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ABSTRACT

Mussel monitoring data are abundant, but methods for analyzing long-term trends in these data are
often uninformative or have low power to detect changes. We used a dynamic occurrence model, which
accounted for imperfect species detection in surveys, to assess changes in species occurrence in a long-
term data set (1986–2011) for the Tar River basin of North Carolina, USA. Occurrence of all species
decreased steadily over the time period studied. Occurrence in 1986 ranged from 0.19 for Utterbackia
imbecillis to 0.60 for Fusconaia masoni. Occurrence in 2010–2011 ranged from 0.10 for Lampsilis
radiata to 0.40 for F. masoni. The maximum difference between occurrence in 1986 and 2011 was a
decline of 0.30 for Alasmidonta undulata. Mean persistence for all species was high (0.97, 95% CI ¼
0.95–0.99); however, mean colonization probability was very low (,0.01, 95% CI¼,0.01–0.01). These
results indicate that mussels persisted at sites already occupied but that they have not colonized sites
where they had not occurred previously. Our findings highlight the importance of modeling approaches
that incorporate imperfect detection in estimating species occurrence and revealing temporal trends to
inform conservation planning.

KEY WORDS: Unionidae, monitoring, Bayesian, existing data, Tar River, imperfect detection

INTRODUCTION
Mussel survey and monitoring data often are not collected

or analyzed in a manner that allows strong inference about

population trends over time (Downing and Downing 1992;

Strayer and Smith 2003). A particular weakness of traditional

approaches is an inability to account for imperfect species

detection, which is inherent in all survey methods (MacKenzie

et al. 2003; Royle and Kery 2007; Dorazio et al. 2010).

Species detection has a large random component, and

nondetection does not necessarily indicate species absence;

failure to account for the probability of detection can lead to

faulty conclusions about long-term assemblage changes

(MacKenzie et al. 2002, 2003; Royle and Kery 2007;

Wisniewski et al. 2013).

More robust analytical approaches that explicitly estimate
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detection probability, such as occupancy modeling, provide

more useful inference from survey data (Meador et al. 2011;

Shea et al. 2013; Wisniewski et al. 2013). A related approach,

dynamic occurrence modeling, can provide information on the

processes that underlie population trends (Betts et al. 2008;

Walls et al. 2011; Frey et al. 2012). In addition to accounting

for imperfect detection, these models provide estimates of

local colonization and extinction probabilities, which are often

the focus of long-term monitoring projects (MacKenzie et al.

2003; Royle and Kery 2007).

We used recent and existing survey data to assess changes

in mussel occurrence in the Tar River basin, North Carolina,

USA, over a 26-yr period with a dynamic occurrence model

that estimated and incorporated detection probability. We then

estimated persistence and colonization rates to examine

processes driving changes in mussel occurrence.

METHODS

Study Sites
We conducted mussel surveys at 20 sites in the Tar River

basin and analyzed previous survey data from those sites (Fig.

1). The Tar-Pamlico River basin is the fourth largest basin in

North Carolina, with a 14,090-km2 watershed and about 3,790

km of streams. Land use in the basin is primarily forest and

wetland with areas of agriculture and urban development

(NCDENR 2008). This river basin is among the most species

rich of North Carolina, supporting a diverse mussel commu-

nity of 24 species, 13 of which are imperiled (Bogan 2002).

Sites were located among three subbasins (upper Tar River,

Swift Creek, and Fishing Creek) and were selected to span a

range of environmental conditions and include known

occurrences of two U.S. federally endangered species,

Alasmidonta heterodon and Elliptio steinstansana.

Mussel Surveys
We conducted timed snorkel and tactile search mussel

surveys at all 20 sites during summer 2010 and at eight of

those sites during summer 2011. Surveyed stream reaches

were accessible at bridge crossings and coincided with known

mussel beds or apparently suitable mussel habitat. Reaches

extended for 200–500 m, approximately 20 times the average

stream width of each site. A minimum of 6 person-hours of

effort was expended at each site.

We compiled additional freshwater mussel survey data

from the 26-yr period spanning 1986–2011 from the North

Figure 1. Location of 20 mussel survey sites in the Tar River basin, North Carolina, USA.
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Carolina Wildlife Resources Commission (NCWRC) database.

We included data from surveys that occurred within 500 m

upstream or downstream of our 2010–2011 survey sites. We

included only survey data that were collected or vetted by

NCWRC staff to ensure appropriate survey techniques and

accurate species identification. Sampling effort for these

surveys was not recorded in the database. When database

records included count data, we converted these records to

detection/nondetection for each species.

Our survey data combined with NCWRC database records

provided data from 127 surveys among our 20 sites (Table 1).

We included all species detection/nondetection data from these

surveys with the following exception. We excluded data for

three Elliptio species—E. complanata, E. icterina, and E.
congaraea—because these species are difficult to identify, and

we were uncertain about the consistency of identifications in

previous surveys. We did not pool these records (as Elliptio
spp.), because E. complanata is extremely common in the Tar

River basin and consistently present at all sites, and the lack of

absence data would interfere with the ability of the occurrence

model to accurately estimate parameters. We included all data

for four other Elliptio that are more easily identified: E.
fisheriana, E. lanceolata, E. roanokensis, and E. steinstansa-
na.

Dynamic Occurrence Model
We developed a dynamic occurrence model using the

detection/nondetection data from all 127 surveys to evaluate

changes in species occurrence over the 26-yr period. We

adopted a state-space representation of the model wherein we

described two component processes: a submodel for the

observations conditional on the unobserved state process and a

submodel for the unobserved or partially observed state

process. We followed an approach developed by Dorazio et al.

(2010) and Walls et al. (2011) wherein the single-species

model of Royle and Kery (2007) was extended to account for

variation in model parameters among ecologically similar

species. We modeled the entire species assemblage where each

species’ individual estimates influence the parameter estimates

of every other species in the assemblage and inferences about

one particular species are borrowed across all species.

Essentially, the parameter estimates for one species are a

compromise between the individual species estimates and the

mean estimate of those parameters for the assemblage. This is

referred to as ‘‘shrinkage’’ in the statistical literature (Gelman

et al. 2003) because each species-specific estimate is shrunk in

the direction of the estimated mean parameter value. The

amount of shrinkage depends on the amount of information for

each species and how closely it resembles the overall mean

effect for a particular parameter. A major benefit of shrinkage

is the ability to estimate parameters for species that are rarely

detected. Such species may be critically imperiled species and

are an important component of assemblage dynamics, but if

analyzed individually there would be too few data to make

relevant inference. Instead, these species can be included in theT
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analysis, and species-specific estimates can be obtained.

Similarly, parameters may be estimated for years in which

data are limited. For example, in years with no survey data, we

obtained occurrence estimates by borrowing information from

all other years and species through the estimated global mean

and the prior distribution that we assigned to that year. In this

case, we had noninformative priors indicating that the

occurrence probabilities could take any value between 0 and

1, with most of the information drawn from other species and

years.

Because sites were not surveyed multiple times per year,

we were unable to estimate detection probability directly.

However, a related study designed to explicitly estimate

detection probability in the same streams found little evidence

of species-specific detection rates (Pandolfo et al. 2016).

Therefore, we focused on accounting for temporal (i.e.,

among-year) variability in detection rates. For each year, we

randomly drew a single value for detection probability from a

normal distribution with a mean of 0.42 (SD¼0.03), estimated

previously from 14 Tar River basin mussel species (Pandolfo

et al. 2016). This equated to using an informative prior on

detection rates and allowed us to accommodate annual

variability in detection. Although variable sampling effort

across the 26-yr study period would be expected to contribute

increased variability in occurrence estimates, our model

accounted for this by allowing detection probabilities to vary

from year to year. Therefore, unless there has been a

systematic trend or bias through time that we have not

accounted for explicitly, our estimates reflect the variable

sampling effort across the study period.

Following Walls et al. (2011), we then specified a model

using the randomly generated detection rates and conditional

on the binary occurrence state (detected or not detected). We

defined detection state as yikt for each combination of site (k),

year (t), and species (i), where each binary observation

indicates whether the species was detected (yikt ¼ 1) or not

detected (yikt ¼ 0). We defined the occurrence state as zikt for

species i, site k, and year t, such that zikt¼ 1 indicated species

presence and zikt ¼ 0 indicated absence of the species. It is

noteworthy that if we observed no detections, there is

ambiguity in defining the occurrence state because the site

could be occupied and we failed to detect the species or the

site could be unoccupied. Therefore, we defined the model for

each element of the data as follows: yikt j zikt,pt ~
Bernoulli(ziktpt), where pt denotes the probability of detecting

a species in year t given that the species is present. This

implies that if the kth site is unoccupied by species i in year t,
then yikt ¼ 0 with probability 1 and otherwise the species is

detected with probability pt.

We modeled changes in occurrence state for each species

by using a first-order Markov process (Royle and Kery 2007).

We assumed the initial occurrence state for the ith species at

site k is modeled as zik1 j wi1 ~ Bernoulli(wi1), where wi1

denotes the probability of occurrence for species i in year 1.

Using a recursive relationship wherein occurrence states in

subsequent years (tþ1, tþ 2, . . ., T) depend on the occurrence

states 1 yr earlier, occurrence in subsequent years can be

written as folows: zik,tþ1 j zik,t,uit,cit ~ Bernoulli(zik,t,uitþcit (1

� zikt)), where cit ¼ Pr(zik,tþ1 ¼ 1 j zikt ¼ 0) denotes the

probability of local colonization (i.e., a site unoccupied at time

t will become occupied at time tþ 1), and uit¼ PR(zik,tþ1¼ 1 j
zikt ¼ 1) denotes the probability of local persistence (i.e., the

probability of an occupied site at time t staying occupied at

time tþ 1). We defined the probability of local extinction, eit,

as the probability of an occupied site at time t becoming

unoccupied at time tþ 1 and defined this as the complement of

local persistence probability: eit ” 1 � uit. Colonization and

persistence were fixed between years, with one colonization

probability and one persistence probability modeled for each

species and applied yearly throughout the 26-yr period.

We used a multivariate normal prior distribution to model

species-specific deviations from the mean group-level param-

eter values (Dorazio et al. 2006; Kery and Royle 2008). We

estimated parameters using a Bayesian approach with Markov

chain Monte Carlo (MCMC) implemented using R statistical

software (with the R2WinBUGS package; Sturtz et al. 2005)

and WinBUGS (Lunn et al. 2000) using flat priors for each of

the group-level parameters. The MCMC approach allowed us

to explicitly measure uncertainty in parameter values by

examining a posterior distribution for each parameter. We ran

three chains of each model for 20,000 iterations, thinned by 5,

after a burn-in of 10,000 iterations (resulting in 12,000

posterior samples for each parameter), and we assessed model

convergence by examining trace plots and Gelman–Rubin

statistics by using package CODA in R (Gelman et al. 2003).

We estimated occurrence, persistence (1 – extinction), and

colonization probabilities for the entire mussel assemblage.

RESULTS
Detection probabilities ranged from 0.39 to 0.45 among all

species and years. The modeled overall occurrence for all 14

mussel species over 26 yr was 0.35 (95% CI ¼ 0.20–0.51).

Initial occurrence rates (1986) ranged from 0.19 for Utter-
backia imbecillis to 0.60 for Fusconaia masoni (Table 2).

Every species exhibited a decline in occurrence from 1986 to

2011, regardless of initial occurrence (Fig. 2). In 2011,

occurrence ranged from 0.10 for Lampsilis radiata to 0.40 for

F. masoni. The maximum difference between occurrence rates

in 1986 and 2011 was a decline of 0.30 for Alasmidonta
undulata. The mean persistence for all species was high (0.97,

95% CI ¼ 0.95–0.99) and ranged from 0.93 for L. radiata to

0.98 for A. heterodon, E. fisheriana, E. lanceolata, E.
roanokensis, F. masoni, and V. constricta. However, the

mean colonization probability was very low (,0.01, 95% CI¼
,0.01–0.01). The modeled colonization probability for all 14

species was ,0.01.

DISCUSSION
The dynamic modeling approach showed that the occur-

rence of all 14 mussel species in the study area declined
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steadily over the 26-yr period. This finding is consistent with

qualitative assessments of the region’s fauna, which portray

steep declines in mussel abundance and species richness

(Alderman 1997). Although persistence probability was high

among all species for every year in the study, it never reached

a value of 1.0. This indicates that every year, there was at least

one site where a mussel species was extirpated. Because

persistence probability was accounted for annually, the effects

of less than total persistence were compounded over the 26-yr

period. This, combined with extremely low colonization

probabilities, resulted in decreases in mussel occurrence

probabilities over time.

A major advantage of our modeling approach was that it

incorporated imperfect detection of mussels, and therefore we

Table 2. Parameter estimates and SDs of occurrence, persistence, and colonization probabilities for 14 freshwater mussel species in the Tar River basin, North

Carolina, USA, from 1986 to 2011.

Species

Occurrence Persistence Colonization

W1986
a SD W2011

b SD Uc SD cd SD

Alasmidonta heterodon 0.30 0.12 0.24 0.08 0.98 0.01 ,0.01 ,0.01

Alasmidonta undulata 0.54 0.15 0.24 0.09 0.96 0.02 ,0.01 ,0.01

Elliptio fisheriana 0. 31 0.11 0.23 0.08 0.98 0.01 ,0.01 ,0.01

Elliptio lanceolata 0.34 0.11 0.22 0.08 0.98 0.02 ,0.01 ,0.01

Elliptio roanokensis 0.31 0.11 0.24 0.08 0.98 0.01 ,0.01 ,0.01

Elliptio steinstansana 0.32 0.12 0.20 0.08 0.97 0.02 ,0.01 ,0.01

Fusconaia masoni 0.60 0.15 0.40 0.11 0.98 0.01 ,0.01 ,0.01

Lampsilis cariosa 0.49 0.15 0.30 0.09 0.97 0.01 ,0.01 ,0.01

Lampsilis radiata 0.23 0.14 0.10 0.06 0.93 0.08 ,0.01 ,0.01

Lampsilis sp.e 0.22 0.12 0.13 0.06 0.97 0.03 ,0.01 ,0.01

Pyganodon cataracta 0.24 0.12 0.15 0.07 0.97 0.03 ,0.01 ,0.01

Strophitus undulatus 0.43 0.14 0.20 0.08 0.96 0.03 ,0.01 0.01

Utterbackia imbecillis 0.19 0.11 0.12 0.07 0.96 0.05 ,0.01 ,0.01

Villosa constricta 0.51 0.12 0.39 0.11 0.98 0.01 ,0.01 ,0.01

aOccurrence probability in 1986.
bOccurrence probability in 2011.
cPersistence probability, 1986–2011.
dColonization probability, 1986–2011.
eUndescribed Lampsilis species.

Figure 2. Estimated occurrence (W) for 14 freshwater mussel species in the Tar River basin, North Carolina USA, from 1986 to 2011.
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avoided basing inferences on biased data (MacKenzie et al.

2003; Kery and Schmidt 2008). For example, a cursory

inspection of survey data (Table 1) might suggest that the

federally endangered A. heterodon occurred at survey sites

more frequently in later time periods than in earlier periods.

However, dynamic modeling indicated that occurrence of A.
heterodon declined steadily, and this finding is in agreement

with regional mussel experts who infer that populations of A.
heterodon are declining in the Tar River basin (R.B. Nichols,

North Carolina Wildlife Resources Commission, personal

communication). The apparent increase in the number of

surveys in which A. heterodon was detected is most likely

related to sampling effort and intensity or species detection

issues. The species was federally listed as endangered in 1990,

which led to expanded research interest in this species (Strayer

et al. 1996). It is likely that survey efforts became more

frequent and targeted for this species and surveyors became

more adept at locating and identifying this small mussel

(Strayer and Smith 2003; Meador et al. 2011). The apparent

increase in species detections at survey sites could be

misinterpreted as an increase in occurrence and perhaps

misinform conservation planning.

Despite our finding of a steady decrease in mussel

occurrence, the high persistence probabilities in the Tar River

basin indicate that the majority of sites where mussels

previously occurred have remained occupied. However, our

analysis did not include a measure of abundance, and we have

no information about changes in population size. Similarly,

our analysis did not include individual size and provides no

information about other changes in population status such as

age structure or strength of recent recruitment.

The extremely low colonization probabilities that we

modeled for mussels in the Tar River basin cannot be

conclusively attributed to a particular cause. Other studies

found that colonization rate depends on mussel density and

distribution and larval dispersal traits (McClain and Ross

2005; Vaughn 2012). Habitat requirements of newly settled

and established juvenile mussels may also influence coloni-

zation success. For example, juvenile mussels may not be able

to settle during high velocity or shear stress conditions (Payne

and Miller 2000). We have no information about changes in

mussel density or habitat conditions that may influence

colonization in the Tar River basin. However, it is likely that,

to a large extent, unoccupied sites are not being colonized

simply because mussels have reached a steady state in which

all species suited for the habitat and resources at a particular

site have already colonized that site.

Our analyses were constrained by the data available in the

existing database. Most records in the database did not report

sampling effort, which limited our analyses to presence/

absence. Including sampling effort in survey records can

greatly enhance their utility by allowing assessment of long-

term trends in abundance. Also, our data were not collected

specifically for application in an occurrence model, so results

should be interpreted with a degree of caution. For example,

methods of estimating detection probability are data inten-

sive, and we were unable to model it using survey data from

the database. Instead, we relied on detection probability

estimates derived from a complementary study in the same

river basin (Pandolfo et al. 2016). These detection probabil-

ities were estimated for the same species at the same sites

examined in this study, and our model included annual

variation around the mean detection probability from the

complementary study. However, we were unable to empir-

ically estimate changes in detection probability over time.

Therefore, our modeled occurrence probabilities over the

study period may not reflect actual changes in detection

probability that may have occurred during that time. For

example, our model cannot conclusively address the

presumption that detection of A. heterodon has increased

during the study period due to increased focus on this species

(see above). In addition, because our modeling approach uses

shrinkage (i.e., it borrows data across all species), the

parameter estimates are influenced by the mean estimates for

the entire assemblage (Gelman et al. 2003). Thus, if one

species is more data rich than others in the assemblage, it

may influence the parameter estimates of the other species.

Despite the limitations of our data set, our dynamic

occurrence modeling approach incorporated imperfect detec-

tion to generate parameter estimates for an entire mussel

assemblage, including rare species that are more data limited.

This approach enabled us to document gradual declines in

occurrence for all species in this region since 1986. The

specific causes of these declines are unknown, but species life

history traits, agricultural land use, and stream power influence

occurrence of mussels in this region (Pandolfo et al. 2016). In

addition, this region is experiencing intensive climate and land

use changes, rendering the aquatic fauna vulnerable (Ingram et

al. 2013). A wealth of mussel survey data exist among

individuals, agencies, and universities, and more effective

analytical approaches can increase the value of these data for

assessing long-term trends in mussel populations and the

causes of mussel declines (Burgman et al. 1995; Reichman et

al. 2011). Our ability to assess long-term trends can be

enhanced further by recording sampling effort and population

measures such as individual size in future surveys.
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Dorazio, R. M., J. A. Royle, B. Söderström, and A. Glimskär. 2006.

Estimating species richness and accumulation by modeling species

occurrence and detectability. Ecology 87:842–854.

Downing, J. A., and W. L. Downing. 1992. Spatial aggregation, precision, and

power in surveys of freshwater mussel populations. Canadian Journal of

Fisheries and Aquatic Sciences 49:985–991.

Frey, S. J. K., A. M. Strong, and K. P. McFarland. 2012. The relative

contribution of local habitat and landscape context to metapopulation

processes: a dynamic occupancy modeling approach. Ecography 35:581–

589.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2003. Bayesian data

analysis, 2nd edition. CRC Press, Boca Raton, Florida. 690 pp.

Ingram, K. T., K. Dow, L. Carter, and J. Anderson, editors. 2013. Climate of

the southeast United States: variability, change, impacts, and vulnerabil-

ity. Island Press, Washington, DC. 341 pp.

Kery, M., and J. A. Royle. 2008. Hierarchical Bayes estimation of species

richness and occupancy in spatially replicated surveys. Journal of Applied

Ecology 45:589–598.

Kery, M., and B. R. Schmidt. 2008. Imperfect detection and its consequences

for monitoring for conservation. Community Ecology 9:207–216.

Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. WinBUGS – a

Bayesian modeling framework: concepts, structure, and extensibility.

Statistics and Computing 10:325–337.

MacKenzie, D. I., J. D. Nichols, J. E. Hines, M. G. Knutson, and A. B.

Franklin. 2003. Estimating site occupancy, colonization, and local

extinction when a species is detected imperfectly. Ecology 84:2200–2207.

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle, and

C. A. Langtimm. 2002. Estimating site occupancy rates when detection

probabilities are less than one. Ecology 83:2248–2255.

McClain, D. C., and M. R. Ross. 2005. Reproduction based on local patch size

of Alasmidonta heterodon and dispersal by its darter host in the Mill

River, Massachusetts, USA. Journal of the North American Benthological

Society 24:139–147.

Meador, J. R., J. T. Peterson, and J. M. Wisniewski. 2011. An evaluation of

the factors influencing freshwater mussel capture probability, survival,

and temporary emigration in a large lowland river. Journal of the North

American Benthological Society 30:507–521.

NCDENR (North Carolina Department of Environment and Natural

Resources). 2008. Basinwide assessment report: Tar River basin. North

Carolina Department of Environment and Natural Resources, Division of

Water Quality, Environmental Sciences Section, Raleigh, North Carolina.

Pandolfo, T. J., T. J. Kwak, W. G. Cope, R. J. Heise, R. B. Nichols, and K.

Pacifici. 2016. Species traits and catchment-scale habitat factors influence

the occurrence of freshwater mussel populations and assemblages.

Freshwater Biology 61:1671–1684.

Payne, B. S., and A. C. Miller. 2000. Recruitment of Fusconaia ebena

(Bivalvia: Unionidae) in relation to discharge of the lower Ohio River.

American Midland Naturalist 144:328–341.

Reichman, O. J., M. B. Jones, and M. P. Schildhauer. 2011. Challenges and

opportunities of open data in ecology. Science 331:703–705.

Royle, J. A., and M. Kery. 2007. A Bayesian state-space formulation of

dynamic occupancy models. Ecology 88:1813–1823.

Shea, C. P., J. T. Peterson, M. J. Conroy, and J. M. Wisniewski. 2013.

Evaluating the influence of land use, drought, and reach isolation on the

occurrence of freshwater mussel species in the lower Flint River basin,

Georgia (USA). Freshwater Biology 58:382–395.

Strayer, D. L., and D. R. Smith. 2003. A guide for sampling freshwater mussel

populations. Monograph 8. American Fisheries Society, Bethesda,

Maryland. 103 pp.

Strayer, D. L., S. J. Sprague, and S. Claypool. 1996. A range-wide assessment

of populations of Alasmidonta heterodon, an endangered freshwater

mussel (Bivalvia: Unionidae). Journal of the North American Bentho-

logical Society 15:308–317.

Sturtz, S., U. Ligges, and A. Gelman. 2005. R2WinBUGS: a package for

running WinBUGS from R. Journal of Statistical Software 12:1–16.

Vaughn, C. C. 2012. Life history traits and abundance can predict local

colonization and extinction rates of freshwater mussels. Freshwater

Biology 57:982–992.

Walls, S. C., J. H. Waddle, and R. M. Dorazio. 2011. Estimating occupancy

dynamics in an anuran assemblage from Louisiana, USA. Journal of

Wildlife Management 75:751–761.

Wisniewski, J. M., N. M. Rankin, D. A. Weiler, B. A. Strickland, and H. C.

Chandler. 2013. Occupancy and detection of benthic macroinvertebrates:

a case study of unionids in the lower Flint River, Georgia, USA.

Freshwater Science 32:1122–1135.

LONG-TERM FRESHWATER MUSSEL TRENDS 19

Downloaded From: https://bioone.org/journals/Freshwater-Mollusk-Biology-and-Conservation on 28 Apr 2024
Terms of Use: https://bioone.org/terms-of-use


