the field, when using single still images.

Despite the outlined shortcomings of using the values 
provided in the camera user manual and the strength of our 
estimation approach, also some bias could derive from our 
estimation of t*, which could be better defined as the shortest 
interval between images taken by walking in front of the cam-
era at consistently short distances (i.e. 0.5 m). Furthermore, 
the empirical value of t* estimated in this study was likely 
too long for use in CTDS: conceptually, in point transect 
snapshot moments should be independent of when an ani-
mal enters the detection sector. In CTDS, when the snapshot 
moments are triggered by a camera detection, to avoid bias, 
the time between snapshots should be shorter than the short-
est time for an animal to pass through the sector (Howe et al. 
2017). Also, predetermining moments at specific times of 
day makes the moments independent of the exact time when 
animals trigger the sensor. A time of 13 s may have resulted 
in two types of bias. One is bias towards having a snapshot 
moment when an animal was present (because it triggered 
the moment): according to Howe et al. (2017), ‘observed dis-
tances upon first detection are expected to be positively biased 
because animals entering the detection zone through the arc 
of the sector would contribute a disproportionate number of 
observations at far distances. Bias would be slight if the time 
between snapshot moments (t) was small enough to ensure 
that the animals did not move far relative to the range of the 
sensor between snapshots’. The second potential bias is that 
animals may have passed through the sector without detection 
between snapshot moments. While the first bias will lead to 
overestimation, the second will lead to underestimation, but 
there is no guarantee that, in our study, they were of similar 
magnitude and canceled each other out.

Next, inconsistencies between the ‘user-manual’ and 
‘empirical’ values for the angle of view θ (i.e. theoretical 
versus realized θ in the field) can also bias the estimator, as 
density decreases with increasing θ (Rowcliffe et al. 2011). 
This, in turn suggests that the use of a single pre-defined 
θ value for all cameras might be a source of bias if camera 
sites have highly heterogeneous environmental conditions, 
as it is often the case in many field surveys. Furthermore, the 
ability of camera sensors to detect moving animals may vary 
depending on camera type and placement, animal size, air 
temperature and humidity (Hofmeester et al. 2017). While 
these parameters were likely to be fairly homogeneous in this 
study, more generally the consequences of their temporal 
and spatial variations on abundance estimation when CTDS 
with single still images is used deserve future investigation.

The reliability of estimates crucially relies on the possibil-
ity to meet all the assumptions underlying each estimator. 
In our study, ‘empirical’ CTDS and line DS yielded very 
similar point estimates, but the precision of CTDS estima-
tor was poor. Interestingly, despite long intervals of time t* 
do not allow recorded images to align with specific snapshot 
moments, our findings are in line with the results obtained 

by Capelle et al. (2019). We argue that CTDS is unlikely to 
have violated the assumption of random distribution of tran-
sects with respect to marmot density, as cameras were placed 
randomly across the study area (Thomas et al. 2010). The key 
assumption of perfect detection at distance zero (g(0) = 1) is 
difficult to fulfill when surveying small mammals: the need 
to mount the device at a given height above the ground to 
allow for the measurement of distances, likely hampers the 
probability of detecting animals beneath the camera. On 
the other hand, the use of passive monitoring systems such 
as camera traps should reduce the negative response of ani-
mals to the presence of observers (cf. Marques et al. 2013). 
However, animals may exhibit complex responses to camera 
traps, including avoidance or attraction (Séquin et al. 2003), 
possibly leading to biased encounter rates. Similarly, the 
use of markers to estimate distance of individuals from the 
transect might trigger some form of behavioral response in 
animals (Hofmeester et al. 2017). If this were the case, the 
availability of marmots for detection, as well as the distri-
bution of distances might be altered, and may possibly bias 
the estimators. Preliminary work conducted in 2018 in the 
same study area using camera traps without the presence of 
markers suggests very similar trapping rates (3.5 marmots 
day−1 in 2018 versus 3.6 marmots day−1 in this study). 
Furthermore, marmots did not generally show behavioral 
response to markers (Fig. 3a), with a few exceptions (Fig. 
3b). Therefore, we deem unlikely that, in this study, CTDS 
estimators were severely biased by the behavioral response 
of animals. Next, regarding the assumption that distance 
measurements are exact, we admit that our estimation of 
distance of detected marmots from the camera was impre-
cise, but grouping distances within a given interval (binning) 
should not cause major loss of precision in the estimator of 
the detection function (Buckland  et  al. 2015). To obtain 
sensible detection functions we truncated a large fraction 
of camera trap data, which showed an increase in frequency 
in the last bin, likely due to the triggering effect of thermal 
currents, common in alpine environments. It is unclear to 
which extent this caused bias in the estimator; however, most 
of these detections were beyond the range of camera sensors, 
thus it seems unlikely that truncation caused major violation 
of model assumptions. Line DS violated the assumption of 
perfect detection on the transect line (detection probability 
was about 0.8, Fig. 4b). Most important, while the good vis-
ibility in our study area should allow to detect animals from 
far distances before any movement occurs, the marmot’s 
antipredatory behavior (alarm calls: Armitage 2014) may 
have caused movements of available animals away from the 
observer or triggered burrowing behavior of animals closer 
to the observer. If so, Pdetection and Pavailability should decrease 
at distance zero or close to zero, thereby leading to low esti-
mates (Buckland et al. 2015, Schmidt et al. 2017). Distur-
bance to marmots might have been exacerbated by walking 
the transect sequentially on such a small area. Furthermore, 
conventional line transect sampling may not be the most 
suitable technique for sampling small areas, as the low num-
ber of transects may lead to poor estimates of variance and 
the maximum detection range (w) may potentially overlap 
between transects (Buckland et al. 2007).

Capture–recapture methods may be used to estimate 
population size in marmots with no need for correction  
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factors (cf. Corlatti  et  al. 2017). The semifossorial behav-
ior generates a form of temporary emigration sensu Kend-
all (1999) which would bias estimators if the CMR study 
period was shorter than the time marmots spend in burrows, 
because animals in dens would not be available for capture. 
Capture occasions, however, were conducted over several 
days, and during daytime hours animals often move in and 
out of dens. We thus believe that such movements could 
be considered approximately random and that all individu-
als had a non-negligible chance to be available for capture 
during the closed CMR period. Under these assumptions, 
closed CMR models should be robust to this form of tempo-
rary unavailability (Kendall 1999), and the estimated closed 
‘superpopulation’ should approximate the number of mar-
mots present in the study area, i.e. the number of marmots 
present in and out of dens at any given point in time (cf. 
Corlatti et al. 2017). Admittedly, the number of recapture 
events in this study was limited (n = 22). However, the mar-
mot population investigated by Corlatti et al. (2017) had a 
similar capture history (62 capture events, 39 individually 
marked animals and 23 recaptures) and the results of classic 
CMR models were consistent with mark–resight estimates, 
which were based on a much higher number of recaptures 
than CMR, and relied on fewer assumptions (i.e. no need 
for equal resighting probability among individuals and no 
need for independence among sighting events). This, in turn 
supports the use of CMR to estimate marmot populations 
despite the limited number of recapture events.

Overall, the source of bias causing CTDS (and, conse-
quently, line DS) to underestimate population size com-
pared to CMR, despite availability correction, remains 
unclear. We cannot exclude that some predation events by 
the golden eagle Aquila chrysaetos or the red fox Vulpes vulpes 
might have occurred between the CMR (6–16 June), CTDS 
(23–30 June) and DS (2–7 July) sessions, but the timeframe 
seems too short to explain such a difference through pre-
dation. Next, the use of classic CMR estimators makes the 
comparison with DS difficult, as CMR estimates population 
size, while distance sampling estimates density. While the 
use of spatially explicit capture–recapture models (SECR; 
Royle et al. 2014) would be desirable for comparison, pre-
liminary SECR analyses returned unreliable estimates and 
a classic CMR approach was therefore preferred. Although 
the use of a buffer around the trap grid is an arguably 
coarse approach to approximate the effective trapped area 
(cf. White  et  al. 1982), preliminary inspection of marmot 
movements between traps (that is, the occurrence of capture 
events of the same individuals in different traps) revealed 
that only one individual was captured in two adjacent traps, 
79 m apart (on top of Fig. 1c). This suggests limited move-
ments of individuals outside their territories during the 
CMR sampling session, thereby supporting the use of the 
83 m buffer width to approximate the effective trapped area. 
In turn, this should make the (CT)DS-CMR comparison 
possible. We thus believe the difference between availability 
bias-corrected (CT)DS estimators and CMR estimators may 
be largely attributed to violations of assumptions underly-
ing distance sampling methods, and to incorrect assessment 
of animal availability. Both line DS and CTDS likely vio-
lated the assumption of perfect detection at distance zero; 
consequently, this should lead to low estimates compared to 

CMR. Furthermore, estimates of animal availability using 
activity data crucially assume that at the peak of the daily 
activity cycle all animals are active (Rowcliffe et al. 2014). 
If the proportion of time spent being active overestimates 
the proportion of time spent by marmots being outside of 
burrows, then Pavailability would also be overestimated, thereby 
leading to underestimates of population size (cf. Cap-
pelle et al. 2019). We are not aware of studies that assessed 
if, at a given time of day, all marmots are active outside of 
burrows. Our field experience in observing marked individ-
uals suggests that the simultaneous presence of all animals 
outside of burrows is highly unlikely. If so, we suggest that 
the discrepancy between CMR and distance sampling esti-
mators may be largely due to overestimation of availability. 
Lastly, we acknowledge that the limited sample size in this 
study might also have hampered our ability to make strong 
inferences regarding the accuracy of estimators, and possibly 
the sources of bias that caused estimates to differ.

Conclusions

When true population size is unknown, between-methods 
comparisons are difficult. Yet, we argue that CMR estimators 
are more likely to approximate true population size than DS 
methods, in marmots, as CMR appears less sensitive than 
(CT)DS to violation of assumptions caused by the behavior 
of this species, especially with respect to issues of temporally 
limited availability.

If DS methods are applicable without serious violation 
of assumptions, line DS and CTDS return similar results, 
but the former is likely to be more reliable and cost-effec-
tive than the latter. Although the use of camera traps may 
allow to reduce field effort, CTDS drastically increases the 
number of desk-work hours for photo/video-processing, an 
issue that may be important considering the need to deploy 
a substantial number of devices to improve the precision of 
the estimator (cf. Howe et al. 2017, Cappelle et al. 2019 and 
this study). Future studies should explicitly explore the trad-
eoff between the costs and benefits of CTDS versus alternate 
methods, possibly including a power analysis to assess the 
number of cameras needed to achieve the desired level of 
precision.

Although CTDS severely underestimated population 
size in our study population, we suggest that if violations 
of assumptions can be excluded, CTDS may be a promis-
ing method when the aim is to estimate absolute population 
size. To reduce the risk of violating CTDS assumptions, we 
suggest to set up cameras in video mode, as in Howe et al. 
(2017) and Cappelle  et  al. (2019), and record distances 
at each predefined snapshot moment, e.g. every 2 s. This 
allows to choose t, rather than rely on settings that cannot 
be changed. If researchers or wildlife managers prefer to use 
single still images, consistency check of user-manual versus 
empirical θ and t* is crucial to avoid biased estimators. In 
any case, proper availability-bias corrections will always need 
to be considered when using CTDS (Howe et al. 2017).
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