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1Gulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Drive, Ocean
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ABSTRACT The possibility that the economics of the oyster fishery impose a self-limitation on overharvesting has been

proffered on occasion. The inefficiency of harvesting by the fishery has been evaluated and estimates of the exploitation rate

permissible under conditions ofmaximum sustainable yield have been obtained in previous studies. The question becomes to what

extent does the inefficiency of harvest interact with the economics of the fishery to compromise ready detection of overfishing?

This study explores the possibility that the constraint of economics on the fishery occurs at oyster exploitation rates that are higher

than maximum sustainable yield, leading ineluctably to overfishing if unconstrained and to the appearance of unduly limited

fishing if properly constrained. A model is developed that simulates oyster harvesting by dredging. This model tracks vessel

behavior and fishery performance in economic terms (CPUE) under varying stock densities and dredge efficiencies. Simulation

results show that stock density and on-deck culling speed have the strongest effect on time required, profitability, and effectiveness

of harvest, whereas dredge efficiency has a lesser influence. Evaluation of simulations shows that overfishing occurs at a stock

density that provides near-optimal economic returns. The oyster fishery does not perceive a decline in the stock under sustainable

conditions, as the on-deck processing capacity enables the catch rate to remain relatively stable until the stock declines well below

sustainable levels. The consequence of setting fishing regulations such that a decline in catch is perceived is to assure routine and

substantive overfishing, thereby creating a potential conflict between apparent and real sustainability. This conflict may explain

the inability of state regulatory authorities to impose limitations consistent with long-term resource stability. The perception

that a decline in the rate of catch should be observed under standard effort-based regulatory controls is a principal challenge that

must be overcome if sustainability is to become normative in the U.S. oyster fishery.
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INTRODUCTION

Sustainable management of the fishery for the eastern oyster
Crassostrea virginica has been elusive. Part of the challenge ac-

crues from the unique necessity ofmanaging the shell bed and the
live animal, as the relatively short half-life of oyster shells (Powell
et al. 2006, Soniat et al. 2012, Pace et al. 2020) necessitates con-

tinual input of shell from the living community (Mann & Powell
2008, Powell et al. 2012, 2018, Soniat et al. 2019). Nonetheless,
estimates of the exploitation rate permissible under conditions of

maximum sustainable yield have been obtained (Powell et al.
2018). The possibility that the economics of the oyster fishery
impose a self-limitation on overharvesting has been proffered on

occasion, and the likelihood that economics often drive regula-
tory decisions rather than biological reference points is sub-
stantial. The inefficiency of harvesting by the fishery has been
evaluated (Banta et al. 2003) and possibly leads to: a false in-

ference about stock status. The question becomes to what extent
does the inefficiency of harvest interact with the economics of the
fishery to compromise ready detection of overfishing?

The economics of the oyster fishery have been variously
evaluated, from the standpoint of themarket structure (Wirth&
Minton 2004), the trade-off with ecosystem services (Kasperski &

Wieland 2010), the influence of Vibrio on consumer demand
(Keithly & Diop 2001), and the influence of area management
(Santopietro et al. 2009). A detailed evaluation of the performance
of the fishery under standard operations with respect to oyster

abundance, removal efficiency, and fishery reference points [e.g.,
fishingmortality rate atmaximum sustainable yield (Fmsy)] has not

yet occurred, however, although the influence of harvesting inef-

ficiency in limiting production has been considered (Agnello &
Donnelley 1975), the single exception being a field experiment
conducted byMenzel andHopkins (1952) which suggested that an

economic limit is reached with a stock reduction of about 60%.
Here, we use a model to simulate the oyster fishery from the

point of view of the efficiency at which the fishery can deplete

the oyster resource and evaluate the influence of factors such as
oyster density, dredge efficiency, on-deck processing capacity,
and ex-vessel value on the outcome. We focus our simulations
on the fishery as it exists on public grounds as a direct-market

fishery in which market-size oysters destined for direct sale are
culled and sacked while fishing. The direct-market fishery has
been the focus of numerous modeling efforts aimed at deter-

mining conditions under which the removals are sustainable.
These have included the stock alone (see review in Powell et al.
2018) or in combination with the shell resource (Soniat et al.

2012, 2014, 2019). Much less attention has been paid to mod-
eling the fishing activity itself as it interacts with the availability
of the stock on the public ground and the economics of the

fishing process thereon, although such considerations have been
considered for a number of other fisheries (e.g., Dorn 1998,
2001, Hutton et al. 2004, Millischer & Gasuel 2006). The sim-
ulations to follow are designed to help rectify this deficiency.

MATERIALS AND METHODS

Model Overview

The model simulates the removal of oysters from a reef
through dredging. The dredging procedure mimics a standard
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approach to fishing widely used among oystermen along the
U.S. East and Gulf coasts in which the dredge is deployed from

the starboard and/or port side of a boat and towed in an arcuate
path at slow speed. Periodically, the dredge is lifted to the boat
and its contents dumped for culling, after which the dredge is
returned to the water. While the most recent haul is culled, the

dredge is again dragged slowly in an arcuate path. The sacking
rate often is determined by the length of time to cull oysters on
the boat, particularly when oyster abundance is high, and by the

efficiency of capture when oyster abundance is low.
The model assumes that the captain will seek out areas of

high abundance to fish. When such a location is identified, a

pole or other marker is deployed to orient the path of the boat
(Frey et al. 2018). When the local resource declines enough, the
oysterman will stop dredging, pull the pole, seek out another
location to fish, deploy the pole again, and again commence

fishing.
Catch is recorded as the number of sacks or bushels of

oysters obtained per hour on site. Given a price per sack for

oysters, a specified number of hours oystering, and a cost per
day for a fishing trip, the oysterman can decide when the
dredging is no longer cost-effective.

Model Domain and Stock Setup

The boundary of the oyster reef or bed is described by a
polygon defined by a set of corner points connected with
straight line segments. The location of the corners is provided in
X–Y units. A grid of square cells (2 m on a side) is defined to

cover the reef. At the beginning of a simulation, all cells are
assigned an oyster density defined as market-size oysters m–2.
For convenience, initial density in the simulations considered

here is uniform across the domain. The model domain is 172 3
132 m, an area of approximately 2.27 hectares (;5.61 acres).
This is a relatively small area workable by a single vessel (e.g.,

Powell et al. 2001).

Vessel, Gear, and Performance

The width of the dredge, the speed of the boat during
dredging, and the duration of a tow are held constant for all
simulations. These choices produce a standard tow distance.

The inherent efficiency of the dredge, defined here as a dredge
that is not overfull (Powell et al. 2002), a condition which re-
duces catch efficiency (Powell et al. 2001, Banta et al. 2003,

Powell & Ashton-Alcox 2004), is stipulated. Dredge-induced
mortality is assumed to be inconsequential (Powell et al. 2001).

The dredging operation is delineated as a series of focused

fishing efforts oriented about a fixed position designated by the
placement of a pole or buoy. Pole placement is randomly chosen
from all grid cells containing an oyster density higher than the

average oyster density over the reef. The time taken for this
search is not added to the total time elapsed during the fishing
process, as this may vary widely based on the knowledge of the
captain, oyster density, and oyster distribution. The time spent

searching and degree of improvement in fishing performance,
although well described as a metric influencing fishing perfor-
mance (Millischer & Gasuel 2006, Powell et al. 2003, 2015), are

not further investigated in this model.
When the pole is moved, a random start point near the pole

is identified for the first tow. From this point, the boat dredges

along an arcuate path around the pole until (1) the tow is
completed, (2) the tow path extends beyond the reef, or (3) the

handling time to cull oysters from the preceding tow is excee-
ded. The assumption is that no further oysters are caught during
that time regardless of whether the dredge is deployed or not
(see Powell et al. 2001, Banta et al. 2003). A new tow is then

begun from the final point in the previous arc.

Dredge Tow Path and Catch

Each tow follows an arcuate path centered on the pole lo-

cation. The starting point is defined by a direction from the pole.
Each arc has a radius, defined as the distance from the pole to
the dredge, that is chosen randomly from a range of values. To
vary the directionality of the tow, 20% of the time the direction

to the pole is reversed (changed by 180�), thereby putting the
beginning of the arc on the other side of the pole. The fixed tow
distance determines the length of the arc. These tow paths are

of a specified length unless ended prematurely, as described
earlier.

Catch is determined by the length of the tow path, the den-

sity of market-size oysters, and the inherent dredge efficiency.
The number of oysters expected to be taken in a 2-min tow
under average conditions is compared with a beginning 5-tow

mean catch. If the average 5-tow harvest rate drops to a speci-
fied fraction of the average expected, then the pole is moved to a
new location.

On-Deck Handling

Culling requires a specified time per sack culled. The on-
board rate of sack production is determined either by the rate of

catch in the dredge or by the specified limit to processing time on
the boat. A tow is terminated early if the number of oysters
caught reaches the maximum that can be handled on the deck in

the time of a standard tow; but the total elapsed time is recorded
as the total tow time which equates to the culling time required.
In this way, the time on the bottom may be reduced to ac-

commodate the culling time on the deck when the catch is of
sufficient quantity.

A running time (in hours) for the simulation is recorded as
though the dredging operation continues with no pauses. That

is, such hiatuses as time spent searching for a new pole location
are not accumulated. This running time can be converted to the
number of days based on a judgment of the number of hours of

dredging in a day or a regulated maximum catch per day.
Economics as evaluated in this model are based on the cost of a
standard fishing day. No attempt is made to adjust this cost for

the variety of options of dredge number, crew onboard, vessel
age, or steaming time to the reef, as the combinations of these
metrics will vary widely.

Parameter Specifications

The following parameters are set for all simulations (see also
Table 1). The number of market-size oysters per sack is set at

180, a value that is relatively arbitrary as the number per volume
landed can vary considerably (e.g., Powell et al. 2005). The
dredge width is set to 1.3 m, tow speed to 0.5 m sec–1 (Frey et al.

2018), and standard tow time is set to 2 min. Tow time and tow
speed are variable in practice, but the influence of these speci-
fications is minimized by the inclusion of on-deck culling time
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and the assumption that dredge retrieval and deployment time
is short. For larger boats with two dredges, this is certainly true
(Banta et al. 2003). The trigger to force a change in the pole
location is set as a decrease in the rate of catch set to 50% of the

initial rate for the first five tows.
The following parameters were varied in the simulations.

On-deck processing capacity was set to 1, 2, 5, 10, or 15 sacks

h–1 consistent with Powell et al. (2001) andMenzel andHopkins
(1952). The largest value applies to simulations where culling
time has a limited effect on the rate of harvest, where, for ex-

ample, oysters are culled rapidly by an automatic culling ma-
chine and then deck-loaded to be moved to a leased ground for
later sale. Initial oyster density was set to 1, 5, 10, 25, or 50

market-size oysters m–2 which covers a range of densities often
encountered on fished reefs (Powell et al. 2008, Mann et al.
2009, Southworth et al. 2010, Soniat et al. 2019) but substan-
tively below carrying capacity estimates (e.g., Moore 1907,

Powell et al. 1995, 2012). Higher sacking rates are feasible
(Menzel & Hopkins 1952) as are higher oyster densities (Powell
et al. 2008).

The radius of the curvature of the arc of the tow uses one of
the following ranges: 10–30, 30–60, or 60–100 m. The arc radius
is related to the boat turning rate required to travel in such a

path; the heading change is inversely proportional to the arc
radius (Fig. 1). As an example, a boat 10 m in length would
show a continuous heading change of 57� and 9.5� to follow a
path with a radius of 10 and 60 m, respectively. Observations

are limited to Banta et al. (2003), in which the radius of the arc
was constrained by the experimental protocol, and so offer only
modest guidance. The inherent dredge efficiency was set to 5%,

10%, 20%, or 40%, a range of dredge efficiencies obtained by
Morson et al. (2018) and Banta et al. (2003).

The economic calculation uses a day rate of $248 for a day of
fishing, based on values for 2005 (Mykoniatis & Ready 2016)

and corrected for inflation to 2019 dollars. Per-sack prices for
oysters vary widely, particularly in the comparison of oysters
shucked to supply oyster meats for breading and frying, for

example, in comparison with those sold into the half-shell trade
(Keithly & Diop 2001, Wirth & Minton 2004). Values of $15,
$25, and $40 sack–1 were used to cover a broad range of po-

tential outcomes.

RESULTS

Approach

Three diagnostics are used to compare simulations: (1) the

fraction of the initial oyster stock remaining when harvest be-
comes unprofitable, (2) the number of days dredging until
harvest becomes unprofitable, and (3) the time when the 4-day

average catch rate falls to less than or equal to 95% of the av-
erage catch rate in the preceding 4 days. The value of the first
two of these diagnostics varies depending on the assumed price

per sack. Each of these diagnostics are presented for different
choices of model parameters.

Radius of Arc

Vessels typically tow in an arc, the size of which has little
impact on three important metrics: (1) the number of days that a

TABLE 1.

Values used in the simulations.

Fixed value

Oysters per sack ¼ 180 Tow duration ¼ 2 min

Dredge width ¼ 1.3 m Tow speed ¼ 0.5 m sec–1

Daily boat cost (6 h fishing) ¼ $248 –

Variable value

On-deck processing ¼ [1, 2, 5, 10, 15] sacks h–1 Dredge efficiencies ¼ [5, 10, 20, 40%]

Initial oyster density ¼ [1, 5, 10, 25, 50] # m–2 Oyster value ¼ [$15, $25, $40] per sack

Arc radius range ¼ [(10–30), (30–60), (60–100)] m –

Figure 1. Vessel trajectories (in black) for the three cases defined by arc radii (in m). Plots show the first 30 tows, 10 each around three pole locations.

Left, a vessel fishing in tight arcs (10–30 m from the pole). Middle, a vessel fishing in a gentler arc (30–60 m from the pole). Right, a vessel fishing in a

much straighter but still arcuate trajectory (60–90 m from the pole).
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region can be profitably exploited, (2) the amount of stock
remaining when profitability ceases, and (3) the number of days

before an observable decline in catch (Table 2). In reality, the
radius of the arc may affect dredge efficiency. In the simulations
considered here that variation is divorced from variation in tow
arc, as information that is available suggests that the degree of

arc curvature has little effect on dredge efficiency (Powell et al.
2007).

Oyster Density and Culling Capacity

Oyster density, on-deck processing capacity, and dredge ef-
ficiency collectively generate a complex control over profit-
ability and degree of exploitation. Figure 2 presents the fraction

of stock remaining assuming that ex-vessel value per sack was
$15 or $40. Over a large range of culling capacities and oyster
densities, 40% or more of the stock could be removed profit-

ably, with the higher ex-vessel value permitting a substantially
higher removal. Culling capacity had limited impact at low
oyster density except at the lowest culling capacities. Oyster
density had limited impact at low culling capacities.

The number of profitable fishing days increased substan-
tially at a higher ex-vessel value. Fewest profitable days oc-
curred at culling capacities of 2–5 sacks h–1 (Fig. 3). The number

of profitable days increased at higher culling capacities as more
oysters were removed per day to offset declining stock densities
and at lower culling capacities as stock density remained higher

for a longer period of time.
In most simulations, a relatively constant catch rate occurs

over an initial number of days, the time span of which is con-

trolled by the relationship between on-deck culling capacity and
stock density. Eventually, the stock density declines sufficiently
that the efficiency of the dredge imposes a limit on the catch
rate. At this point, the rate of catch begins to decline noticeably.

For these simulations, a decline in the catch rate occurred after

50%–70% of the stock had been removed over a wide range of
oyster densities and culling capacities, with the decline occur-

ring to the lowest stock fractions removed (highest stock frac-
tions remaining) with oyster densities of 5–10 m–2 and culling
capacities of 5–10 sacks h–1 (Fig. 4). The number of fishing days
before a stock decline occurred rose with increasing stock

density and presented a complex relationship with culling ca-
pacity with higher numbers of fishing days above and below
approximately 2 sacks h–1.

Oyster Density and Dredge Efficiency

Figure 5 presents the fraction of initial stock remaining for
ex-vessel sack values of $15 or $40 over a range of oyster den-

sities and dredge efficiencies. Dredge efficiency has little effect
on the amount of stock remaining when fishing becomes
unprofitable over a range of oyster densities commonly en-

countered. The degree of depletion is primarily determined by
ex-vessel value, approximately 70% at high ex-vessel value and
approximately 40% at low ex-vessel value, over a range of
typical oyster densities. At oyster densities above 5 m–2,

however, a larger fraction of stock remained at low dredge
efficiencies and the effect was particularly noticeable when ex-
vessel value was high.

Dredge efficiency did not affect the number of profitable
fishing days regardless of ex-vessel value. Variation was solely a
function of oyster density (Fig. 6). Dredge efficiency exerted a

complex effect on the amount of stock remaining when the
catch rate noticeably began to decline (Fig. 7). At high oyster
densities, dredge efficiency was relatively inconsequential unless

efficiency was very low. The effect of dredge efficiency nearly
disappeared at very low oyster densities. At intermediate den-
sities, the density at which the catch noticeably declined varied
from 30% to 60% of the original density, but fell to less than or

equal to 20% at higher and lower oyster densities. The number

TABLE 2.

Metrics for a series of simulations in which dredge efficiency, path radius, on-deck processing capacity, and oyster density were

varied.

Dredge

efficiency

Radius

of arc

Deck

culling

capacity

Oyster

density

Last profitable day Fraction remaining: last profitable day

Decline

day

$15

sack–1
$25

sack–1
$40

sack–1
$15

sack–1
$25

sack–1
$40

sack–1

0.1 10 10 5 12 20 31 0.692 0.573 0.467 0

0.1 60 10 5 12 23 32 0.706 0.552 0.472 0

0.1 30 10 5 11 20 32 0.722 0.587 0.476 0

0.4 10 2 10 0 96 103 1.000 0.352 0.319 94

0.4 30 2 10 0 96 103 1.000 0.353 0.322 94

0.4 60 2 10 0 95 103 1.000 0.359 0.321 92

0.4 10 10 5 12 16 20 0.430 0.369 0.333 5

0.4 30 10 5 13 16 20 0.421 0.375 0.341 5

0.4 60 10 5 13 17 20 0.425 0.369 0.342 5

0.4 10 10 10 25 28 30 0.352 0.331 0.322 14

0.4 30 10 10 25 29 31 0.358 0.331 0.322 12

0.4 60 10 10 25 27 31 0.356 0.341 0.322 11

0.4 10 10 50 109 113 117 0.306 0.300 0.297 92

0.4 30 10 50 109 114 117 0.306 0.299 0.297 93

0.4 60 10 50 106 112 115 0.310 0.300 0.297 94

Diagnostics are the last profitable day, the fraction of stock remaining on that day, and the day when the 4-daymean catch rate declines greater than

or equal to 5% below the previous 4 days.
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of days fishing before a noticeable drop in the catch rate was

relatively little influenced by dredge efficiency (Fig. 7).

Dredge Efficiency and Culling Capacity

Dredge efficiency had limited effect on the stock remaining
when profitable trips ceased at low culling capacity (Fig. 8). At
higher culling capacity, dredge efficiency was the primary

determinant. The time required was relatively unaffected by

dredge efficiency, regardless of culling capacity (Fig. 9). The
number of fishing days required to see a distinct decline in the
catch rate was relatively unaffected by dredge efficiency, re-

gardless of culling capacity (Fig. 10). The fraction of stock
remaining ranged near 30% over a wide range of dredge effi-
ciencies and culling capacities, only dropping below that at high
dredge efficiencies and low culling capacities or vice versa.

Figure 2. Fraction of initial stock remaining when fishing becomes unprofitable at a range of culling capacities and oyster densities, given ex-vessel values

of $15 and $40 sack
–1
. Simulation parameters are given in Table 1.

Figure 3. Number of fishing days before fishing becomes unprofitable as a consequence of varying oyster density and culling capacity, given ex-vessel

values of $15 and $40 sack–1. See Table 1 for simulation parameters.
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Status at Fmsy Catch

Powell et al. (2018) estimated sustainable fishing mortality at
maximum sustainable yield (Fmsy) as 0.06 y

–1. Dredge efficiency

exerted a limited effect on the number of days fishing allowed in
order to catch approximately 6% of the stock (Fig. 11). Lower
culling capacity resulted in more days fishing, as did higher

oyster densities.

DISCUSSION

Metrics Controlling Vessel Performance

Simulations were run under the assumption that factors
controlling the economics of an oyster fishing trip include the
rate at which oysters are brought onto the deck and the rate at

which oysters could be culled for sacking. With respect to the

Figure 4. Number of fishing days before a noticeable decline in the catch rate (defined as a 5% reduction in the 4-daymean catch rate from the previous 4

days) and the fraction of initial stock remaining at that time as a consequence of varying oyster density and culling capacity. See Table 1 for simulation

parameters.

Figure 5. Effect of oyster density and dredge efficiency on the fraction of the initial stock remaining when fishing becomes unprofitable, given ex-vessel

values of $15 and $40 sack
–1
. See Table 1 for simulation parameters.
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rate of capture, the assumption was made that this depended on
the density of oysters on the bottom, the efficiency of the dredge,
and the behavior of the vessel. That behavior was defined by the

culling capacity on the deck and the radius of the arc of the tow,
although discriminating the arc radius from dredge efficiency is
difficult as the two effects are commingled. Tow speed was not

varied, as oyster boats normally tow at a slow speed so that the
dredge teeth can effectively bite into the bottom. Higher speed

(Frey et al. 2018) would necessarily be counterweighed by
culling capacity. As oyster boats routinely tow in an arcuate
fashion, all tows were arcs, but the degree of the arc was varied.

Navigation was used in the standard way whereby a fishing
location is identified by test tows or by pole, a marker, buoy or
pole is placed in water, and the dredge is towed in an arc around

that themarker until a reduction in catch results in a search for a
new fishing location. Frey et al. (2018) provide estimates of the

Figure 6. Number of fishing days before fishing becomes unprofitable as a consequence of varying oyster density and dredge efficiency, given ex-vessel

values of $15 and $40 sack–1. See Table 1 for simulation parameters.

Figure 7. Number of fishing days before a noticeable decline in the catch rate occurred and the fraction of initial stock remaining at that time as a

consequence of varying oyster density and dredge efficiency. See Figure 4 for addition explanation. See Table 1 for simulation parameters.
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time spent poling; a 6-h fishing day was assumed, yielding a
dock-to-dock elapsed time of 7–8 h. Shorter fishing times, due,
for example, to temperature restrictions in the summer, were

not investigated but would have substantively influenced the
economics.

Four additional constraints were imposed. A sack was de-

fined to contain 180 marketable oysters. That value certainly

varies widely in practice (Hopkins 1950, Campbell et al. 1992,
Powell et al. 2005, zu Ermgassen et al. 2012). The vessel was
assumed to tow a single dredge at a time, although two-dredge

boats are common (Banta et al. 2003). The cost of one-day
fishing was set to $248, based onMykoniatis and Ready (2016),
but this value surely is highly variable depending on vessel size,

crew complement, remoteness of fishing site, fuel cost, etc. In

Figure 8. Fraction of initial stock remaining when fishing becomes unprofitable, given ex-vessel values of $15 and $40 sack–1 as a consequence of varying

oyster density and dredge efficiency. See Table 1 for simulation parameters.

Figure 9. Number of fishing days before fishing becomes unprofitable as a consequence of varying culling capacity and dredge efficiency, given ex-vessel

values of $15 and $40 sack
–1
. See Table 1 for simulation parameters.
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addition, the sack price is variable: a range of $15 to $40 was

used, but values often fall outside of this range (Lipton 2008,
Kasperski & Wieland 2010).

Documentation of fishing activity adequate for verification

is limited. Powell et al. (2001) and Banta et al. (2003) recorded
the inefficiency imposed by on-deck processing which resulted
in the effectiveness of the dredge being inconsequential, in

agreement with results provided here. Powell et al. (2007) ob-
served little influence of the radius of the tow arc on dredge
efficiency. Perhaps, the only detailed and pertinent field exper-
iment is reported by Menzel and Hopkins (1952), who

emphasize a drop in catch observed only after many days fish-
ing and that profitability limits are reached when a substantial
oyster resource still remains. Menzel and Hopkins (1952) opine

that about 60% (values varied from 41% to 76%) of the re-

source can be profitably removed, in agreement with simula-
tions presented here.

The radius of the arc of the tow introduced minor variations

in the outcome of simulations, consistent with Powell et al.
(2007). As tow paths cross each other frequently and variation
in this factor is known to influence the outcome of stock de-

pletion due to fishing (Poussard 2020), and as oyster boats do
not use sophisticated towing procedures to limit tow overlap,
the radius of arc was inconsequential in determining the fre-
quency and intensity of tow overlap and, as a consequence,

exerted only minor influence on vessel performance.
The inherent efficiency of oyster dredges has been evaluated

in a number of studies (e.g., Chai et al. 1992, Powell et al. 2002,

Figure 10. Number of fishing days before a noticeable decline in the catch rate occurred and the fraction of initial stock remaining at that time as a

consequence of varying culling capacity and dredge efficiency. See Figure 4 for additional explanation. See Table 1 for simulation parameters.

Figure 11. Days of fishing allowed to land catch consistent with an assumed Fmsy$ 0.06 y–1 as a function of oyster density, dredge efficiency, and culling

capacity. See Table 1 for simulation parameters.
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2007, Mann et al. 2004, Morson et al. 2018) and has proven to
be highly variable. Under fishing conditions, dredge efficiency

tends to decrease as the dredge fills and be modified by bottom
conditions that change as fishing continues (Powell et al. 2001,
Powell & Ashton-Alcox 2004, 2013), increasing variability. One
inherently expects higher dredge efficiency to produce increased

vessel performance. In fact, dredge efficiency exerted very little
influence on vessel performance except when both oyster den-
sity and culling capacity were high. Over a wide range of oyster

densities and culling capacities, the efficiency of the dredge
exerted practically no effect.

Why dredge efficiency exerts little influence on the fishing

process is found in the frequency of tow overlap. Depletion
decouples the capture rate from the inherent dredge efficiency as
towing continues. As towing progresses, the tow path increas-
ingly intersects previous tow paths and the number of times a

particular spot is hit by the dredge inexorably exerts control on
the capture rate, drowning out any role of dredge efficiency.
Poussard (2020) provides a useful theoretical example. Note, in

simulations presented here, Figure 12 being an example, that
the trajectories of catch with culling capacity and oyster density
fixed to 5 sacks h–1 and 10 oysters m–2, respectively, are nearly

identical over a range of dredge efficiencies, in comparison with
the trajectories for a dredge efficiency of 0.2 and an oyster
density of 10 m–2 in which culling capacity was varied.

In comparison, vessel performance is strongly controlled by
oyster density and culling capacity. These two conspire to
create a catch rate that is relatively stable for a period of time
and then declines (Fig. 12). The time delay before catch begins

to decline is influenced by oyster density and culling capacity
in a relatively complex way as exemplified in Figure 4 in which
increasing culling capacity reduces the time spent fishing

before a noticeable decline in catch occurs, and this is balanced
by an increase in oyster density.

Effect of Vessel Performance Metrics on Trip Economics and Degree

of Depletion

Not surprisingly, the degree of stock depletion culminating
in unprofitable trips varies widely as a function of culling

capacity and oyster density. Over a very large range of these
parameter values, profitability ceases when 70%–80% of the

initial stock has been landed (Fig. 2). These high values, how-
ever, are based on the unrealistic assumption that even $1 of
profit incentivizes continued fishing. This end point is used for
these simulations to generate a common basis for comparison.

In actuality, fishing likely would cease at much lower levels of
stock depletion. Figure 13 shows as an example a case where 30
sacks day–1 is required to incentivize fishing at an ex-vessel value

of $15 sack–1. Thirty sacks per day is a landing limit set by Texas
at this writing. In this case, save under exceptional conditions, the
incentive to fish would cease after removal of no more than 40%

of the total stock, given the specified cost per day of fishing.
Not surprisingly, the degree of depletion that is profitable

rises with a higher ex-vessel value, but the number of days fished
declines. Over a wide range of combinations of oyster density

and culling capacity, a noticeable decline in catch occurs when
50%–70% of the stock has been removed. These values agree
reasonably well with field observations of Menzel and Hopkins

(1952).
Simulations show that the oysterman will not observe a

substantive drop in catch until the degree of depletion of the

resource is profound. Examples are shown in Figure 12. This is
dominantly a function of the time required to cull oysters on the
deck. Dredge efficiency is relatively inconsequential, as is the

mode of dredging as exemplified by the radius of the tow arc.
Simulations show that the trip will remain profitable for a
substantive time after the catch begins to decline. A 6-h day
and a culling capacity of 5 sacks h–1 produce 30 sacks. To put

this in perspective, the State of Texas at this writing limits
landings in Galveston Bay to 30 sacks day–1. Under most of the

Figure 12. Trajectories of catch in which culling capacity and dredge

efficiency were varied. The three-digit legend is dredge efficiency (%)-

culling capacity (sacks h
–1
)-oyster density (oysters m

–2
).

Figure 13. Fraction of initial stock remaining when fishing becomes

unprofitable at a range of culling capacities and oyster densities, given

an ex-vessel value of $15 per sack and under the assumption that a 30-sack

minimum was required for a trip to be deemed profitable. Simulation

parameters are given in Table 1.
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conditions of the simulations depicted in Figure 12, the vessel
could operate 30–40 days before a noticeable decline occurred

and, perhaps, another 10–30 days before profitability was
compromised, depending on the ex-vessel value of a sack.

Powell et al. (2018) suggested that a fishing mortality rate
exceeding 0.06 y–1 is unsustainable, given the pervasive influ-

ence of Dermo disease raising the natural mortality rate above
pre-disease levels. A reduction in stock density to this extent
would occur in 5 or so days under the conditions shown in

Figure 11. That is, under a sustainable fishing criterion, the
oysterman would never observe a decline in the rate of catch
under almost any combination of culling capacity, oyster den-

sity, and dredge efficiency (Fig. 10).

Final Considerations

D�Anna (2016) offers a view into the challenge of reconciling

perception and reality in sustainably managing oyster fisheries.
Routine overfishing, which has resulted in the degradation of
oyster reefs throughout much of the range of the eastern oyster

(Rothschild et al. 1994, Beck et al. 2011, zu Ermgassen et al.
2012, Pine et al. 2015, Soniat et al. 2019), results from the nexus

of a number of independent factors. The first is the fact that
oyster shell degrades with a half-life of about 4–5 y (Powell et al.

2006, Pace et al. 2020). As a consequence, a significant fraction
of the living oysters must die naturally to compensate for shell
loss. Second, Dermo disease accounts for a large fraction of
surplus production, thereby limiting the sustainable fishing rate

(Powell et al. 2018). Third, the oyster fishery does not perceive a
decline in the stock under sustainable conditions, as the on-deck
processing capacity remains relatively stable until the stock

declines well below sustainable levels. The consequence of set-
ting fishing regulations such that a decline in catch is perceived
is to assure routine and substantive overfishing. The perception

that a decline in the rate of catch should be observed under
standard effort-based regulatory controls is a principal chal-
lenge that must be overcome if sustainability is to become
normative in the U.S. oyster fishery.
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