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ABSTRACT Oyster shell is a crucial component of healthy oyster reefs. Shell planting has been a main component of oyster

restoration efforts in many habitats and has been carried out on scales from individual and grassroots efforts to multiagency

efforts across entire estuaries. However, the cycling and lifetime of the shell that makes up the bulk of an oyster reef has only

recently received attention, andmost of the work to date has focused on the role of epi- and endobionts on shell degradation. Here

we report findings from a laboratory study in which we manipulated pH in a flow-through control system using water from the

mesohaline mouth of the Patuxent River to measure dissolution rates of intact oyster shell. Shells from the Eastern oyster

(Crassostrea virginicaGmelin 1791) with three different legacies were exposed to 4 levels of pH that encompass a range typical of

the mesohaline waters of the Chesapeake Bay (;7.2–7.9 on the NBS scale). Mass loss over a 2-wk period was used to measure

dissolution rate on 3 shell legacies: fresh, weathered, and dredged. We found that pH and shell legacy had significant effects on

shell dissolution rate, with lower pH increasing dissolution rate. Fresh shell had the highest dissolution rate, followed by

weathered then dredged shell. Dissolution rates were significantly different among all 4 pH treatments, except between the lowest

(;7.2) and the next lowest (;7.4); however, shells lost mass even under noncorrosive conditions (;7.9). We discuss the

implications of our findings to ongoing efforts to understand shell budgets and cycling in oyster reef habitat, the interaction of

biological and geochemical agents of shell degradation, and the complexity associated with shell carbonate cycling in the unique

milieu of the oyster reef.
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INTRODUCTION

The living oysters that make up the veneer of an intact oyster
reef are supported by a framework of dead oyster shell (DeAlteris
1988, Hargis &Haven 1999), although the physical and chemical

composition of interior oyster reefs have not beenwell quantified.
Oyster restoration efforts have often focused on replanting dead
oyster shell to help provide an initial framework onwhich oysters

recruit. The role of this shell in supporting oyster growth has long
been recognized as noted by the naturalist Pliny the Elder in his
first-century work, Natural History. More recently, the impor-
tance of topographic relief in shell plantings has been shown,

with taller shell plantings having greater success (Schulte et al.
2009). Although the importance of the shell habitat for recruit-
ment of juveniles is well documented, the cycling of this shell

material and lifetime on oyster reefs has only recently received
treatment (Powell et al. 2006, Beck et al. 2009). Oyster shell is a
dynamic resource on oyster reefs subject to a number of degrada-

tion processes that ultimately control the rate of loss from the reef.
The integrated effect of physical, biological, and chemical pro-
cesses degrading shell material over the time it spends in the outer

reef layer determines how much of this material ultimately con-
tributes to the reef framework versus being recycled to the water
column.

A peculiar requirement of oyster reef health and growth is

oyster mortality adding to the shell pool of the reef (Mann &
Powell 2007, Southworth et al. 2010); in other words, for a reef
to remain static with various degradation processes and effec-

tive sea level rise, it must have a healthy population of oysters
with a mortality rate at least balancing the rate of shell loss

(Powell & Klinck 2007). Recent work in the Delaware River
estuary has found that oyster shells on reefs have typical half-

lives of years to a decade (Powell et al. 2006). Powell and Klinck
(2007) argue that these loss rates should set the target popula-
tion dynamics needed for self-sustaining populations. Although
there are few estimates of shell lifetime from oyster reefs, the

seemingly rapid rates from the Delaware suggest that oyster
populations require a careful balance of recruitment, growth,
andmortality to be self-sustaining (Mann&Powell 2007).Given

the evidence that oyster recruitment is less consistent interann-
ually and related to changes in environmental conditions such
as salinity (Kimmel & Newell 2007), the processes affecting the

lifetime of shells on oyster reefs have potentially important
consequences for ongoing restoration efforts. In general, active
breakdown of calcium carbonate hard parts is thought to occur

in the taphonomically active zone (TAZ) (Davies et al. 1989),
which occurs within the bioturbated and oxic zones of sediment
seafloor. The important role of biont attack on shell persistence
has been previously noted (Carver et al. (2010) and references

therein), with shell-burrowing organisms such as polychaetes and
sponges rapidly deteriorating oyster shell while it remains in the
TAZ. Burial in anoxic conditions generally results in increased

preservation (Hu et al. 2011) as a result of the exclusion of shell-
boring organisms and ultimately more favorable geochemical
conditions for calcium carbonate preservation (Morse 2005,

Morse et al. 2007).
Although shell-boring organisms are often considered to be

the primary agent of oyster shell degradation (Carver et al. 2010),

the thermodynamics of surrounding estuarine waters sets the
stage for stability of these biogenic minerals prior to burial. In
addition, the pitting associated with fouling organisms changes
the surface topography of shell material at small spatial scales

(millimeters to centimeters), creating additional surface area
*Corresponding author. E-mail: waldbuss@coas.oregonstate.edu.

DOI: 10.2983/035.030.0308

Journal of Shellfish Research, Vol. 30, No. 3, 659–669, 2011.

659
Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 22 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



where thermodynamic dissolution is thereby accelerated (Morse
et al. 2007). The low salinity and high rates of production and

respiration in many estuaries create conditions that may be
transiently corrosive to the calcium carbonate of oyster shell.
The calcium carbonate reef framework deposited by oysters
in estuarine environments is therefore notable, given the less

favorable thermodynamics compared with other reef-building
organisms such as corals. Furthermore, oysters are prolific filter
feeders, capturing organic matter from the water column and

depositing it to the benthos, including their own reef frame-
work. The deposited organic matter stimulates high rates of
microbial metabolism contributing respired CO2, increasing

corrosiveness, and ultimately increasing dissolution of shell
material until burial below the TAZ. Once buried below the oxic
zone, however, this organic matter may, in fact, help preserve
shell (Hu et al. 2011).

Adult and juvenile bivalves have been shown to deposit calcium
carbonate under corrosive conditions, albeit at a reduced rate
(Gazeau et al. 2007, Waldbusser et al. 2010, Waldbusser et al.

2011). After the organism dies, however, no new shell may be
deposited, and the stability of the shell mineral is controlled by the
corrosiveness of the surrounding conditions. Estuarine carbonate

chemistry is variable with respect to many processes that alter the
stability of calcium carbonate minerals, driven by production
and respiration cycles (Abril et al. 2003, Borges &Gypens 2010,

Feely et al. 2010, Waldbusser et al. 2011), freshwater input
(Salisbury et al. 2008), and global changes in atmospheric CO2

(Miller et al. 2009). All have the potential to alter the lifetime of
the calcium carbonate oyster reef building blocks in these thermo-

dynamically unstable habitats, and all are susceptible to local
and global human impacts.

The importance of calcium carbonate cycling to the global

carbon cycle has precipitated significant research efforts on un-
derstanding the dissolution/preservation dynamics of themineral
phase (see reviews in Morse (2005) and Morse et al. (2007)) and

the calcium carbonate counterpump in theworld’s oceans (Antia
et al. 2001, Zondervan et al. 2001). However, within estuarine
habitats, much less is known regarding the cycling of calcium
carbonate and feedbacks with calcifiers. A recent analysis by

Lebrato et al. (2010) found that echinoderm calcification on
continental shelves is a small but significant component of the
global carbon cycle. The short-term controls on and dissolution

rates of these multicellular biogenic minerals have not been
explored with much depth, particularly in relation to population
dynamics and resource management timescales. However, tapho-

nomic studies of longer term degradation rates (e.g., Kidwell
2005) and more recent experimental evidence from continental
shelf environments provide some insight (Hu et al. 2011, Powell

et al. 2011b).
One challenge to understanding these dynamics is that many

estuarine calcifiers are multicell organisms producing shells that
are heterogenous in nature with high preservation potential (of

adult shells) even in relatively corrosive nearshore sediments.
The calcium carbonate reaching the seafloor in the open ocean
is often from single-cell organisms or small aggregates, whereas

temperate estuarine calcifiers are frequentlymetazoanswith large
shells (and relatively small surface area (sensuWalter andMorse
(1984)) already living on or within the sediment. Bivalve shells

vary in mineral composition, proportion of organic matter,
microstructure of mineral grains, and the outer organic sheath
that protects the mineral component of the shell. These shell

characteristics all affect the rate at which shells dissolve resulting
from thermodynamic conditions: corrosiveness of surrounding

media. However, beyond a first-order thermodynamic argument,
others have argued that factors such as biological interactions,
bioenergetics of shell formation, and environmental variables
ultimately determine the patterns and fate of shell material

(Kidwell 2005, Hautmann 2006, Powell et al. 2011b). Shells un-
dergo diagenetic transformation during burial, and that trans-
formation alters surface chemistry andultimately the dissolvability

of the shell mineral. Formation of modified minerals called
‘‘micrite’’ resulting from dissolution and reprecipitation inmarine
sediments (Kobluk & Risk 1977, Longman 1980) results in ele-

mental changes to the shell surface (Palma et al. 2008) as well as
structural changes to the mineral crystallography. Ultimately,
these early stages of transformation are the beginning of the
fossilization of shell material. It is clear, therefore, that the legacy

of the shell would likely impact the solubility under corrosive
conditions, and these differences in legacy provide a snapshot into
a time-variable component of shell dissolution on and within

oyster reefs.
A combination of biological, geochemical, and sedimentary

agents will ultimately affect the dissolution rates of intact shells

in estuarine environments. To explore the role of estuarine
geochemistry and shell characteristics on dissolution rates, we
used a flow-through experimental CO2 system with feedback

control to control pH and to measure dissolution rates of intact
oyster shell over a 2-wk period. Specifically, our study addresses
two primary questions: What is the response of the intact shell
dissolution rate to a range of common estuarine pH values?

What effect does shell legacy have on shell dissolution rates
across these pH values? Furthermore, we explored the implica-
tions and mechanisms of dissolution rate response to these

factors: pH and shell legacy.

METHODS

Shell Collection

Oyster shells of the species Crassostrea virginica were

collected from three different sources resulting in three different
shell legacies: fresh, dredged, and weathered. Fresh shells were
obtained from a local oyster house in Solomons, MD, all meat

was removed after shucking, and shells were placed into exper-
imental conditions within 24 h of shucking. Dredged shells were
collected fromamarina in Stevensville,MD (LangenfelderMarine

Inc.), which retained the shells from the State of Maryland
dredged shell/oyster reef replenishment program. These dredged
shells are sifted from dredge spoils around theMaryland portion

of Chesapeake Bay and relocated to oyster restoration areas.
Limited aging estimates of the dredged shell from the state of
Maryland indicate the oldest shells are approximately 3,000 y
BP, withmany in the several-hundred-year range (C. Judy,MD-

DNR, pers. comm. July, 25, 2011). Shells were collected hap-
hazardly from a large shell pile at the marina, focusing on intact
shells of amedium size relative to the rest of the shells in the pile.

Weathered shells were originally collected from a local oyster
house in Solomons, MD, shucked, and placed in a sandy,
beachfront area for approximately 2 y. No differentiation was

made between left and right valves of the shells for any of the
legacies. The visual differences of the three shell types were
obvious (Fig. 1). Fresh shells were generally smooth, and the
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outer shell appeared brown and generally had an intact perios-
tracum. Dredged shells were whitish gray with some light sec-

ondary coloration of blue gray on a generally smooth surface.
Weathered shells were white with extensive pitting on the order
of a couple of millimeters in size on the shell exterior but not the

interior. Some evidence of polychaete burrowing was found as
black blisters on shell interiors of weathered and fresh shell.

pH Control System

A flow-through, feedback-control CO2 manipulation system
was used to control pH in the experimental system. The control
system used was a Neptune Aquacontroller 3 (Neptune Systems,

San Jose, CA) interfaced with a PC to record pH and temper-
ature values every 2min throughout the course of the experiment.
Four epoxy filled, double-junction pH electrodes were used with

an internal Ag/AgCl reference electrode, one within each treat-
ment tank. Probes were calibrated with standard NBS buffers,
rinsed and cleaned daily with deionized water, with the calibration

checked daily against a standard 7.01NBS buffer, and recalibrated
at a minimum of once per week. During late July and early August
2009, incoming water from the seawater system of the Chesapeake
Biological Laboratory was manipulated to obtain treatment levels

(Table 1). The incomingwater was drawn from the PatuxentRiver,
a mesohaline tributary of the Chesapeake Bay. Throughout the
course of the entire experiment salinity varied between 13–14 psu

fromdailymeasurements (with nomeasureable diurnal variability),

and temperature was recorded every 2 min with a mean and SD
of 27.28 ± 0.48�C, and amaximumandminimum of 29.50�C and

23.80�C, respectively. One hundred percent CO2 was added in
proportions to maintain an average pH (NBS scale) for 3 target
treatments of 7.7 (high), 7.4 (mid), and 7.2 (low). Our actual

values were 7.67, 7.38, and 7.17, each with an SD of 0.04 pH
units throughout the entire course of the experiments, with values
recorded every 2 min. These pH values were chosen to represent
a range of conditions typical of the mesohaline region of the

Chesapeake Bay.A control was also used inwhich incomingwater
was bubbled with ambient air to a pH set point of 7.90 with an
SD of 0.04 during the experimental period. Bubbling was

initiated when values dropped below the set point and was
stopped when the set point was reached.

The experimental tank setup was designed to dampen diurnal

variation in pH, allow for relatively constant carbonate chemis-
try, and provide constant flow rates to the experimental aquaria.
Incomingwater was plumbed to an open 20-L head tank inwhich

river water entered the system, and flowed out from a standpipe
to maintain a constant water level and thus head pressure of
water fed to experimental aquaria. The water from the head tank
was split to the 3 pH treatments and 1 control. Each treatment

aquarium consisted of two connected 20-L containers, one for
mixing and one for shells. A sheet of bubble wrap was placed on
the surface water in both containers to minimize atmospheric

exchange. Water and CO2 were added to the mixing tank that
was connected to the experimental tank by a short pipe. Water
was cycled back to the mixing tank with a small submersible

pump at a rate of roughly 54.4 L/h. Thewater in the experimental
tank spilled over through an outlet, and the flow rate of water
through each experimental aquarium (5.4 L/h) was controlled
by a valve between the header tank and experimental tanks, and

was checked daily and adjusted as necessary. At the volume of
the experimental aquaria and target flow rates, the water had a
residence time of roughly 8 h in experimental aquaria. We found

the ratio of mixing flow to outlet flow (;10:1) resulted in the most
stable controller response, and it limited cycling of pH in the
experimental system. In addition, each experimental tank was

situated on top of a small stir plate, and a magnetic stir bar was
used to ensure complete mixing in the experimental tank where
shells were suspended in a rack above the bottom of the tank

Figure 1. (A–C) Representative images of the 3 shell legacies used in the experiment: fresh (A), weathered (B), and dredged (C). White bars in each

picture are 1 cm in length for scale.

TABLE 1.

Average conditions (%1 SD) in experimental aquaria during

the 2-wk measurement period.

Temperature Salinity Alkalinity (mmol/L) pH

Inlet 26.50 (0.62) 13.2 (0.4) 1.598 (0.014) n/a

Control 27.28 (0.48) 13.2 (0.4) 1.604 (0.013) 7.90 (0.04)

High 27.28 (0.48) 13.2 (0.4) 1.613 (0.011) 7.67 (0.04)

Mid 27.28 (0.48) 13.2 (0.4) 1.686 (0.040) 7.38 (0.04)

Low 27.28 (0.48) 13.2 (0.4) 1.704 (0.053) 7.17 (0.04)

Values are pH units on the NBS scale.

n/a, not applicable.
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with several centimeters of space among the total of 15 shells per
aquarium.

Shell Weight and Surface Area

The linear rate of decreasemeasured on individual shell mass

was used to estimate dissolution rates for each shell. Five shells
per shell legacy and pH treatment were placed in experimental
conditions for 10 days prior to the experimental 2-wk mass loss

period. Although we collected mass loss data during this initial
10-day period, we used this time to refine handling procedures
of shells during weighing, and to allow shells to develop an

initial biofilm. After the initial 10-day acclimation, mass loss
estimates were based on a linear fit over a 2-wk period in which
total mass of individual shells changed by as much as 2–3 g. The
linear regression fit of mass loss over time for the experimental

mass loss period was typically R2 > 0.90; thus, using the slopes
of this relationship were valid for these short-term estimates of
shell dissolution. Shells wereweighed every 2–3 days by removing

shells from treatment aquaria, blotting them dry, and allowing
them to air dry for 15min beforemeasuringmass. This procedure
was used because it was found to be reproducible and consistent

in obtaining a wet weight of the shell mass without leading to
complete drying of shells. Final dry weights of shells were
obtained by drying for 24 h at 60�C, and were used to estimate

the percent water content of shells.
The interior and exterior surfaces of all shells were photo-

graphed just prior to their placement into the experimental
aquaria from a planar view on a black background to enhance

contrast between shell and background. Shell interior and exterior
surface areas were measured by using standard image analysis
techniques (ImageJ 1.43u, National Institute of Health, Wash-

ington DC), and the measurement difference between interior
and exterior surface area estimates was roughly 3%. Briefly,
each image of 10 shells was imported into Image J, the color

image was converted to a binary image, and the ‘‘analyze
particles’’ command was used to compute the total surface
area. Estimates of surface area were checked by examining the
traces of shells relative to the original images. In some cases,

because of the lack of contrast between shell edges and the
background, shell edges had to be traced manually and the
surface area estimates rerun on touched-up images.

Alkalinity

Alkalinity measurements of incoming and outflow waters for
each pH treatment were measured at roughly 2 to 4-day intervals
to ensure flow rates were sufficient to prevent alkalinity buildup

resulting from shell dissolution. Alkalinity samples were taken
from the water entering the experimental system and at the 4
drains from the experimental tanks. These measurements also
permitted calculation of the saturation state of calcite at specific

time points during the experimental period. Alkalinity was
measured by a 2-point end point titration following Edmond
(1970), and handled following best practices for open cell titration

(Dickson et al. 2007). Samples were analyzed within 20 min of
collection, and were kept in sealed syringes until the open cell
titrationwas carried out.Alkalinitywas used to calculate the calcite

saturation state of the average conditions within the experiments
using CO2SYS (van Heuven et al. 2011) with salinity-dependent
dissociation constants from Millero et al. (2006).

Electron Microprobe

Elemental analysis of one representative shell from each legacy

type in the control pH treatment was selected to determine whether
shells from the different shell legacies had been significantly altered.
Electron microprobe analysis of calcium, strontium, barium,
manganese, iron, magnesium, aluminum, and silica on the interior

and exterior shell surfaces, aswell as a cross-section of the shell, was
conducted. For each shell legacy, the left valve was used to
eliminate differential effects between valves. Five replicate locations

were analyzed on epoxy-embedded shell samples. Electron micro-
probe analyses of shells were performed atOregon StateUniversity
using a CAMECA SX-100 (CAMECA, Gennevilliers Cedex,

France) instrument equipped with five wavelength dispersive
spectrometers and high-intensity dispersive crystals for high-
sensitivity trace element analysis. The shells were analyzed using

a 15-keVaccelerating voltage, a 50-nA sample current, and a 10-mm
beam diameter. Counting times ranged from 10 to 60 sec, depend-
ing on the element and desired detection limit. Data reduction
was performedonline using a stoichiometric PAPcorrectionmodel

(Pouchou & Pichoir 1984). Barium, manganese, and aluminum
were below detection limits in all samples (FEI, Hillsboro, OR).

Scanning Electron Microscopy

Visual inspection of shell surfaces for diagenetic transfor-
mation was carried out by electron microscopy. Samples were

taken from the same shells as the electron microprobe analyses by
chipping a section of the outer shell surface. The shell sampleswere
rinsed with deionized water and dried before sputtering with a Pb/

Au layer. Samples were analyzed at the Oregon State University
Electron Microscopy Laboratory under an FEI Quanta 600F
scanning electron microscope.

Experimental Design and Statistical Analyses

A 2-way full factorial experimental design was used to ex-
amine the effects of shell legacy and pH (and their interaction) on

dissolution rates of Eastern oyster shell. Five replicate shells of
each shell legacywere randomly assigned to 1 of 3 pH treatments.
Within each experimental aquarium, 15 shells total (5 of each

legacy) were contained during the course of mass loss measure-
ments. Percent mass loss per day was computed as the dependent
variable by calculating the regression of mass over time for each

shell (in grams per day), then dividing by the initial mass to de-
termine a percent mass corrected dissolution rate for each shell
in the experiment. The initial 2-way ANOVA found that the

interaction effect of legacy and pH treatment was not signifi-
cant, and it was therefore dropped from the analysis. Assump-
tions of ANOVA were checked by examining residuals visually
against each independent variable, as well as by using Shapiro-

Wilk’s test of normality and Hartley’s f-max test of hetero-
scedacity. Residuals were normally distributed for each treatment
level within each factor (legacy and pH treatment). Assumption

of homoscedascity was met for treatment levels within pH;
however, variances were found to be significantly different among
the three legacy treatments. To address this violation of assump-

tions, separate variance estimates weremade for each shell legacy
to be used in the treatment comparisons, and denominator de-
grees of freedom were computed using Satterthwaite’s method
for the subsequent ANOVA with variance groupings by shell

legacy. All analyses were run in SAS v9.1.3 (SAS, Cary, NC).
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RESULTS

Experimental System Performance

The controller system maintained pH within experimental
aquaria for the duration of the experiment, except for three failures
that resulted inmissing data (Fig. 2). Datawere logged every 2min

from the 4 pH probes, and the SD of pH throughout the course
of the experiment was roughly 0.04 pH units (Table 1). However,
during three periods, the mid and low pH treatment controller

circuit froze and no data were logged, as evident by the gaps in
Figure 2. On examining the mass data for these periods of con-
troller failure, there are no measurable deviations in the rate of

mass loss relative to the overall trends.We recognize the potential
pitfalls of the experimental system, but note that this appeared to
have no significant consequence on the response variable during

these controller blackouts.

Shell Dissolution

During the 2-wk period in which we measured mass loss of

shells, we found significant overall effects of shell legacy (F2,35 ¼
42.94,P < 0.0001) and a positive effect of decreasing pH treatment
(F3,28.6 ¼ 50.90, P < 0.0001) on shell dissolution (Fig. 3). The pH

values we used in these experiments are not atypical of conditions
in this mesohaline section of the Chesapeake Bay, albeit only in
a transient sense. All the pairwise comparisons were significantly

different between shell legacies, and only the difference between
the low andmid pH treatmentswas not significant (Table 2). Two
of the five replicates in the fresh mid-pH group had dissolution

rates higher than what would be predicted from the overall trends,
thus driving the mean value up (Fig. 4). Closer examination of
these shells (and several others) revealed visual evidence of poly-
chaete burrows (black blisters on internal shell surfaces) and

sponges (pitting on exterior shell surfaces) in the fresh shells,
which corresponded to the higher dissolution rates. In general,
linear model fits to the individual shell mass loss over time

explainedmore than 90%of the variance in change inmass over
time. The dredged/control-pH shells typically had the worst fits
to a linear model because of the very small changes in mass

during the experimental period. However, with decreasing pH
and corresponding increases in dissolution rates, the linear fits
increased, with the dredged low-pH shells all having anR2 value

of more than 0.95. We should also note that the patterns in shell
dissolution rates are robust when standardized to planar surface

area, rather than mass. Therefore, we will retain the units in per
mass because they are in some ways easier to understand and to
enable comparisons with estimates of shell half-lives.

The average percent water weights by shell legacy (±1 SD) at

the end of the experiment were fresh, 3.47 ± 1.38; dredged, 1.90 ±
1.71; and weathered, 5.06 ± 3.63. A simple 1-wayANOVA found
a significant effect of shell legacy on percent water weight

(F2,32.1¼ 11.60,P¼ 0.0002). Data were log transformed tomeet
assumption of normality, and variance was grouped by legacy
because of unequal variance across the shell type. Significant

differences, withTukey-Kramer adjustment, were found between
dredged and fresh shells (t33.6 ¼ 3.76, P ¼ 0.0019) and between
dredged and weathered shells (t35.5 ¼ 4.49, P ¼ 0.0002), but not
between fresh and weathered shells (t28.6 ¼ 1.93, P ¼ 0.1457).

Note that the degrees of freedom vary among comparisons as
a result of the Satterwaithe degrees of freedom estimation
method used when grouping variance components.

Alkalinity Measures

Alkalinity values were used to determine saturation state for
calcite (in conjunction with pH) and to ensure that flow rates
were sufficient to prevent buildup of alkalinity in experimental

aquaria. Water samples were taken from the inlet water supply
and the outlet of the four experimental aquaria. The average
inlet water alkalinity was 1.60 ± 0.01 mmol/L. An increase

in alkalinity over time was found in all treatments; however, our
estimated error in the alkalinity measurements is roughly 0.015
mmol/L, and therefore is greater than the difference we found in
the control, and equal to that in the high pH treatment. The

differences between inlet and outlet waters for each pH treatment
were control, below detection limit; high, 0.015 mmol/L; mid,
0.087mmol/L; and low, 0.105mmol/L. The increase of alkalinity

in the low-pH treatment equates to a change in saturation state
for calcite of 0.02, which highlights the minimal container effect
of our system at the chosen flow rates. It should be noted here

that remineralization of organic matter and release of nutrients
generally decreases alkalinity, so these delta alkalinity valuesmay
be underestimating the true carbonate dissolution rate. Remi-

neralization of organic components of the shell would contribute
to the mass loss without an increase in alkalinity (and potentially
a decrease depending on nutrient release rate). However, the
organic components of oyster shell are generally less than 10%

by weight. The different shell legacies were mixed in each pH
treatment, thus the differences in alkalinity resulting from the
dissolution of calcium carbonate are integrated across shell type.

The average percentage (by weight) of shell material in each pH
treatment was dredged, 25%; weathered, 33%; and fresh, 42%.

Shell Elemental Analyses

Shell elemental composition varied among the representa-
tive shell of each shell legacy (Fig. 5). Values presented in Figure
5 are from the inner shell surface of left (or bottom) valves only.

Overall recoveries on analyses were generally near 100% on the
weathered and fresh shells (indicating we captured nearly all the
primary elements), but were as low as 80% on the dredged shell,

implicating other possible elements for which we did not probe.
The dredged shell had higher strontium concentrations on the
inner shell surfaces and measurable concentrations of iron and

Figure 2. One hour centered mean pH values from each experimental

tank.
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silica, indicating early fossilization, whereas the fresh and weath-

ered shell had lower strontium concentrations, and iron and
silica concentrations below detection limits. A lower magnesium
concentration was found on the weathered shell compared with
other shell legacy types, indicating the preferential loss of the

more soluble, higher magnesium calcite in the weathered shells
(Morse et al. 2007, Burdige et al. 2010), subject to rainwater and
terrestrial weathering processes. These limited data provide

geochemical evidence of possible surface control on dissolution,
and corroborate the electron microscopy observations below.

Visual Examination of Shell Surfaces

Examination of shell surfaces using electron microscopy
highlights further differences in surface texture that likely have

additional impacts on dissolution rates of different oyster shell.
Figure 6 highlights three representative images of exterior shell
surfaces of the same left valves used for electron microprobe
analysis. The periostracum is visible on the fresh shell sample

(Fig. 6A), with periostracal creases (white arrow) overlaid on
the prismatic shell layer (black arrow). Breaks in shell growth
are also visible, where edges of prisms are seen with growth

occurring in the general lower left to upper right direction. The
surface of the weathered shell (Fig. 6B) contains many small
fragments and crystals occurring in various directions, indicat-

ing significant modification of the shell surface through the
weathering process. The dredged shell surface (Fig. 6C) has

larger crystal formations, and some of the original prisms are

also visible. These shells were buried in organic-rich sediments
for significant periods of time; as a result, diagenetic cementing
occurs (dissolution and reprecipitation) on the surfaces exposed
to the corrosive sediments. It is again important to note that

these images are from representative shells, and provide insight
(not conclusive evidence) into the possible role of microstruc-
ture and surface processes in controlling dissolution rates of

intact shells of differing legacies.

DISCUSSION

Our laboratory-based measurements of intact oyster shell
dissolution highlight the potential role of environmental changes
in carbonate chemistry on this important and limiting estuarine

resource. Across a typical range of pH values for this mesohaline
region of the Chesapeake Bay, the rate of shell dissolution
changed significantly (Figs. 3 and 4). In addition, the legacy of
the shell had equally important consequences on the dissolution

rate, altering the dissolution rate by about a factor of 10 from the
slowest dissolving dredged shells to the more rapidly dissolving
fresh shells (Figs. 3 and 4). The short timescale (weeks) of this

Figure 3. (A, B) Estimates of least square means for legacy (A) and pH treatment (B) effects. Error bars are SE estimates. Note that the different error

estimates for the shell legacy means are the result of the individual variance estimates of these treatment effects.

TABLE 2.

Results from pairwise comparisons among treatments within

each factor of the 2-way ANOVA.

Pairwise Comparisons df t Value Adjusted P value

Shell legacy

Dredged vs. fresh 21.1 6.69 <0.0001

Dredged vs. weathered 28.1 7.11 <0.0001

Fresh vs. weathered 26.2 2.97 0.0144

pH treatment

Control vs. high 28.6 4.86 0.0002

Control vs. mid 28.6 8.96 <0.0001

Control vs. low 28.6 11.55 <0.0001

High vs. mid 28.6 4.10 0.0017

High vs. low 28.6 6.69 <0.0001

Mid vs. low 28.6 2.59 0.0677

Figure 4. Average dissolution rates of individual treatments related to pH.

The saturation state for calcite is presented below the pH values for

reference. On the right y-axis are the first-order half-life values computed

from the rate constants measured during the experiments. It is important

to note the measurements are instantaneous rate constants for a short

window of time, roughly 2 wk (see text).
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experiment provides a snapshot of dissolution rates in response
to changes in estuarine carbonate chemistry, but excludes other

factors that are also responsible for shell degradation, such as
shell-boring organisms. Although we noted evidence of shell-
boring organisms, nonewere present on or in the shells during the

experiment. Our measured rates in these short-term experiments
are, however, within the range of other previous measurements
of shell degradation. In an early study of shell dissolution Hecht
(1933) showed that, immediately after death, mollusc shells may

lose 25%of theirmass in amatter ofweeks.Driscoll (1970) found
mass loss rates of up to 16% per year of shells in Buzzard’s Bay,
MA, attributed largely to boring organisms. Our measurements

of dissolution (excluding bionts) range from roughly 2 to 70%per
year, depending on shell type and pH (Fig. 4). This extrapolation
to per year for any of our pH values has obvious limitations given

the multiple scales of variability in estuarine carbonate dynam-
ics. The most appropriate application of these rate loss values
would be to apply to variable pH records of sufficient temporal
resolution, such as hours, and integrate rate loss over longer

periods of time, thus providing an estimate of geochemical shell
loss to estuarine pH. However, if pH values for a given timeframe
are normally distributed, using the average pH would provide an

adequateestimation.Our experimentswereconductedat anarrow
range of temperature and salinity—factors important to carbon-
ate thermodynamics. Our experiments do indicate that oyster

shell lifetime, within the more surficial and open parts of a reef,

may be susceptible to changing estuarine carbonate chemistry,
and is supported by recent work in shelf environments on shell

breakdown (Hu et al. 2011, Powell et al. 2011a).

Shell Half-Life and Agents of Destruction

Shell dissolution rates may be used to compute shell half-

lives to evaluate the role of pH and carbonate chemistry in
maintaining/degrading oyster reefs. Recent estimates of Eastern
oyster shell half-lives on reefs by Powell et al. (2006) indicate that

in the Delaware Bay estuary shell half-lives range from just older
than 1 to;20 y, with the shortest half-lives found in mesohaline
waters. Fitting our loss rates to an exponential decay model (as

in Powell et al. (2006)), the shortest half-lives we compute are
roughly 1 y for fresh shell under mid and low pH, and increase to
nearly 40 y in the dredged control pH treatment (Fig. 4). It is
important to note half-life increases exponentially with decreas-

ing rate loss, and applied to our experimental data, shell lifetime
is therefore most sensitive to changes in the upper pH range.
After rate losses drop roughly 0.05 d–1 (or roughly 20 y–1), half-

lives increase very rapidly, identifying a possible threshold type
response of shell to degradation/dissolution rates. The rates of
fresh shell decay in our experimental range are well above this

threshold, and extrapolating linearly to higher pH values finds
that this 0.05 d–1 rate would be obtained at a pH of 8.25 for the
fresh shells in our experiment. The estimates and extrapolations

from our experiments only account for geochemical degradation
and exclude effects from shell-boring organisms (e.g., Zuschin
et al. 2003, Carver et al. 2010).

In Chesapeake Bay, Pomponi and Meritt (1990) found that

90% of oyster shells were infested with a boring sponge, and
these values were not unusual compared with other estuarine
habitats (Rosell et al. 1999). Several of the fresh shells in our

experiments had visual indicators of biont attack prior to the
experiment, with visible black blisters on interior shell surfaces
from polychaetes and bore holes from sponges (although no

organisms were found in or on shells). Some of the highest
dissolution rates we measured on individual shells were in the
mid-pH treatment, with evidence of endobiont attack, and
evidence of biont attack generally resulted in higher dissolution

rates within pH treatment groups of fresh shells.
In the Delaware estuary, however, Powell et al. (2006) noted

that the shortest half-lives were found inmesohaline waters, where

boring sponges generally decrease in abundance with decreasing
salinity (Hopkins 1962). Mesohaline estuarine environments are,
however, often the region of chlorophyll maxima (such as in the

Delaware River (Mannino & Harvey 1999)), and thus higher

Figure 6. Representative scanning electron micrographs of the 3 shell legacies, outer shell surfaces of the left valves. (A) Fresh shell legacies. The white

arrow notes the prisms in the prismatic layer, whereas the black arrow highlights a periostracal crease. (B) Weathered shell legacies. (C) Dredged shell

legacies.

Figure 5. Trace element composition of interior shell surfaces in parts per

million (PPM). Iron and silica were less than detection limits on the

dredged shell cross-section analysis of the interior shell, and strontium in

this region was also similar to that of the fresh and weathered shells.
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rates of production and respiration should result in a greater
diurnal range in pH. Coupled with the lower alkalinity buffering

in these environments, the overnight respiration signal is likely to
create corrosive conditions for calcium carbonate minerals. We
are not arguing that biont attack on shell is trivial, rather that
biological and geochemical agents likely work in tandem, by

creating microzones of respired CO2 and additional surface area
for dissolution. Should continued anthropogenic impacts on
estuarine ecosystems result in less thermodynamically favorable

estuarine conditions for calcium carbonate (Abril&Frankignoulle
2001, Borges & Gypens 2010, Feely et al. 2010, Waldbusser et al.
2011), shell budgetsmay be increasingly controlled by geochemical

processes.

Time Dependency of Shell Degradation and Shell–Reef Dynamics

The comparison of the fresh shell with the other two shell
types provides possible insights into the time dependency of shell

degradation rates (noted by Powell et al. (2011a)) and highlights
shell cycling dynamics on oyster reefs. Few studies of the physical
and geochemical structure of an oyster reef exist, from the outer

layer to the interior core (Davies et al. 1989, Hargis & Haven
1999). An important, and peculiar, requirement for an oyster
reef to grow is the mortality of oysters and contribution of their

shell to the reef framework (Powell et al. 2006, Mann & Powell
2007)—a framework composed of shell, organic deposits, and
pore space in poorly constrained proportions. The rates of fresh
shell dissolution we measured may be representative of shells

during the early postmortality stage. However, as shells age (on
a growing reef), they are eventually buried, presumably in an
anoxic environment closer to the reef interior, thus excluding

biont attack, and in a generally more favorable geochemical
environment for preservation of calcium carbonate (Hu et al.
2011). Also during this transition from the near reef surface to

reef interior, the exterior of the shell undergoes early diagenetic
alteration, altering the surface chemistry of the calcium carbon-
ate mineral and ultimately solubility (Morse & Arvidson 2002).

If the reef interior is in fact a diffusion-limited environment,
the shell surface will dissolve and reprecipitate, leading to a less
soluble surface for dissolution. Our dredged shell measure-
ments, therefore, may represent a shell after having undergone

this early diagenesis and then subsequently having been reex-
posed to oxic conditions. Thus, the differences in dissolution
rate from the fresh to dredged shell may be, to some degree, an

estimate of end members in a time-dependent dissolution rate.
Furthermore, it is important to note that should the shell be
buried within the reef framework, it would be exposed to a very

different geochemical milieu. Decreases in reef accretion rates
resulting from decreased oyster population growth, or increases
in erosion resulting from changed hydrographic conditions
could result in exposure of older/deeper more modified shells,

perhaps providing a feedback in shell budget as a result of the
lower dissolution rates of previously buried shell.

Importance of the Shell Dissolution Surface

Evidence from elemental analyses and electron microscopy
of representative shells highlights the importance of surface
control on dissolution rates under these moderately corrosive

conditions (Morse & Arvidson 2002). Elevated concentrations of
silica and iron on the dredged shell surface (Fig. 5) suggest the
initial stages of diagenetic transformation (Longman 1980, Palma

et al. 2008) and micrite formation (recrystallized calcium carbon-
ate) have altered surface characteristics. Elevated silica and iron

values have been measured previously in outer prismatic layers
(Carriker et al. 1991) and are similar to our measurements of
foliated interior shell surfaces (Fig. 5), but aluminum was below
detection limits, providing us with confidence that we captured

foliatedmicrosctructure. Our electronmicroscopic images further
support that the dredged shells were in an early stage of diagenetic
transformation rather than sampling different microstructures,

based on the larger crystal shapes seen in Figure 6C. Larger
crystal sizes (and thus less surface area for dissolution) can be
generated by dissolution and reprecipitation without altering

chemical composition of the mineralogy (Morse & Casey 1988),
and/or result in new mineral formation (Rude & Aller 1991).
The geochemical and visual evidence of shell surface alteration are
suggestive of both processes and, coupledwith our dissolution rate

measures, highlight the disconnect between bulk mineral proper-
ties and dynamics of mineral dissolution (Morse & Arvidson
2002), particularly of intact shells in estuarine environments.

Our study shows that even in supersaturated conditions, with
respect to calcite, shells decreased in mass. The remineralization
of organic shell components is one likely explanation for this

response (Glover & Kidwell 1993), especially given the fact that
the fresh shells had the highest dissolution rates (and the most
organic material). However, organic components of oyster shell

are typically a small percentage. The presence of a surface for
microbes to colonize, and the secondary effects of metabolic CO2

production (Emerson & Bender 1981) andmicrozone dissolution
(Berner 1969) on shell surfaces are likely also at play.

The rates of shell dissolution wemeasured here are more than
an order of magnitude lower than modeled calcite dissolution
estimates in the open ocean seafloor (Hales & Emerson 1997).

Much of the intact shell mass is not available to dissolve because
of the low surface area-to-volume ratio of an oyster shell relative
to a calcite grain (Walter & Morse 1984). Although others have

examined the differences in calcium carbonate dissolution among
biogenic and authigenicminerals, and the differences in available
surface area (Cubillas et al. 2005), this work has been done on
crushed shell. For example, assuming a perfect spherical calcite

grain of 0.2 mm in diameter, one can calculate the mass per
surface area as roughly 1.4310–3 g/cm2, whereas the mass per
surface area we measured for shells was 0.854 g/cm2. Our planer

surface areameasurements do not account for curvature of shells
and microtexture, but do highlight the importance of this basic
geometric comparison in regulating shell dissolution. Clearly,

there are many dynamics modulating the dissolution of intact
oyster shell. Our measurements simply set the stage for deter-
mining the magnitude of response to changes in estuarine pH.

Oyster Reefs and Estuarine Calcium Carbonate Dynamics

Oyster reefs are significant biogenic carbonate masses in ther-

modynamically variable and often unstable estuarine environ-
ments. To date,most interest in carbonate dissolution has focused
on the seafloor of continental shelves and the open ocean (Honjo

& Erez 1978, Cai et al. 2006, Hu et al. 2011) because of the im-
portant role of these habitats in global carbon cycling. Significant
carbonate dissolution has been found in nearshore marine sed-

iments (Green & Aller 1998, Green & Aller 2001) and estuarine
turbiditymaximumzones (Abril et al. 2003). The role of keystone
species such as seagrass, algae, or corals on carbonate cycling in
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coastal environments has also been highlighted (Gattuso et al.
1996, Bensoussan&Gattuso 2007, Burdige et al. 2008), but these

studies have generally focused on carbonate-rich tropical envi-
ronments. Postlarval juvenile and adult oysters can precipitate
calcium carbonate in thermodynamically unfavorable condi-
tions (Gazeau et al. 2007, Waldbusser et al. 2011) and, coupled

with a high rate of organic matter deposition, this shell material
may be readily preserved if buried quickly enough. In an
insightful treatment, Kidwell and Jablonski (1983) noted the

significant of sediment ‘‘shelliness’’ and positive ecological
feedbacks of shell to changing benthic community composition
(termed ‘‘taphonomic feedback’’). If the responses of oyster shell

dissolution to changing pH we measured (Figs. 3 and 4) were
reasonable estimates of in situ conditions, then changes to
estuarine geochemistry may be an important factor for oyster
restoration.

Estuarine carbonate chemistry is dynamic, however,withmany
processes occurring across multiple temporal and spatial scales,
including production/respiration cycles (Abril et al. 2003, Borges

& Gypens 2010), hydrologic and watershed changes (Salisbury
et al. 2008, Najjar et al. 2010, Aufdenkampe et al. 2011), and
eutrophication (Gypens et al. 2009, Feely et al. 2010,Waldbusser

et al. 2011). The importance of shell to the estuarine ecosystem
(Gutierrez et al. 2003, Powell et al. 2006, Kelly et al. 2011, Green
et al. accepted), the dynamic biogeochemistry in these environ-

ments, and feedbacks of shell budgets with population dynamics
suggest (Powell et al. 2006, Mann & Powell 2007) this is an
important and challenging area of future research.

Managing Shell Resources

One interesting note with regard to the dredged shell is that it
had been used extensively by the state of Maryland to restore

previously harvested oyster reefs from 1960 until 2006. Approx-
imately 196million bushels of dredged oyster shell were replaced
in Chesapeake Bay during this 46-y period from the program’s

inception to termination (MD DNR). This is likely the largest
coordinated shell planting/reef restoration effort to date, and
also perhaps the largest alkalinity buffering experiment con-
ducted. From a kinetic perspective, the use of dredged shell may

have helped provide additional benefits from its lower rate of
dissolution under all pH conditions (Figs. 3 and 4). The slower
dissolution rate may have been especially beneficial during the

the early time frame of shell planting when carbonate conditions
may have been less favorable for calcium carbonate preservation
(Aufdenkampe et al. 2011). This potentially lower loss rate

resulting from dredged shell meant that the population size
needed to provide shell through mortality could have been
smaller, helping to balance the shell budget (Powell et al. 2006).

However, it is unknown whether these potential benefits also
translate into a lesser degree of biont attack, and how the overall
shell budgets were altered by the planting of dredged shell. At the
control pH value, the dredged shell had a half-life 10 times higher

than the fresh shell or, a loss rate equivalent to fresh shell at a pH
of roughly 0.2 pH units lower. Although the shell planting

program has been discontinued, in part because of the lack of
accessible shell, and it may be difficult to reconstruct previous

shell budgets, the likely significant positive effect this effort should
not be overlooked (Southworth et al. 2010).

A recent analysis has suggested that oysters are ‘‘functionally’’
extinct because of their precipitous decline in numbers relative

to former populations (Beck et al. 2009). Thus the ecosystem
functions (e.g., filtering, habitat) that oysters provided in the past
have been lost. With ongoing restoration efforts aimed at re-

storing shells to former oyster grounds in many regions, un-
derstanding the controls on the lifetime of shells and how they
relate to anticipated changes to estuaries from local and global

anthropogenic impacts seems crucial. Conversely, changing the
balance of shell material in estuaries may also have significant
geochemical implications (Waldbusser et al. in prep). Shell plant-
ing may be a worthwhile mitigation strategy for some bivalves

(Green et al. 2009); however, without the characterization of oyster
population dynamics (Harding et al. 2010, Southworth et al.
2010) needed to provide renewed shell, these activities may be

less effective than anticipated. The susceptibility of oyster shell
and other bivalve shells in shell beds to dissolution extends
beyond simple first-order thermodynamics arguments (Kidwell

2005); however, these first-order processes are important to
constrain rate losses and to provide a starting point for
understanding how shell resources in estuaries will respond to

future anthropogenic impacts, including harvest and changing
biogeochemistry. Our study provides limited, but important,
insight into the possible future of oyster shell cycling. Relatively
small increases in acidity may require shell replacement rates

higher than can be achieved by natural populations and, vice
versa, relatively small decreases in acidity could help provide
natural oyster populations with an advantage. The geochemical

control on dissolution of oyster shell needs to be evaluated in
the context of other biological and sedimentary processes that
ultimately control the lifetime of oyster shell on the reef.

ACKNOWLEDGMENTS

We acknowledge the Research Experience for Undergrad-

uates (REU) program supported by Maryland Sea Grant and
the National Science Foundation for supporting R. A. S. to
carry out this research. This work was also supported by NSF-

OCE#0622999 toM.A.G. andG.G.W.We thankLangenfelder
Marine Inc. for allowing us to pick shells from their dredged
shell pile, Frank J. Tepley at Oregon State University for carrying

out the electron microprobe analyses, Liu Yi at Oregon State
University for assistance with electron microscopy, and Bud
Millsaps at the Chesapeake Biological Laboratory for his assis-

tance with the seawater system. G. G. W. thanks Chris Judy and
Eric Weissberger at the Maryland Department of Natural Re-
sources for information on the Maryland shell planting program,
Janet Nye for data on biological oxygen demand of Patuxent

River waters, and Sarah E. Kolesar and Eric Powell for comments
on a previous version of this manuscript.

LITERATURE CITED

Abril, G. &M. Frankignoulle. 2001. Nitrogen–alkalinity interactions

in the highly polluted Scheldt basin (Belgium).Water Res. 35:844–

850.

Abril, G., H. Etcheber, B. Delille, M. Frankignoulle & A. V. Borges.

2003. Carbonate dissolution in the turbid and eutrophic Loire

estuary. Mar. Ecol. Prog. Ser. 259:129–138.

ESTUARINE SHELL DISSOLUTION 667

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 22 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



Antia, A. N., W. Koeve, G. Fischer, T. Blanz, D. Schulz-Bull,

J. Scholten, S. Neuer, K. Kremling, J. Kuss, R. Peinert, D. Hebbeln,

U. Bathmann, M. Conte, U. Fehner & B. Zeitzschel. 2001. Basin-

wide particulate carbon flux in the Atlantic Ocean: regional export

patterns and potential for atmospheric CO2 sequestration. Global

Biogeochem. Cycles 15:845–862.

Aufdenkampe, A. K., E. Mayorga, P. A. Raymond, J. M. Melack,

S. C.Doney, S. R.Alin, R. E. Aalto&K.Yoo. 2011. Riverine coupling

of biogeochemical cycles between land, oceans, and atmosphere.Front.

Ecol. Environ. 9:53–60.

Beck, M. W., R. D. Brumbaugh, L. Airoldi, A. Carranza, L. D. Coen,

C. Crawford, O.Defeo,G. J. Edgar, B.Hancock,M.Kay,H. Lenihan,

M. W. Luckenbach, C. L. Toropova & G. Zhang. 2009. Shellfish reefs

at risk: a global analysis of problems and solutions. Arlington, VA: The

Nature Conservancy. 52 pp.

Bensoussan, N. & J.- P. Gattuso. 2007. Community primary production

and calcification in a NW Mediterranean ecosystem dominated by

calcareous macroalgae. Mar. Ecol. Prog. Ser. 334:37–45.

Berner, R. A. 1969. Chemical changes affecting dissolved calcium

during bacterial decomposition of fish and clams in sea water.

Mar. Geol. 7:253.

Borges, A. V. & N. Gypens. 2010. Carbonate chemistry in the coastal

zone responds more strongly to eutrophication than to ocean

acidification. Limnol. Oceanogr. 55:346–353.

Burdige, D. J., X. Hu & R. C. Zimmerman. 2010. The widespread

occurrence of coupled carbonate dissolution/reprecipitation

in surface sediments on the Bahamas Bank. Am. J. Sci. 310:

492–521.

Burdige, D. J., R. C. Zimmerman & X. Hu. 2008. Rates of carbonate

dissolution in permeable sediments estimated from pore-water pro-

files: the role of sea grasses. Limnol. Oceanogr. 53:549–565.

Cai, W. J., M. H. Dai & Y. C. Wang. 2006. Air–sea exchange of carbon

dioxide in ocean margins: a province-based synthesis. Geophys. Res.

Lett. 33. DOI: 10.1029/2006GL026219.

Carriker, M. R., C. P. Swann, R. S. Prezant & C. L. Counts. 1991.

Chemical elements in the aragonitic and calcitic microstructural

groups of shell of the oyster Crassostrea virginica: a proton probe

study. Mar. Biol. 109:287–297.

Carver, C. E., I. Theriault & A. L. Mallet. 2010. Infection of cultured

Eastern oysters Crassostrea virginica by the boring sponge Cliona

celata, with emphasis on sponge life history and mitigation strate-

gies. J. Shellfish Res. 29:905–915.

Cubillas, P., S. Kohler, M. Prieto, C. Chairat & E. H. Oelkers. 2005.

Experimental determination of the dissolution rates of calcite,

aragonite, and bivalves. Chem. Geol. 216:59–77.

Davies, D. J., E. N. Powell & R. J. Stanton. 1989. Relative rates of shell

dissolution and net sediment accumulation: a commentary: can shell

beds form by the gradual accumulation of biogenic debris on the sea-

floor. Lethaia 22:207–212.

DeAlteris, J. T. 1988. The geomorphic development of wreck shoal,

a subtidal oyster reef of the James River, Virginia. Estuaries 11:240–

249.

Dickson, A. G., C. L. Sabine & J. R. Christian, editors. 2007. Guide to

best practices for ocean CO2 measurements. PICES Spec. Publ. 3:

191 pp.

Driscoll, E. G. 1970. Selective bivalve shell destruction in marine

environments: a field study. J. Sediment. Petrol. 40:898.

Edmond, J. M. 1970. High precision determination of titration alka-

linity and total carbon dioxide content of sea water by potentio-

metric titration. Deep-Sea Res. 17:737.

Emerson, S. & M. Bender. 1981. Carbon fluxes at the sediment–water

interface of the deep sea: calcium carbonate preservation. J. Mar.

Res. 39:139–162.

Feely, R. A., S. R. Alin, J. Newton, C. L. Sabine, M.Warner, A. Devol,

C. Krembs & C. Maloy. 2010. The combined effects of ocean

acidification, mixing, and respiration on pH and carbonate satura-

tion in an urbanized estuary. Estuar. Coast. Shelf Sci. 88:442–449.

Gattuso, J. P., M. Pichon, B. Delesalle, C. Canon &M. Frankignoulle.

1996. Carbon fluxes in coral reefs. 1. Lagrangian measurement of

community metabolism and resulting air–sea CO2 disequilibrium.

Mar. Ecol. Prog. Ser. 145:109–121.

Gazeau, F., C. Quiblier, J. M. Jansen, J. P. Gattuso, J. J. Middelburg &

C. H. R. Heip. 2007. Impact of elevated CO2 on shellfish calcifica-

tion. Geophys. Res. Lett. 34. DOI: 10.1029/2006GL028554.

Glover, C. P. & S. M. Kidwell. 1993. Influence of organic matrix on the

postmortem destruction of molluscan shells. J. Geol. 101:729–747.

Green, M. A. & R. C. Aller. 1998. Seasonal patterns of carbonate

diagenesis in nearshore terrigenous muds: relation to spring phyto-

plankton bloom and temperature. J. Mar. Res. 56:1097–1123.

Green,M. A. &R. C. Aller. 2001. Early diagenesis of calcium carbonate

in Long Island Sound sediments: benthic fluxes of Ca2+ and minor

elements during seasonal periods of net dissolution. J. Mar. Res.

59:769–794.

Green, M. A., G. G. Waldbusser, L. Hubazc, E. Cathcart & J. Hall.

Carbonate mineral saturation state as the recruitment cue for

settling bivalves in marine muds. Estuaries Coasts.

Green, M. A., G. G. Waldbusser, S. L. Reilly, K. Emerson & S.

O’Donnell. 2009. Death by dissolution: sediment saturation state as

a mortality factor for juvenile bivalves. Limnol. Oceanogr. 54:1037–

1047.

Gutierrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne. 2003.

Mollusks as ecosystem engineers: the role of shell production in

aquatic habitats. Oikos 101:79–90.

Gypens, N., A. V. Borges & C. Lancelot. 2009. Effect of eutrophication

on air–sea CO(2) fluxes in the coastal southern North Sea: a model

study of the past 50 years. Glob. Change Biol. 15:1040–1056.

Hales, B. & S. Emerson. 1997. Evidence in support of first-order

dissolution kinetics of calcite in seawater. Earth Planet. Sci. Lett.

148:317–327.

Harding, J. M., R. Mann, M. J. Southworth & J. A. Wesson. 2010.

Management of the PiankatankRiver, Virginia, in support of oyster

(Crassostrea virginica, Gmelin 1791) fishery repletion. J. Shellfish

Res. 29:867–888.

Hargis, W. J. & D. S. Haven. 1999. Chesapeake oyster reefs: Their

importance, destruction, and guidelines for restoring them. In:M.W.

Luckenbach, R. Mann & J. A. Wesson, eds. Oyster reef habitat res-

toration: A synopsis and synthesis of approaches. Gloucester, VA:

Virginia Institute of Marine Science Press. 372 pp.

Hautmann, M. 2006. Shell mineralogical trends in epifaunal Mesozoic

bivalves and their relationship to seawater chemistry and atmo-

spheric carbon dioxide concentration. Facies 52:417–433.

Hecht, F. 1933. Der Verbleib der organische Substanz der Tiere bei

meerischer Einbettung. Senckenb. Biol. 15:165–219.

Honjo, S. & J. Erez. 1978. Dissolution rates of calcium carbonate in

deep ocean: in situ experiment in North Atlantic Ocean. Earth

Planet. Sci. Lett. 40:287–300.

Hopkins, S. H. 1962. Distribution of species Cliona (boring sponge) on

the eastern shore of Virginia in relation to salinity. Chesap. Sci.

2:121–124.

Hu, X., W. J. Cai, Y. Wang, X. Guo & S. Luo. 2011. Geochemical

environments of continental shelf: upper slope sediments in the

northern Gulf of Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol.

Kelly, R. P., M. M. Foley, W. S. Fisher, R. A. Feely, B. S. Halpern,

G. G. Waldbusser & M. R. Caldwell. 2011. Mitigating local causes

of ocean acidification with existing laws. Science 332:1036–1037.

Kidwell, S. M. 2005. Shell composition has no net impact on large-scale

evolutionary patterns in mollusks. Science 307:914–917.

Kidwell, S. M. & D. Jablonski. 1983. Taphonomic feedback: ecological

consequences of shell accumulation. In: M. J. S. Tevesz & P. L.

McCall, editors. Biotic interactions in recent and fossil benthic

communities. New York: Plenum Press. pp. 195–248.

Kimmel, D. G. & R. I. E. Newell. 2007. The influence of climate

variation on Eastern oyster (Crassostrea virginica) juvenile abun-

dance in Chesapeake Bay. Limnol. Oceanogr. 52:959–965.

WALDBUSSER ET AL.668

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 22 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



Kobluk, D. R. &M. J. Risk. 1977. Calcification of exposed filaments of

endolithic algae, micrite envelope formation and sediment pro-

duction. J. Sediment. Petrol. 47:517–528.

Lebrato, M., D. Iglesias-Rodriguez, R. A. Feely, D. Greeley, D. O. B.

Jones, N. Suarez-Bosche, R. S. Lampitt, J. E. Cartes, D. R.H.Green

& B. Alker. 2010. Global contribution of echinoderms to the marine

carbon cycle: CaCO(3) budget and benthic compartments. Ecol.

Monogr. 80:441–467.

Longman, M. W. 1980. Carbonate diagenetic textures from near-

surface diagenetic environments. AAPG Bull. Am. Assoc. Petrol.

Geologists 64:461–487.

Mann, R. & E. N. Powell. 2007. Why oyster restoration goals in the

Chesapeake Bay are not and probably cannot be achieved.

J. Shellfish Res. 26:905–917.

Mannino, A. & H. R. Harvey. 1999. Lipid composition in particulate

and dissolved organic matter in the Delaware Estuary: sources and

diagenetic patterns. Geochim. Cosmochim. Acta 63:2219–2235.

Miller, A. W., A. C. Reynolds, C. Sorbino &G. F. Riedel. 2009. Shellfish

face uncertain future in high CO2 world: influence of acidification on

oyster larvae calcification and growth in estuaries.PLoSBiol. 4:e5661.

Millero, F. J., T. B. Graham, F. Huang, H. Bustos-Serrano & D.

Pierrot. 2006. Dissociation constants of carbonic acid in seawater as

a function of salinity and temperature. Mar. Chem. 100:80–94.

Morse, J. W. 2005. Formation and diagenesis of carbonate sediments.

In: F. T. Mackenzie, editor. Sediments, diagenesis, and sedimentary

rocks. Oxford: Elsevier-Pergamon. pp. 67–86.

Morse, J. W. & R. S. Arvidson. 2002. The dissolution kinetics of major

sedimentary carbonate minerals. Earth Sci. Rev. 58:51–84.

Morse, J. W., R. S. Arvidson & A. Luttge. 2007. Calcium carbonate

formation and dissolution. Chem. Rev. 107:342–381.

Morse, J. W. & W. H. Casey. 1988. Ostwald processes and mineral

paragenesis in sediments. Am. J. Sci. 288:537–560.

Najjar, R. G., C. R. Pyke, M. B. Adams, D. Breitburg, C. Hershner, M.

Kemp, R. Howarth, M. R. Mulholland, M. Paolisso, D. Secor, K.

Sellner, D. Wardrop & R. Wood. 2010. Potential climate-change

impacts on the Chesapeake Bay. Estuar. Coast. Shelf Sci. 86:1–20.

Palma, R. M., G. S. Bressan & D. A. Kietzmann. 2008. Diagenesis of

a bioclastic oyster deposit from the Lower Cretaceous (Chachao

Formation), Neuquen Basin, Mendoza Province, Argentina. Car-

bonates Evaporites 23:39–49.

Pomponi, S. A. & D. W. Meritt. 1990. Distribution and life history of

the boring spongeCliona truitti in the upper Chesapeake Bay. In: K.

Rutzler, editor. New perspectives in sponge biology. Washington,

DC: Smithsonian Institution Press. pp. 384–390.

Pouchou, J. L. & F. Pichoir. 1984. A new model for quantitative X-ray

microanalysis. 1. Application to the analysis of homogeneous

samples. Recherche Aerospatiale 3:167–192.

Powell, E. N., C. E. Brett, K. M. Parsons-Hubbard, W. R. Callender,

G.M. Staff, S. E.Walker, A. Raymond&K. A. Ashton-Alcox. 2011a.

The relationship of bionts and taphonomic processes in molluscan

taphofacies formation on the continental shelf and slope: eight-year

trends: Gulf of Mexico and Bahamas. Facies 57:15–37.

Powell, E. N., J. N. Kraeuter & K. A. Ashton-Alcox. 2006. How long

does oyster shell last on an oyster reef? Estuar. Coast. Shelf Sci.

69:531–542.

Powell, E. N. & J.M.Klinck. 2007. Is oyster shell a sustainable estuarine

resource? J. Shellfish Res. 26:181–194.

Powell, E. N., G. M. Staff, W. R. Callender, K. A. Ashton-Alcox, C. E.

Brett, K.M. Parsons-Hubbard, S. E.Walker&A.Raymond. 2011b.

Taphonomic degradation of molluscan remains during thirteen

years on the continental shelf and slope of the northwestern Gulf

of Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. [in press].

Rosell, D., M. J. Uriz & D. Martin. 1999. Infestation by excavating

sponges on the oyster (Ostrea edulis) populations of the Blanes

littoral zone (north-western Mediterranean Sea). J. Mar. Biol.

Assoc. UK 79:409–413.

Rude, P. D. & R. C. Aller. 1991. Fluorine mobility during early

diagenesis of carbonate sediments: an indicator of mineral trans-

formations. Geochim. Cosmochim. Acta 55:2491–2509.

Salisbury, J., M. A. Green, C. Hunt & J. Campbell. 2008. Coastal

acidification by rivers: a threat to shellfish?EosTrans. AGU 89:513–514.

Schulte, D. M., R. P. Burke & R. N. Lipcius. 2009. Unprecedented

restoration of a native oyster metapopulation. Science 325:

1124–1128.

Southworth, M., J. M. Harding, J. A. Wesson &R.Mann. 2010. Oyster

(Crassostrea virginica,Gmelin 1791) population dynamics on public

reefs in the Great Wicomico River, Virginia, USA. J. Shellfish Res.

29:271–290.

van Heuven, S., D. Pierrot, J. W. B. Rae, E. Lewis & D. W. R. Wallace.

2011. MATLAB Program Developed for CO2 System Calculations.

ORNL/CDIAC-105b. Carbon Dioxide Information Analysis Center,

Oak Ridge National Laboratory, U.S. Department of Energy, Oak

Ridge, Tennessee. DOI: 10.3334/CDIAC/otg.CO2SYS_MATLAB_

v1.1.

Waldbusser, G. G., H. Bergschneider & M. A. Green. 2010. Size-

dependent pH effect on calcification in post-larval hard clam

Mercenaria spp. Mar. Ecol. Prog. Ser. 417:171–182.

Waldbusser, G.G., E. P. Voigt, H. Bergschneider,M.A.Green&R. I. E.

Newell. 2011. Biocalcification in the Eastern oyster (Crassostrea

virginica) in relation to long-term trends in Chesapeake Bay pH.

Estuaries Coasts 34:221–231.

Walter, L. M. & J. W. Morse. 1984. Reactive surface-area of skeletal

carbonates during dissolution: effect of grain-size. J. Sediment.

Petrol. 54:1081–1090.

Zondervan, I., R. E. Zeebe, B. Rost & U. Riebesell. 2001. Decreasing

marine biogenic calcification: a negative feedback on rising atmo-

spheric pCO(2). Global Biogeochem. Cycles 15:507–516.

Zuschin, M., M. Stachowitsch & R. J. Stanton. 2003. Patterns and

processes of shell fragmentation in modern and ancient marine

environments. Earth Sci. Rev. 63:33–82.

ESTUARINE SHELL DISSOLUTION 669

Downloaded From: https://bioone.org/journals/Journal-of-Shellfish-Research on 22 Apr 2024
Terms of Use: https://bioone.org/terms-of-use


