

Floristic Patterns and Conservation Values of Mojave and Sonoran Desert Springs in California

Authors: Fraga, Naomi S., Cohen, Brian S., Zdon, Andy, Mejia, Maura Palacios, and Parker, Sophie S.

Source: Natural Areas Journal, 43(1): 4-21

Published By: Natural Areas Association

URL: https://doi.org/10.3375/22-7

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Floristic Patterns and Conservation Values of Mojave and Sonoran Desert Springs in California

Naomi S. Fraga,^{1,6} Brian S. Cohen,² Andy Zdon,³ Maura Palacios Mejia,⁴ and Sophie S. Parker⁵

⁶Corresponding author: nfraga@calbg.org

Associate Editor: Paula Fornwalt

ABSTRACT

In the face of a rapidly changing climate, spring-fed habitats are increasingly vulnerable to numerous threats. Botanical inventories provide valuable information to assess the conservation value of desert springs, and can serve as indicators to document changing conditions, including the proportion of native vs. nonnative taxa, diversity of life forms present that influence structure and function of ecosystems, species persistence and longevity, and the proportion of taxa that are rare and sensitive to land use change. Here we evaluate plant species composition and richness within and between springs, and evaluate botanical diversity with respect to physical parameters including hydrology and geography. We find that desert springs collectively support a large proportion of plant diversity, or nearly 22% of the total vascular plant diversity known within the California desert in only 0.000005% of the total land area. The springs we sampled are highly dissimilar in plant species composition, thus, restoration and management activities likely need to be highly individualized and site specific. Monitoring and inventory programs can increase opportunities for restoration and protection by providing information to assess warning signs of habitat degradation, such as changing species composition and local extirpation of wetland-dependent species.

Index terms: botanical inventory; floristics; Mojave Desert; Sonoran Desert; wetland

INTRODUCTION

Desert springs have been identified as high-priority ecosystems and targets to meet conservation goals because of their potential to serve as microrefugia in a changing climate (McLaughlin et al. 2017; Cartwright et al. 2020; Parker et al. 2021). These small and isolated water features often provide perennial water sources in an otherwise arid landscape, supporting the persistence of species under changing conditions (Bogan et al. 2014). Despite their relatively small size (e.g., Jack Spring, San Bernardino County, California, is 0.755 ha), desert springs have wide-ranging ecosystem influence at a landscape scale (Patten et al. 2008; McLaughlin et al. 2017; Cartwright et al. 2020). At a broad scale, desert springs provide respite from harsh conditions for wide-ranging migratory animals (e.g., large mammals and birds), but at a local scale they support narrowly endemic species with limited habitat connectivity and dispersal capacity (Sada et al. 2005).

In the face of a rapidly changing climate, spring-fed habitats of the Mojave and Sonoran deserts, USA, and their associated biota face numerous threats including groundwater extraction, water diversion, introduction of nonnative plant species, impacts from feral animals (e.g., horses and donkeys), cattle grazing, and widescale land use change such as habitat alteration and conversion (Sada et al. 2005; Patten et al. 2008; Davis et al. 2017). Land management practices, allocation of resources, and land use changes can significantly alter fragile spring-fed habitats, and

substantially impact spring-associated biodiversity and the conservation value of springs (Parker et al. 2021). Specifically, groundwater extraction has the potential to severely impact desert springs that rely on aquifers in regional settings when the extraction rate exceeds the recharge rate, resulting in aquifer drawdown (Zdon et al. 2018), or if pumping is proximal to a spring in a local groundwater system. Furthermore, recharge rates are expected to decline as climate conditions in the American Southwest are expected to become hotter and drier with longer and more frequent drought events (Meixner et al. 2016).

In the Mojave and Sonoran deserts in California (hereinafter referred to as the California desert), springs are largely understudied and biological information, especially with respect to plant diversity, is poorly documented (Zdon et al. 2018; Parker et al. 2021). Yet, plants are foundation species, and especially important in desert environments, because they ameliorate temperature, reduce direct evaporation, and provide food and nesting materials for wildlife (de Grenade 2013; Glenn et al. 2013). Documenting plant diversity is a key component to assessing habitat health and function of fragile wetland ecosystems and can provide essential information on baseline conditions (McLaughlin et al. 2017; Parker et al. 2021). Plant species can serve as bioindicators of spring condition because their distribution is highly influenced by a variety of environmental and anthropogenic factors such as substrate, light, temperature, water availability, pH, and level of disturbance.

¹California Botanic Garden, 1500 North College Avenue, Claremont, CA 91711

²The Nature Conservancy, 401 W A Street, Suite 1650, San Diego, CA 92101

³Roux Associates, 555 12th Street, Suite 250, Oakland, CA 94607

⁴Mount San Antonio College, 1100 North Grand Avenue, Walnut, CA 91789

⁵The Nature Conservancy, 445 S. Figueroa St., Suite 1950, Los Angeles, CA 90071

Furthermore, perennial plant species are relatively easy to survey and document, although field-based surveys can be time consuming and require specialized taxonomic expertise (Palacios Mejia et al. 2021). Therefore, increasing the knowledge of plant diversity, combined with an assessment of threats at desert springs, can provide a useful framework to inform restoration and resource management for these critical habitats.

As part of a growing, interdisciplinary body of work that characterizes the conservation values and needs of desert springs, we examined botanical diversity, assessed threats, and characterized hydrological parameters at 48 springs distributed across the California desert (Palacios Mejia et al. 2021; Parker et al. 2021). The goals of this study are to assess plant species composition and richness within and between springs, and to evaluate botanical diversity of wetland plants with respect to physical parameters including hydrology and geography. Specifically, we addressed the following questions: (1) What are the floristic patterns within and between desert springs? (2) Is plant species richness correlated with spring size? (3) How does human use and disturbance influence botanical diversity?

METHODS

Study Area

The California desert is located in the southeastern corner of the state and spans an area of 103,500 km² (Omernick 1987). This study is focused on 48 springs that occupy an area of approximately 35 km², or less than or 0.000005% of the total landmass of the California desert (Table 1; Figures 1–2). The springs chosen for this study are a subset of 341 springs surveyed by Andy Zdon and Associates (2016) that occur on land managed by the Bureau of Land Management (BLM); we selected these 48 springs because they span a broad geography and capture documented hydrological variation (Figure 1). The springs are well dispersed across the California desert with an average distance of 166 km between springs and only seven pairwise distances between springs that are below 0.5 km (Supplemental Data Table 2).

Field Surveys

Prior to surveys, we examined herbarium specimens, literature, and records from the California Department of Fish and Wildlife Natural Diversity Database (CNDDB 2018) to identify historical records and sensitive plant species previously documented across the survey area. We queried the Consortium of California Herbaria (CCH2 2019) and SEINet (2019) to produce a list of 523 unique historical herbarium specimens and establish baseline documentation of the local vegetation. We collected an additional 524 herbarium specimens in the field and submitted them in the herbarium at California Botanic Garden (formerly Rancho Santa Ana Botanic Garden [acronym RSA]), bringing the total number of herbarium specimens evaluated in this study to 1047 (Supplemental Data Table 1).

We conducted surveys in the fall of 2018 and summer of 2019, when most wetland plant species are reproductive and in the best condition for identification. We identified plants to the minimum rank possible (species, subspecies, or variety), and excluded observations of plants if they could only be identified

to genus or family. We collected herbarium specimens to aid in identification of species and provide a verifiable record. We did not collect specimens if plants were not in flower or fruit and could not be confidently identified. We included 222 observations of plant taxa that could be confidently identified in the field, but were not in a suitable condition to collect a voucher specimen (Supplemental Data Table 1). We examined all specimens cited in the study (Supplemental Data Table 1) and identified them using taxonomic keys and descriptions from several references including Baldwin et al. (2012), Jepson Flora Project (2022), and Flora of North America (FNA 2021). We standardized names using the Jepson eFlora revision 9 (2022) and verified all specimen identifications through comparison with annotated specimens in the herbarium at RSA. Plant taxa were categorized by Wetland Indicator Status according to the National List of Plants that Occur in Wetlands developed by the U.S. Army Corps of Engineers (2022). Lifeforms were categorized using Calflora (2022).

Analysis

Plant species occurring at only one spring (singletons) were omitted for Jaccard's similarity index calculation because they contain no shared species and the resulting pairwise calculations would be zero. To analyze the percentage of wetland versus upland taxa at desert springs, we categorized wetland taxa as those occasionally found in wetlands (facultative upland) to taxa that always occur in wetlands (obligate) and all categories in between including facultative and facultative wetland. Upland taxa only consisted of obligate upland taxa (U.S. Army Corps of Engineers 2022). The areal extent of each spring was delineated using "heads-up" digitizing into a polygon feature class within Esri's ArcGIS Desktop 10.8 using the Albers equal-area conic projection. Each spring was located from field documented coordinates (Table 1) and the associated vegetation and footprint visible in NAIP 2018 1 m aerial imagery was traced onscreen. The footprint was determined by consensus of the authors. The CALCULATE AREA tool was used to calculate the hectares of each polygon. The GENERATE NEAR TABLE tool was used to calculate the distances between each of the spring polygons, in meters.

RESULTS

Physical Setting

Sampled springs spanned a wide geography across the California desert and ranged in elevation from 150 m to 1859 m and in size from 0.005 ha to 12.80 ha (Table 1, Figure 1). Underlying bedrock types are variable and include intrusive igneous rocks, extrusive igneous rocks (i.e., volcanic rocks), carbonate rocks (limestone and dolomite), and various metamorphic rocks (Andy Zdon and Associates 2016). The majority of the springs (81%) had water expressed at the surface during our surveys, while nine springs had no detectable water across multiple surveys where hydrological data was gathered (Table 1). The springs we sampled included local springs that are fed primarily by precipitation from their immediate watershed and influenced by local conditions and seasonal patterns, and regional springs that are fed by more extensive groundwater

Table 1.—Name, location, elevation, and size for 48 sampled springs. Taxa = minimum-rank taxa, *% = the percentage of nonnative taxa, WL% = the percentage of wetland plants present, and W = water present (1) or absent (0).

ID	Spring name	County	Latitude	Longitude	ALT (m)	Size (ha)	Taxa	*%	WL%	W
1	Arrastre Canyon Spring	San Bernardino	34.392	-117.114	1920	0.923	56	14%	58%	1
2	Arrowweed Spring A	San Bernardino	34.848	-114.782	479	0.009	8	0%	50%	1
3	Black Springs - Lower	Inyo	36.251	-117.732	1934	0.037	12	25%	50%	1
4	Black Springs - Upper	Inyo	36.249	-117.732	1859	0.145	21	10%	43%	0
5	Bonanza Spring	San Bernardino	34.685	-115.405	641	1.683	38	12%	56%	1
6	Borehole Spring	Inyo	35.886	-116.234	408	0.757	6	0%	100%	1
7	Boulder Spring	Kern	35.579	-118.028	1234	0.133	26	7%	64%	1
8	Bristol Spring	San Bernardino	34.263	-114.144	150	0.184	9	30%	60%	1
9	Burnt Spring	San Bernardino	34.716	-115.384	742	0.071	10	0%	36%	0
10	Butterbredt Spring	Kern	35.382	-118.113	1186	0.923	64	24%	38%	0
11	China Garden Spring	Inyo	36.314	-117.532	957	0.216	32	24%	61%	1
12	Chris Wicht Camp Spring	Inyo	36.112	-117.173	847	0.122	51	15%	42%	1
13	Coffee Can Spring	Kern	35.377	-117.883	648	0.02	17	32%	32%	1
14	Crystal Spring	San Bernardino	35.795	-115.962	1182	0.213	52	28%	30%	1
15	Dove Spring	Kern	35.453	-118.100	1300	0.256	26	10%	60%	1
16	Dripping Spring	San Bernardino	34.560	-115.210	1100	0.022	20	0%	25%	1
17	Goat Spring	San Bernardino	34.673	-116.927	1323	0.047	22	23%	9%	1
18	Halloran Spring	San Bernardino	35.383	-115.893	909	0.005	22	10%	16%	1
19	Hummingbird Spring	San Bernardino	34.753	-115.344	708	0.291	91	5%	4%	1
20	Jack Spring	San Bernardino	35.155	-116.756	726	0.755	28	14%	59%	1
21	Kane Springs west	San Bernardino	34.740	-116.701	984	0.094	18	17%	35%	1
22	Lower Centennial Spring	Inyo	36.266	-117.766	1714	0.06	16	25%	68%	1
23	McDonald Well	San Bernardino	35.115	-117.370	779	0.006	6	33%	80%	1
24	Mesquite Springs	Kern	35.390	-117.815	640	0.142	13	21%	50%	0
25	Miller's Spring	Inyo	36.292	-117.537	1067	0.071	18	5%	74%	1
26	Mopah Spring	San Bernardino	34.314	-114.776	675	0.08	47	14%	18%	1
27	Morongo Canyon Springs	San Bernardino	34.048	-116.568	765	5.093	171	13%	41%	1
28	Mound Spring	San Bernardino	34.256	-116.657	1656	0.03	36	13%	50%	1
29	Nadeau Spring	Inyo	35.866	-117.382	842	0.253	15	24%	29%	0
30	Poison Spring	Kern	35.394	-117.839	700	0.041	7	0%	57%	1
31	Quail Spring	San Bernardino	34.537	-117.082	1014	0.037	8	36%	64%	1
32	Quill Spring	San Bernardino	34.644	-116.891	1366	0.03	3	25%	25%	1
33	Ricky Spring	San Bernardino	35.450	-115.481	1340	0.018	7	14%	71%	1
34	Rock Corral Spring east	San Bernardino	34.317	-116.553	1216	0.104	26	8%	35%	0
35	Rock Corral Spring west	San Bernardino	34.317	-116.558	1219	0.209	11	18%	36%	0
36	Saline Marsh Spring	Inyo	36.696	-117.830	326	12.792	22	6%	10%	1
37	Salt Spring	San Bernardino	35.626	-116.281	160	8.267	15	6%	44%	1
38	Scofield Spring	Inyo	35.874	-116.121	625	0.136	20	15%	60%	1
39	Scrub Spring	San Bernardino	34.339	-114.286	275	0.009	4	25%	25%	1
40	Tan-Tan Spring	San Bernardino	34.848	-114.778	477	0.024	10	10%	50%	0
41	Tan-Tan Well	San Bernardino	34.848	-114.779	477	0.028	3	67%	10%	1
42	Thom Spring	Inyo	35.857	-116.227	428	0.092	13	7%	29%	1
43	Twelvemile Spring	Inyo	36.022	-116.155	672	0.131	64	14%	34%	1
44	Vaughn Spring	San Bernardino	34.259	-116.659	1646	0.064	43	11%	70%	1
45	Vernandyles Spring	San Bernardino	34.695	-115.661	782	0.014	18	26%	21%	0
46	West Well	San Bernardino	34.444	-114.479	234	0.009	4	0%	29%	1
47	West Well Spring	San Bernardino	34.445	-114.480	232	0.582	17	6%	17%	1
48	Wild Horse Spring	San Bernardino	35.788	-115.998	947	0.159	23	33%	58%	1

aquifers and are susceptible to impacts from regional ground-water pumping (Zdon and Love 2020).

Floristic Summary

Plant species richness ranged from 3 to 171 taxa (mean 16.4 ± 28.7 SD) at each of the 48 springs sampled (Supplemental Data Table 1). We recorded a total of 479 minimum-rank plant taxa, across 78 plant families (Tables 2–3), with individual taxa present at 1–23 springs (Supplemental Data Table 1). Big Morongo Canyon was found to be the most species-rich desert spring site with 171 taxa documented. Six other springs have

greater than 50 taxa documented (Table 1). Only 23 taxa (4.2%) were present at 10 springs or more, and 18 of these were native (Supplemental Data Table 1). A total of 185 taxa (38.5%) were individually present only at a single spring (Supplemental Data Table 1). A high proportion of the taxa recorded (87%) are native to the California desert (Table 2). The 10 most common plant taxa occurred at 13 sites or more and had a high proportion of wetland taxa (60%) and nonnative taxa (36%; Supplemental Data Table 1).

The five most common plant families across all springs were Asteraceae (99 taxa), Poaceae (41 taxa), Boraginaceae (34 taxa),

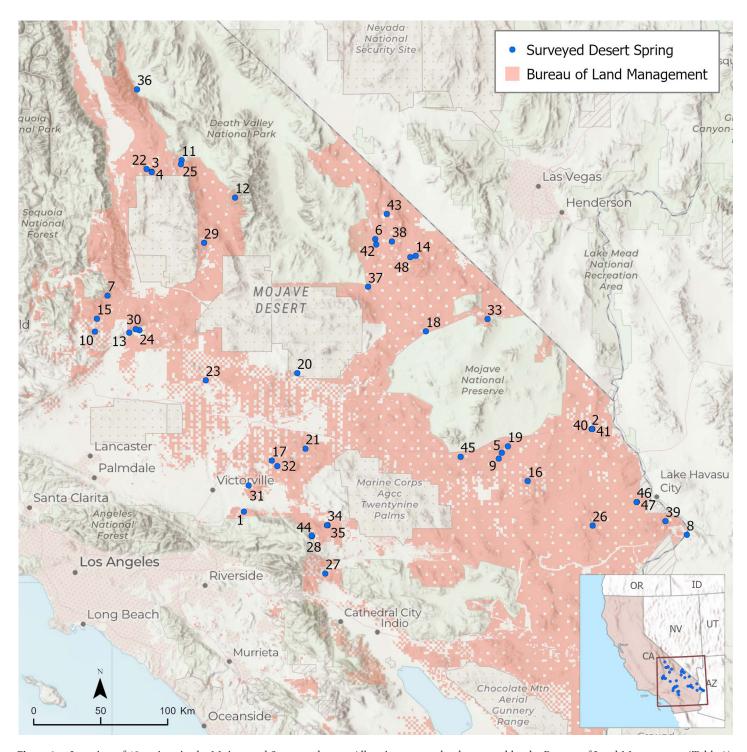


Figure 1.—Location of 48 springs in the Mojave and Sonoran deserts. All springs are on land managed by the Bureau of Land Management (Table 1).

Chenopodiaceae (26 taxa), and Polygonaceae (21 taxa; Tables 2–3). Springs were highly dissimilar based on Jaccard's similarity index with pairwise values ranging from 0 to 0.4 (mean 0.06 \pm 0.05 SD). Our results indicated that spring size did not predict species richness when we evaluate all 48 springs together ($R^2 = 0.048$; Table 1). However, if we omit two outlier springs (Saline Marsh Spring and Salt Spring), R^2 increases to 0.611, indicating a positive relationship between spring size and species richness (Pearson's R = 0.781, P < 0.00001).

Upland taxa are a significant component to the overall plant species composition at the desert springs sampled (Supplemental Data Table 1, Figure 3). Upland taxa comprise 61.7% (295 taxa) of the total species richness while wetland taxa comprise 38.3% (183 taxa) of the total species richness (Figure 3). Of the 33 obligate wetland species documented, four were nonnative (12%) and the majority were perennial herbs (51%) and graminoids (36%). Cyperaceae was the most species-rich family among obligate wetland taxa (27%; Supplemental Data Table 1).



Figure 2.—Photographs of four desert springs sampled. (A) Lower Centennial Spring, Inyo County. (B) Miller Spring, Inyo County. (C) Wildhorse Spring, San Bernardino County. (D) Vaughn Spring, San Bernardino County.

In contrast, of the 296 upland plant taxa we documented, only 6.7% were nonnative taxa, and their life forms primarily consisted of annual herbs (54%), shrubs (19.8%), and perennial herbs (15.8%) (Supplemental Data Table 1). Asteraceae was the most species-rich family among upland taxa (21.6%).

Baseline Botanical Documentation

There are relatively few herbarium records documenting floristic diversity at the 48 desert springs prior to this study. The majority of the historical records (71%) were collected by contemporary botanists or botanists who were active in the last 20 y (e.g., Duncan Bell, Naomi Fraga, Sarah De Groot, George Helmkamp, Andrew Sanders, and Justin Wood). Two prominent botanists made herbarium collections at three springs prior to 1970. Annie Alexander collected at Morongo Canyon Springs and Saline Marsh Spring in 1941 and 1955, respectively. Ernest Twisselman collected plants from Mesquite Spring in the El Paso Mountains in 1964. Plant taxa documented by Annie Alexander at Morongo Canyon Springs and Saline Marsh Spring were

observed at both sites during our surveys and are considered extant at these sites. Four native perennial wetland taxa documented by Ernest Twisselman at Mesquite Spring were not relocated: *Baccharis salicifolia* subsp. *salicifolia* (facultative wetland shrub, Asteraceae), *Pluchea sericea* (facultative wetland shrub, Asteraceae), *Eleocharis parishii* (facultative wetland graminoid, Cyperaceae), and *Phragmites australis* (facultative wetland graminoid, Poaceae).

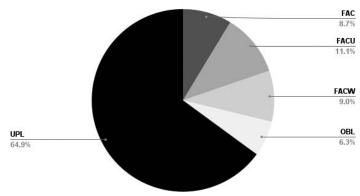
Taxa of Conservation Concern

We documented the occurrence of seven plant taxa of conservation concern; three of these (42.8%) were wetland taxa (Figure 4, Table 4). One species of conservation concern, *Chloropyron tecopense* (Orobanchaceae), was once found at Borehole Spring, Inyo County, California. This is a facultative wetland species that was last documented near Borehole Spring in 2008 (CNDDB 2018). Since 2015, multiple surveys have not relocated this taxon at this specific location, and it is presumed extirpated near Borehole Spring. All other rare plant occurrences

Table 2.—Floristic numerical summary. Taxa of conservation concern includes plants included in the California Native Plant Society's Inventory of Rare Plants (CNPS 2022). Calflora (2022) was used to categorize life forms.

Flora	Total taxa	% of total flora
Number of families	78	
Minimum-rank taxa	479	
Nonnative	63	13%
Native	416	87%
Taxa of conservation concern	5	1%
Life Forms		
Annual herbs	209	44%
Perennial herbs	105	22%
Shrub	85	18%
Graminoid	47	10%
Tree	26	5%
Succulent	7	1%
Five Largest Families		
Asteraceae	99	21%
Poaceae	41	9%
Boraginaceae	34	7%
Chenopodiaceae	26	5%
Polygonaceae	21	4%

that have been documented within the study area are currently presumed extant.


Nonnative Taxa

We identified 63 nonnative taxa, which constitutes 13% of the total floristic diversity in the study (Table 2). The two most frequently encountered plant taxa across the study were nonnative grasses (Poaceae; *Bromus rubens* and *Polypogon monspeliensis*). These were the only two taxa in the study to occur at 20 springs or more (Supplemental Data Table 1). *Cynodon dactylon* (Poaceae), *Schismus barbatus* (Poaceae), and *Erodium cicutarium* (Geraniaceae) were relatively frequently encountered, occurring at 13, 13, and 12 sites, respectively.

Washingtonia filifera (Arecaceae) is native to the California desert, but is treated as a nonnative species in this study because it is known to be introduced at the specific sites sampled (Jepson eFlora 2022). Pulicaria paludosa (Asteraceae) is native to Portugal and Spain and was first recorded as a naturalized nonnative species in California in 1946 (FNA 2021). It primarily occurs in coastal California, but has also spread to the desert, primarily occurring in the low Sonoran Desert from Palm Springs to the Whipple Mountains (CCH2 2019). Pulicaria paludosa is common along roadways, streambeds, and seasonal wetland habitats (Jepson eFlora 2022). We documented it for the first time at Halloran Springs in San Bernardino County (Fraga 6440B, UCR), which represents a ~190 km range extension to the north and it is the first record of the species in the central Mojave Desert region.

Nine of the documented nonnative plant taxa are persisting from cultivation. These include Ailanthus altissima (Simaroubaceae), Morus nigra (Moraceae), Nelumbo lutea (Nelumbonaceae), Nereum oleander (Apocynaceae), Parkinsonia aculeata (Fabaceae), Robinia pseudoacacia (Fabaceae), Tamarix aphylla (Tamaricaceae), Ulmus pumila (Ulmaceae), and Washingtonia filifera (Arecaceae) (Table 3). Taxa persisting from cultivation comprise 14% of all nonnative taxa documented in the study,

Figure 3.—Relative percentage of upland versus wetland plant taxa. UPL = Upland, FAC = Facultative, FACU = Facultative upland, FACW = Facultative wetland, OBL = Obligate (U.S. Army Corps of Engineers 2022).

67% are categorized as wetland plant taxa, and 89% are trees or large shrubs (Table 3).

DISCUSSION

Species Richness

Botanical diversity documented within the study area accounts for nearly 22% of the total vascular plant diversity known within the California desert, with just 48 springs containing 479 of the \sim 2200 vascular plant taxa known to occur in the region (André 2014; Jepson eFlora 2021). This level of diversity is extraordinary given that springs sampled make up less than 1% (or 0.000005%) of the total land area for the California desert. One of the largest springs surveyed, Morongo Canyon Springs, was also one of the most species-rich; however, spring size did not predict species richness across all sites. This may be due to two outlier springs that occupy a large area (Saline Marsh Spring at 12.8 ha and Salt Spring 8.3 ha), but have relatively low species richness (22 and 15 plant taxa, respectively; Table 1). These two outlier springs have 1.7 taxa/ha and 1.8 taxa/ ha, respectively, while the 48 springs together have a mean of 395 taxa/ha and mode of 444 taxa/ha (Table 1). When we remove Salt Marsh Spring and Salt Spring from our analysis a positive relationship between spring size and species richness is recovered, indicating that springs with larger footprints have the capacity to support increased plant diversity. A physical parameter like high pH or high salinity may be a limiting factor for species richness, as observed at Saline Marsh Spring and Salt Spring, which exhibit high pH (8 and 8.21, respectively) and high salinity (7096 ppm at Salt Spring).

Pattern of Dissimilarity between Springs

The results of the field surveys document a large number of unique plant taxa occurring within desert springs (i.e., singletons), with nearly 40% (185 of 479) of the documented plant taxa recorded at only one site, indicating high beta diversity, and little overlap in plant species composition between sites (Supplemental Data Table 1). This could be influenced by a number of factors including relatively low species richness at a

Table 3.—A checklist of all vascular taxa documented across 48 desert springs. Nonnative species are denoted with an asterisk (*). Life form (Calflora 2021) and wetland status are provided. UPL = Upland, FAC = Facultative, FACU = Facultative upland, FACW = Facultative wetland, OBL = Obligate (U.S. Army Corps of Engineers 2022).

*	Family	Species	Life form	Wetland
	Adoxaceae	Sambucus nigra L. subsp. caerulea (Raf.) Bolli	shrub	FACW
	Agavaceae	Yucca brevifolia Engelm.	tree	UPL
	Agavaceae	Yucca schidigera Roezl ex Ortgies	tree	UPL
*	Amaranthaceae	Amaranthus albus L.	annual	FACU
	Amaranthaceae	Amaranthus fimbriatus (Torr.) S. Watson	annual	UPL
	Amaranthaceae	Amaranthus palmeri S. Watson	annual	FACU
	Amaranthaceae	Nitrophila occidentalis (Moq.) S. Watson	perennial herb	FACW
	Amaranthaceae	Tidestromia suffruticosa (Torr.) Standl. var. oblongifolia (S. Watson) Sánch.Pino & Flores Olv.	annual	UPL
	Anacardiaceae	Rhus aromatica Aiton	shrub	FACU
	Anacardiaceae	Rhus ovata S. Watson	shrub	UPL
*	Apiaceae	Apium graveolens L.	perennial herb	UPL
	Apiaceae	Berula erecta (Huds.) Coville	perennial herb	OBL
	Apocynaceae	Apocynum cannabinum L.	perennial herb	FAC
	Apocynaceae	Asclepias erosa Torr.	perennial herb	UPL
	Apocynaceae	Asclepias fascicularis Decne.	perennial herb	FAC
	Apocynaceae	Asclepias subulata Decne.	perennial herb	UPL
	Apocynaceae	Funastrum cynanchoides (Decne.) Schltr. var. hartwegii (Vail) Krings	perennial herb	FACU
	Apocynaceae	Funastrum hirtellum (A. Gray) Schltr.	perennial herb	UPL
*	Apocynaceae	Nerium oleander L.	tree	UPL
*	Arecaceae	Washingtonia filifera (Linden ex André) H. Wendl. ex de Bary	tree	FAC
*	Arecaceae	Washingtonia robusta H. Wendl.	tree	FACW
	Asteraceae	Adenophyllum porophylloides (A. Gray) Strother	perennial herb	UPL
	Asteraceae	Ambrosia acanthicarpa Hook.	annual	UPL
	Asteraceae	Ambrosia dumosa (A. Gray) W.W. Payne	shrub	UPL
	Asteraceae	Ambrosia psilostachya DC.	perennial herb	FACU
	Asteraceae	Ambrosia salsola (Torr. & A. Gray) Strother & B.G. Baldwin	shrub	UPL
	Asteraceae	Artemisia douglasiana Besser	perennial herb	FAC
	Asteraceae	Artemisia dracunculus L.	perennial herb	FACU
	Asteraceae	Artemisia ludoviciana Nutt.	perennial herb	FACU
	Asteraceae	Artemisia tridentata Nutt.	shrub	FACU
	Asteraceae	Atrichoseris platyphylla (A. Gray) A. Gray	annual	UPL
	Asteraceae	Baccharis brachyphylla A. Gray	shrub	UPL
	Asteraceae	Baccharis salicifolia (Ruiz & Pav.) Pers. subsp. salicifolia	shrub	FAC
	Asteraceae	Baccharis salicina Torr. & A. Gray	shrub	FACW
	Asteraceae	Baccharis sarothroides A. Gray	shrub	FACU
	Asteraceae	Baccharis sergiloides A. Gray	shrub	FACU
	Asteraceae	Bahiopsis parishii (Greene) E.E. Schill. & Panero	shrub	UPL
	Asteraceae	Baileya pleniradiata Harv. & A. Gray	annual	UPL
	Asteraceae	Bebbia juncea (Benth.) Greene var. aspera Greene	shrub	UPL
	Asteraceae	Brickellia californica (Torr. & A. Gray) A. Gray	perennial herb	FACU
	Asteraceae	Brickellia desertorum Coville	shrub	UPL
	Asteraceae	Brickellia knappiana E. Drew	shrub	UPL
	Asteraceae	Brickellia longifolia S. Watson	shrub	UPL
	Asteraceae	Brickellia microphylla (Nutt.) A. Gray	shrub	UPL
	Asteraceae	Calycoseris parryi A. Gray	annual	UPL
*	Asteraceae	Centaurea melitensis L.	annual	UPL
	Asteraceae	Chaenactis carphoclinia A. Gray	annual	UPL
	Asteraceae	Chaenactis fremontii A. Gray	annual	UPL
-1	Asteraceae	Chaenactis macrantha D. Eaton	annual	UPL
*	Asteraceae	Cichorium intybus L.	perennial herb	FACU
	Asteraceae	Cirsium mohavense (E. Greene) Petrak	perennial herb	FACU
	Asteraceae	Cirsium neomexicanum A. Gray	perennial herb	UPL
4	Asteraceae	Cirsium occidentale (Nutt.) Jeps. var. venustum (Greene) Jeps.	perennial herb	UPL
7	Asteraceae	Cirsium vulgare (Savi) Ten.	perennial herb	FACU
	Asteraceae	Dieteria canescens var. leucanthemifolia (Greene) D.R. Morgan & R.L. Hartm.	perennial herb	UPL
	Asteraceae	Encelia actoni (Elmer) D. D. Keck	shrub	UPL
	Asteraceae	Encelia farinosa Torr. & A. Gray	shrub	UPL
	Asteraceae	Encelia frutescens (A. Gray) A. Gray	shrub	UPL
	Asteraceae	Enceliopsis covillei (A. Nelson) S.F. Blake	perennial herb	UPL
	Asteraceae	Ericameria cuneata (A. Gray) McClatchie var. spathulata (A. Gray) H. M. Hall	shrub	UPL

Table 3.—Continued.

*	Family	Species	Life form	Wetland
	Asteraceae	Ericameria linearifolia (DC.) Urbatsch & Wussow	shrub	UPL
	Asteraceae	Ericameria nauseosa var. hololeuca (A. Gray) G.L. Nesom & G.I. Baird	shrub	UPL
	Asteraceae	Ericameria nauseosa var. mohavensis (Greene) G.L. Nesom & G.I. Baird	shrub	UPL
	Asteraceae	Ericameria nauseosa var. oreophila (A. Nelson) G.L. Nesom & G.I. Baird	shrub	UPL
	Asteraceae	Ericameria paniculata (A. Gray) Rydb.	perennial herb	UPL
	Asteraceae	Ericameria teretifolia (Durand & Hilg.) Jeps.	shrub	UPL
	Asteraceae	Erigeron canadensis L.	annual	FACU
	Asteraceae	Erigeron foliosus Nutt. var. foliosus	perennial herb	UPL
	Asteraceae	Eriophyllum ambiguum (A. Gray) A. Gray	annual	UPL
	Asteraceae	Eriophyllum confertiflorum (DC.) A. Gray	shrub	UPL
	Asteraceae	Eriophyllum lanosum (A. Gray) A. Gray	annual	UPL
	Asteraceae	Eriophyllum pringlei A. Gray	annual	UPL
	Asteraceae	Eriophyllum wallacei (A. Gray) A. Gray	annual	UPL
	Asteraceae	Euthamia occidentalis Nutt.	perennial herb	FACW
	Asteraceae	Gnaphalium palustre Nutt.	annual	FACW
	Asteraceae	Gutierrezia microcephala (DC.) A. Gray	succulent	UPL
	Asteraceae	Gutierrezia sarothrae (Pursh) Britton & Rusby	shrub	UPL
	Asteraceae	Helianthus annuus L.	annual	FACU
	Asteraceae	Isocoma acradenia (E. Greene) E. Greene	shrub	FACU
	Asteraceae	Iva axillaris Pursh	perennial herb	FACU
			*	
	Asteraceae	Lactuca serriola L.	annual	FACU
	Asteraceae	Laennecia coulteri (A. Gray) G.L. Nesom	annual	FAC
	Asteraceae	Lepidospartum squamatum (A. Gray) A. Gray	shrub	FACU
	Asteraceae	Leptosyne bigelovii (A. Gray) A. Gray	annual	UPL
	Asteraceae	Leptosyne californica Nutt.	annual	UPL
	Asteraceae	Leucosyris carnosa (A. Gray) Greene	shrub	OBL
	Asteraceae	Logfia depressa (A. Gray) Holub	annual	UPL
	Asteraceae	Logfia filaginoides (Hook. & Arn.) Morefield	annual	UPL
	Asteraceae	Malacothrix glabrata (D. C. Eaton) A. Gray	annual	UPL
	Asteraceae	Monoptilon bellioides (A. Gray) H. M. Hall	annual	UPL
	Asteraceae	Nicolletia occidentalis A. Gray	perennial herb	UPL
	Asteraceae	Packera multilobata (Torr. & A. Gray) W.A. Weber & Á. Löve	perennial herb	UPL
	Asteraceae	Pectis papposa Harvey & A. Gray	annual	UPL
	Asteraceae	Perityle emoryi Torr.	annual	UPL
	Asteraceae	Pleurocoronis pluriseta (A. Gray) R. King & H. Robinson	shrub	UPL
	Asteraceae	Pluchea odorata (L.) Cass.	annual	FACW
	Asteraceae	Pluchea sericea (Nutt.) Cov.	shrub	FACW
	Asteraceae	Prenanthella exigua (A. Gray) Rydb.	annual	UPL
	Asteraceae	Psathyrotes annua (Nutt.) A. Gray	annual	FACU
	Asteraceae	Psathyrotes ramosissima (Torr.) A. Gray	annual	UPL
+	Asteraceae	Pseudognaphalium luteo-album (L.) Hilliard & B.L. Burtt	annual	FAC
	Asteraceae	Psilostrophe cooperi (A. Gray) E. Greene	shrub	UPL
+	Asteraceae	Pulicaria paludosa Link		FAC
		Pyrrocoma racemosa (Nutt.) Torrey & A. Gray var. paniculata (Nutt.) J. Kartez & K. Gandhi	annual perennial herb	FAC
	Asteraceae		*	
	Asteraceae	Rafinesquia californica Nutt.	annual	UPL
	Asteraceae	Rafinesquia neomexicana A. Gray	annual	UPL
	Asteraceae	Senecio flaccidus Less.	shrub	UPL
	Asteraceae	Solidago cofinis A. Gray	perennial herb	OBL
	Asteraceae	Sonchus asper (L.) Hill	annual	FAC
-	Asteraceae	Sonchus oleraceus L.	annual	UPL
	Asteraceae	Stephanomeria exigua Nutt.	annual	UPL
	Asteraceae	Stephanomeria pauciflora (Nutt.) A. Nelson	perennial herb	UPL
	Asteraceae	Stylocline micropoides A. Gray	annual	UPL
	Asteraceae	Symphyotrichum frondosum (Nutt.) G.L. Nesom	annual	FACW
	Asteraceae	Syntrichopappus fremontii A. Gray	annual	UPL
-	Asteraceae	Taraxacum officinale Weber ex G. H. Wiggers	perennial herb	FACU
	Asteraceae	Uropappus lindleyi Nutt.	annual	UPL
	Asteraceae	Xanthisma (Pursh) D.R. Morgan & R.L. Hartm. var. gooddingii (A. Nelson) D.R. Morgan & R.L. Hartm.	perennial herb	UPL
	Asteraceae	Xanthium strumarium L.	annual	FAC
	Asteraceae	Xylorhiza tortifolia (Torr. & A. Gray) Greene var. tortifolia	perennial herb	UPL
	Bignoniaceae	Chilopsis linearis (Cav.) Sweet ssp. arcuata (Fosb.) Henrickson	shrub	FAC
	B	Amsinckia intermedia Fisch. & C.A. Mey.	J 0.0	UPL

Table 3.—Continued.

+	Family	Species	Life form	Wetlan
	Boraginaceae	Amsinckia menziesii (Lehm.) A. Nelson & J.F. Macbr.	annual	UPL
	Boraginaceae	Amsinckia tesselata A. Gray	annual	UPL
	Boraginaceae	Cryptantha angustifolia (Torr.) E. Greene	annual	UPL
	Boraginaceae	Cryptantha barbigera (A. Gray) Greene	annual	UPL
	Boraginaceae	Cryptantha circumscissa (Hook. & Arn.) I. M. Johnst.	annual	UPL
	Boraginaceae	Cryptantha decipiens (M. E. Jones) A. Heller	annual	UPL
	Boraginaceae	Cryptantha maritima (E. Greene) E. Greene	annual	UPL
	Boraginaceae	Cryptantha nevadensis A. Nelson & Kennedy	annual	UPL
	Boraginaceae	Cryptantha pterocarya (Torr.) Greene	annual	UPL
	Boraginaceae	Cryptantha racemosa (S. Watson) E. Greene	annual	UPL
	Boraginaceae	Cryptantha recurvata Coville	annual	UPL
	Boraginaceae	Cryptantha utahensis (A. Gray) E. Greene	annual	UPL
	Boraginaceae	Emmenanthe penduiflora Benth. var. penduiflora	annual	UPL
	Boraginaceae	Eriodictyon parryi (A. Gray) Greene	perennial herb	UPL
	Boraginaceae	Eriodictyon trichocalyx A. Heller var. trichocalyx	shrub	UPL
	Boraginaceae	Eucrypta chrysanthemifolia (Benth.) Greene	annual	UPL
	Boraginaceae	Eucrypta micrantha (Torr.) A. A. Heller	annual	UPL
	Boraginaceae	Heliotropium curassavicum L. var. oculatum (A. Heller) I.M. Johnst. ex Tidestr.	perennial herb	FACU
	Boraginaceae	Nama demissum A. Gray var. demissum	annual	UPL
	Boraginaceae	Pectocarya heterocarpa (I. M. Johnston) I. M. Johnston	annual	UPL
	Boraginaceae	Pectocarya linearis (Ruiz & Pav.) DC. subsp. ferocula (I. M. Johnst.) Thorne	annual	UPL
	Boraginaceae	Pectocarya penicillata (Hook. & Arn.) A. DC.	annual	UPL
	Boraginaceae	Pectocarya platycarpa (Munz & I. M. Johnston) Munz & I. M. Johnston	annual	UPL
	Boraginaceae	Pectocarya recurvata I. M. Johnst.	annual	UPL
	Boraginaceae	Pectocarya setosa A. Gray	annual	UPL
	Boraginaceae	Phacelia calthifolia Brand	annual	UPL
	Boraginaceae	Phacelia campanularia A. Gray ssp. vasiformis G. Gillett	annual	UPL
	Boraginaceae	Phacelia crenulata Torr. var. ambigua (M. E. Jones) J. F. Macbride	annual	UPL
	Boraginaceae	Phacelia distans Benth.	annual	UPL
	Boraginaceae	Phacelia fremontii Torr.	annual	UPL
	Boraginaceae	Phacelia ramosissima Douglas ex Lehm.	perennial herb	FACU
	Boraginaceae	Pholisma arenarium Hook.	perennial herb	UPL
	Boraginaceae	Pholistoma membranaceum (Benth.) Constance	annual	UPL
	Brassicaceae	Caulanthus cooperi (S. Watson) Payson	annual	UPL
	Brassicaceae	Caulanthus lasiophyllus (Hook. & Arn.) Payson	annual	UPL
	Brassicaceae	Descurainia pinnata (Walter) Britton	annual	UPL
	Brassicaceae	Descurainia sophia (L.) Webb ex Prantl	annual	UPL
	Brassicaceae	Draba cuneifolia Torr. & A. Gray	annual	UPL
	Brassicaceae	Hirschfeldia incana (L.) LagrFossat	perennial herb	UPL
	Brassicaceae	Lepidium flavum Torr.	annual	UPL
	Brassicaceae	Lepidium fremontii S. Watson	perennial herb	UPL
	Brassicaceae	Lepidium lasiocarpum Torr. & A. Gray var. lasiocarpum	annual	UPL
	Brassicaceae	Lepidium virginicum L.	annual	FACU
	Brassicaceae	Nasturtium officinale R. Br.	perennial herb	OBL
	Brassicaceae	Sisymbrium irio L.	annual	UPL
	Brassicaceae	Sisymbrium orientale L.	annual	UPL
	Brassicaceae	Stanleya pinnata (Pursh) Britton var. pinnata	perennial herb	UPL
	Brassicaceae	Strigosella africana (L.) Botsch.	annual	UPL
	Brassicaceae	Thelypodium integrifolium (Torr. & A. Gray) Endl. ssp. affine (E. Greene) Al-Shehbaz	perennial herb	FACW
	Brassicaceae	Thysanocarpus curvipes Hook.	annual	UPL
	Brassicaceae	Thysanocarpus laciniatus Nutt. ex Torr. & A. Gray	annual	UPL
	Brassicaceae	Tropidocarpum gracile Hook.	annual	UPL
	Cactaceae	Cylindropuntia acanthocarpa (Engelm. & J.M. Bigelow) F.M. Knuth var. acanthocarpa	perennial herb	UPL
	Cactaceae	Cylindropuntia ramosissima (Engelm.) F.M. Knuth		UPL
	Cactaceae	Echinocactus polycephalus Engelm. & J. Bigelow	succulent succulent	UPL
		Echinocereus polycephanii (Engelm.) Lamaire	succulent	UPL
	Cactaceae			UPL
	Cactaceae	Ferocactus cylindraceus (Engelm.) Orc.	succulent	
	Cactaceae	Mammillaria tetrancistra Engelm.	succulent	UPL
	Cactaceae	Opuntia basilaris Engelm. & J. Bigel. var. basilaris	succulent	UPL
	Campanulaceae	Nemacladus rubescens E. Greene	annual	UPL
	Caryophyllaceae	Spergularia rubra (L.) J. S. Presl & C. Presl	annual	FAC
	Chenopodiaceae	Allenrolfea occidentalis (S. Watson) Kuntze	shrub	FACW

Table 3.—Continued.

*	Family	Species	Life form	Wetland
	Chenopodiaceae	Atriplex canescens (Pursh) Nutt. var. canescens	shrub	UPL
	Chenopodiaceae	Atriplex canescens var. laciniata Parish	shrub	UPL
	Chenopodiaceae	Atriplex canescens var. linearis (S. Watson) Munz	shrub	UPL
	Chenopodiaceae	Atriplex confertifolia (Torr. & Frém.) S. Watson	shrub	UPL
	Chenopodiaceae	Atriplex elegans (Moq.) D. Dietr. var. fasciculata (S. Watson) M. E. Jones	annual	UPL
	Chenopodiaceae	Atriplex hymenelytra (Torr.) S. Watson	shrub	UPL
	Chenopodiaceae	Atriplex lentiformis (Torr.) S. Watson	shrub	FAC
	Chenopodiaceae	Atriplex parryi S. Watson	shrub	FAC
	Chenopodiaceae	Atriplex polycarpa (Torr.) S. Watson	shrub	FACU
	Chenopodiaceae	Atriplex rosea L.	annual	FACU
	Chenopodiaceae	Atriplex serenana A. Nelson	annual	FAC
	Chenopodiaceae	Atriplex torreyi (S. Watson) S. Watson	annual	FACU
+	Chenopodiaceae	Bassia hyssopifolia (Pall.) Kuntze	annual	FACU
	Chenopodiaceae	Chenopodium album L.	annual	FACU
	Chenopodiaceae	Chenopodium atrovirens Rydb.	annual	UPL
	Chenopodiaceae	Chenopodium berlandieri Moq.	annual	UPL
	Chenopodiaceae	Chenopodium californicum (S. Watson) S. Watson	perennial herb	UPL
*	Chenopodiaceae	Chenopodium murale L.	annual	FACU
	Chenopodiaceae	Chenopodium pratericola Rydb.	annual	UPL
	Chenopodiaceae	Chenopodium rubrum L.	annual	FACW
	Chenopodiaceae	Kochia californica S. Watson	perennial herb	FACW
*	Chenopodiaceae	Salsola paulsenii Litv.	annual	UPL
*	Chenopodiaceae	Salsola tragus Nelson	annual	FACW
	Chenopodiaceae	Stutzia covillei (Standl.) E.H. Zacharias	annual	UPL
	Chenopodiaceae	Suaeda nigra (Raf.) J.F. Macbr.	perennial herb	OBL
	Cleomaceae		annual	UPL
		Cleomella obtusifolia Torr. & Frém	shrub	
	Cleomaceae	Peritoma arborea (Nutt.) H.H. Iltis var. angustata (Parish) H.H. Iltis		UPL
	Cleomaceae	Wislizenia refracta Engelm. ssp. palmeri (A. Gray) C. S. Keller	annual	FACU
	Convolvulaceae	Cressa truxillensis Kunth	perennial herb	FACW
	Convolvulaceae	Cuscuta californica Hook. & Arn.	annual	UPL
	Convolvulaceae	Cuscuta campestris Yunck.	annual	UPL
	Convolvulaceae	Cuscuta denticulata Engelm.	annual	UPL
	Convolvulaceae	Cuscuta indecora Choisy	annual	UPL
	Convolvulaceae	Cuscuta subinclusa Durand & Hilg.	annual	UPL
	Crassulaceae	Dudleya arizonica Rose	perennial herb	UPL
	Cucurbitaceae	Cucurbita palmata S. Watson	annual	UPL
	Cupressaceae	Juniperus californica Carrière	shrub	UPL
	Cupressaceae	Juniperus osteosperma (Torr.) Little	shrub	UPL
	Cyperaceae	Carex alma L. H. Bailey	graminoid	OBL
	Cyperaceae	Carex aurea Nutt.	graminoid	OBL
	Cyperaceae	Carex praegracilis W. Boott	graminoid	FACW
	Cyperaceae	Cyperus involucratus Rottb.	graminoid	FACW
	Cyperaceae	Cyperus laevigatus L.	graminoid	FACW
	Cyperaceae	Eleocharis montevidensis Kunth	graminoid	FACW
	Cyperaceae	Eleocharis parishii Britton	graminoid	FACW
	Cyperaceae	Eleocharis rostellata (Torr.) Torr.	graminoid	OBL
	Cyperaceae	Fimbristylis thermalis S. Watson	graminoid	OBL
	Cyperaceae	Isolepis cernua (Vahl) Roem. & Schult.	graminoid	OBL
	Cyperaceae	Schoenoplectus americanus (Pers.) Volkart ex Schinz & R. Keller	graminoid	OBL
	Cyperaceae	Schoenoplectus californicus (C.A. Mey.) Soják	graminoid	OBL
	Cyperaceae	Schoenoplectus pungens (Vahl) Palla var. longispicatus (Britton) S.G. Sm.	graminoid	OBL
+	Elaeagnaceae	Elaeagnus angustifolia L.	tree	FAC
	Ephedraceae	Ephedra californica S. Watson	shrub	UPL
	Ephedraceae	Ephedra funerea Coville & C. Morton	shrub	UPL
	Ephedraceae	Ephedra nevadensis S. Watson	shrub	UPL
	•	•		UPL
	Ephedraceae	Ephedra viridis Coville	shrub	
	Equisetaceae	Equisetum hyemale L. subsp. affine (Engelm.) Calder & Roy L. Taylor	perennial herb	FACW
	Equisetaceae	Equisetum laevigatum A. Braun	perennial herb	FACW
	Euphorbiaceae	Croton californicus Muell. Arg.	perennial herb	UPL
	Euphorbiaceae	Ditaxis neomexicana (Muell. Arg.) A. A. Heller	annual	UPL
	Euphorbiaceae	Euphorbia albomarginata Torr. & A. Gray	perennial herb	UPL
	Euphorbiaceae	Euphorbia micromera Boiss.	annual	UPL

Table 3.—Continued.

*	Family	Species	Life form	Wetland
	Euphorbiaceae	Euphorbia polycarpa Benth.	perennial herb	UPL
	Euphorbiaceae	Euphorbia revoluta Engelm.	annual	UPL
	Euphorbiaceae	Euphorbia setiloba Engelm.	annual	UPL
	Euphorbiaceae	Euphorbia vallis-mortae (Millsp.) J.T. Howell	perennial herb	UPL
	Euphorbiaceae	Euphorbia serpyllifolia Pers.	annual	UPL
	Euphorbiaceae	Stillingia linearifolia S. Watson	perennial herb	UPL
	Fabaceae	Acmispon strigosus (Nutt.) Brouillet	annual	UPL
	Fabaceae	Glycyrrhiza lepidota Pursh	perennial herb	FAC
	Fabaceae	Lupinus concinnus J. G. Agardh	annual	UPL
	Fabaceae	Lupinus sparsiflorus Benth.	annual	UPL
	Fabaceae	Marina parryi (Torr. & A. Gray) Barneby	perennial herb	UPL
*	Fabaceae	Melilotus albus Medikus	annual	FACU
*	Fabaceae	Melilotus indicus (L.) All.	annual	FACU
*	Fabaceae	Parkinsonia aculeata L.	tree	FAC
	Fabaceae	Parkinsonia florida (A. Gray) S. Watson	tree	UPL
	Fabaceae	Parkinsonia microphylla Torr.	tree	UPL
	Fabaceae	Prosopis glandulosa Torr. var. torreyana (L. Benson) M. Johnston	tree	FACU
	Fabaceae	Prosopis gunumosa 1011. var. torreyana (E. Benson) W. Johnston Prosopis pubescens Benth.	tree	FAC
	Fabaceae	Psorothamnus arborescens (A. Gray) Barneby var. minutifolius (Parish) Barneby	shrub	FACU
	Fabaceae	Psorothamnus fremontii (A. Gray) Barneby	shrub	UPL
	Fabaceae	Psorothamnus spinosus (A. Gray) Barneby	tree	UPL
*	Fabaceae	Robinia pseudoacacia L.	tree	FACU
	Fabaceae	Senegalia greggii (A. Gray) Britton & Rose	shrub	FACU
	Fabaceae	Senna armata (S. Watson) H. Irwin & Barneby	shrub	UPL
	Gentianaceae	Zeltnera exaltata (Griseb.) G. Mans.	annual	FACW
*	Geraniaceae	Erodium cicutarium (L.) L'Hér. ex Aiton	annual	UPL
	Grossulariaceae	Ribes velutinum Greene	shrub	UPL
	Iridaceae	Sisyrinchium bellum S. Watson	perennial herb	FACW
	Juncaceae	Juncus balticus Willd. subsp. ater (Rydb.) Snogerup	graminoid	FACW
	Juncaceae	Juncus bufonius L.	annual	FACW
	Juncaceae	Juncus cooperi Engelm.	graminoid	FACW
	Juncaceae	Juncus dubius Engelm.	graminoid	FACW
	Juncaceae	Juncus macrandrus Coville	graminoid	OBL
	Juncaceae	Juncus macrophyllus Coville	graminoid	FACW
	Juncaceae	Juncus mexicanus Willd.	graminoid	FACW
	Juncaceae	Juncus rugulosus Engelm.	graminoid	OBL
	Juncaceae	Juncus saximontanus Nelson	graminoid	FACW
	Juncaceae	Juncus xiphioides E. Meyer	graminoid	OBL
	Juncaginaceae	Triglochin concinna Burtt Davy var. debilis (M.E. Jones) J.T. Howell	perennial herb	OBL
	Juncaginaceae	Triglochin maritima L.	perennial herb	OBL
	Krameriaceae	Krameria bicolor S. Watson	shrub	UPL
	Lamiaceae	Condea emoryi (Torr.) Harley & J.F.B. Pastore	shrub	UPL
*	Lamiaceae		perennial herb	FACU
*		Marrubium vulgare L. Mentha spicata L.	perennial herb	OBL
	Lamiaceae Lamiaceae	Salvia columbariae Benth.	-	UPL
			annual	
	Lamiaceae	Scutellaria mexicana (Torr.) A.J. Paton	shrub	UPL
	Lamiaceae	Stachys albens A. Gray	perennial herb	OBL
	Loasaceae	Eucnide urens (A. Gray) C. Parry	shrub	UPL
	Loasaceae	Mentzelia albicaulis Hook.	annual	UPL
	Loasaceae	Mentzelia involucrata S. Watson	annual	UPL
	Loasaceae	Mentzelia obscura H. J. Thompson & Joyce Roberts	annual	UPL
	Loasaceae	Mentzelia reflexa Coville	annual	UPL
	Lythraceae	Lythrum californicum Torr. & A. Gray	perennial herb	OBL
	Malvaceae	Eremalche rotundifolia (A. Gray) Greene	annual	UPL
	Malvaceae	Fremontodendron californicum (Torr.) Coville	shrub	UPL
	Malvaceae	Malva parviflora L.	annual	UPL
	Malvaceae	Sphaeralcea ambigua A. Gray var. ambigua	perennial herb	UPL
	Molluginaceae	Mollugo cerviana (L.) Ser.	annual	FAC
	Montiaceae	Calyptridium monandrum Nutt. in Torr. & A. Gray	annual	UPL
	Montiaceae	Claytonia perfoliata D. Donn ex Willd.	annual	FAC
*	Moraceae	Morus nigra L.	tree	UPL
		Nelumbo lutea Pers.	perennial herb	OBL

Table 3.—Continued.

Family	Species	Life form	Wetlan
Nyctaginaceae	Boerhavia triquetra S. Wats.	annual	UPL
Nyctaginaceae	Boerhavia wrightii A. Gray	annual	UPL
Nyctaginaceae	Mirabilis albida (Walter) Heimerl	perennial herb	UPL
Nyctaginaceae	Mirabilis laevis (Benth.) Curran	perennial herb	UPL
Oleaceae	Forestiera pubescens Nutt.	shrub	FACU
Oleaceae	Fraxinus dipetala Hook. & Arn.	tree	UPL
Oleaceae	Fraxinus velutina Torr.	tree	FAC
Onagraceae	Camissonia kernensis (Munz) P. H. Raven ssp. kernensis	annual	UPL
Onagraceae	Camissonia strigulosa (Fisch. & C. A. Mey.) P. H. Raven	annual	UPL
Onagraceae	Chylismia brevipes (A. Gray) Small	annual	UPL
Onagraceae	Chylismia cardiophylla (Torr.) Small	annual	UPL
Onagraceae	Chylismia claviformis (Torr. & Frém.) A. Heller	annual	UPL
Onagraceae	Epilobium canum (Greene) P. H. Raven	perennial herb	UPL
Onagraceae	Epilobium ciliatum Raf. subsp. ciliatum	perennial herb	FACW
Onagraceae	Eremothera boothii (Douglas) W.L. Wagner & Hoch ssp. desertorum (Munz) W.L. Wagner & Hoch	annual	UPL
Onagraceae	Eremothera chamaenerioides (A. Gray) W.L. Wagner & Hoch	annual	UPL
Onagraceae	Eremothera refracta (S. Watson) W.L. Wagner & Hoch	annual	UPL
Onagraceae	Eulobus californicus Torr. & A. Gray	annual	UPL
Onagraceae	Gayophytum decipiens Harlan Lewis & J. Szweykowski	annual	UPL
Onagraceae	Oenothera elata Kunth ssp. hookeri (Torr. & A. Gray) W. Dietr. & W. L. Wagner	perennial herb	FACW
Orchidaceae	Epipactis gigantea Dougles ex Hook.	perennial herb	OBL
Orobanchaceae		perennial herb	UPL
	,		UPL
Orobanchaceae	, ,	perennial herb	
Orobanchaceae	, ,	perennial herb	UPL
Orobanchaceae	, , , , , , , , , , , , , , , , , , , ,	annual	OBL
Orobanchaceae	17 1	annual	FACW
Papaveraceae	Argemone munita Durand & Hilg.	perennial herb	UPL
Papaveraceae	Eschscholzia minutiflora S. Watson	annual	UPL
Phrymaceae	Diplacus bigelovii (A. Gray) G.L. Nesom	annual	UPL
Phrymaceae	Erythranthe guttata (Fisch. ex DC.) G.L. Nesom	annual	OBL
Phrymaceae	Erythranthe parishii (Greene) G.L. Nesom & N.S. Fraga	annual	UPL
Pinaceae	Pinus monophylla Torr. & Frém	tree	UPL
Plantaginaceae	Antirrhinum filipes A. Gray	annual	UPL
Plantaginaceae	Keckiella antirrhinoides (Benth.) Straw var. microphylla (A. Gray) N. Holmgren	shrub	UPL
Plantaginaceae	Penstemon incertus Brandegee	shrub	UPL
Plantaginaceae	Penstemon palmeri A. Gray	perennial herb	UPL
Plantaginaceae	Plantago lanceolata L.	perennial herb	FAC
Plantaginaceae	Plantago major L.	perennial herb	FAC
Plantaginaceae	Plantago ovata Forssk. var. fastigiata (Morris) S.C. Meyers & A. Liston	annual	FACU
Plantaginaceae	Veronica anagallis-aquatica L.	perennial herb	OBL
Platanaceae	Platanus racemosa Nutt.	tree	FAC
Poaceae	Andropogon glomeratus (Walt.) Britton, Sterns, & Pogg. var. scabriglumis C. S. Campbell	graminoid	FACW
Poaceae	Aristida adscensionis L.	annual	UPL
Poaceae	Aristida purpurea Nutt.	graminoid	UPL
Poaceae	Arundo donax L.	graminoid	FACW
Poaceae	Bothriochloa barbinodis (Lagasca) Herter	graminoid	UPL
Poaceae	Bouteloua aristidoides (Kunth.) Griseb.	annual	UPL
	Bouteloua aristaotaes (Kultiti.) Griseo. Bouteloua barbata Lagasca		UPL
Poaceae	<u>c</u>	annual	
Poaceae	Bromus arizonicus (Shear) Stebbins	annual	UPL
Poaceae	Bromus berteroanus Colla	annual	UPL
Poaceae	Bromus catharticus Vahl	graminoid	UPL
Poaceae	Bromus diandrus Roth	annual	UPL
Poaceae	Bromus rubens L.	annual	UPL
Poaceae	Bromus tectorum L.	annual	UPL
Poaceae	Cynodon dactylon (L.) Pers.	graminoid	FACU
Poaceae	Dasyochloa pulchella (Kunth) Willd. ex Rydberg	perennial herb	UPL
Poaceae	Distichlis spicata (L.) Greene	graminoid	FAC
Poaceae	Elymus × gouldii J.P. Sm. & Columbus	graminoid	UPL
Poaceae	Elymus cinereus Scribn. & Merr.	graminoid	FAC
Poaceae	Elymus elymoides (Raf.) Swezey	graminoid	FACU
Poaceae	Elymus triticoides Buckley	graminoid	FAC
	,	0	

Table 3.—Continued.

*	Family	Species	Life form	Wetland
*	Poaceae	Festuca bromoides L.	annual	FACU
	Poaceae	Hilaria rigida (Thurb.) Scribn.	graminoid	UPL
*	Poaceae	Hordeum murinum L. subsp. glaucum (Steud.) Tzvelev	annual	FAC
*	Poaceae	Hordeum murinum subsp. leporinum (Link) Arcang.	annual	FAC
	Poaceae	Melica frutescens Scribn.	graminoid	UPL
	Poaceae	Melica imperfecta Trin.	graminoid	UPL
	Poaceae	Muhlenbergia asperifolia (Nees & Meyen) Parodi	graminoid	FACW
	Poaceae	Muhlenbergia rigens (Benth.) Hitchc.	graminoid	FAC
	Poaceae	Phragmites australis (Cav.) Steud.	graminoid	FACW
	Poaceae	Poa secunda J. Presl	graminoid	FACU
*	Poaceae	Polypogon interruptus Kunth	graminoid	FACW
*	Poaceae	Polypogon monspeliensis (L.) Desf.	annual	FACW
*	Poaceae	Polypogon viridis (Gouan) Breistr.	graminoid	FACW
*	Poaceae	Schismus arabicus Nees	annual	UPL
*	Poaceae	Schismus barbatus (L.) Thell.	annual	UPL
*		` '		
	Poaceae	Sorghum bicolor (L.) Moench	annual	FACU
	Poaceae	Sporobolus airoides (Torr.) Torr.	graminoid	FAC
	Poaceae	Sporobolus cryptandrus (Torr.) A. Gray	graminoid	FACU
	Poaceae	Stipa hymenoides Roem. & Schult.	graminoid	UPL
	Poaceae	Stipa speciosa Trin. & Rupr.	graminoid	UPL
	Polemoniaceae	Aliciella latifolia (S. Watson) J.M. Porter	annual	UPL
	Polemoniaceae	Eriastrum densifolium (Benth.) H. Mason	perennial herb	UPL
	Polemoniaceae	Eriastrum diffusum (A. Gray) H. Mason	annual	UPL
	Polemoniaceae	Eriastrum eremicum (Jeps.) H. Mason	annual	UPL
	Polemoniaceae	Eriastrum pluriflorum (A. Heller) H. Mason subsp. albifaux S.J. De Groot	annual	UPL
	Polemoniaceae	Eriastrum sparsiflorum (Eastw.) H. Mason	annual	UPL
	Polemoniaceae	Gilia brecciarum M. E. Jones subsp. neglecta A. D. Grant & V. Grant	annual	UPL
	Polemoniaceae	Gilia cana (M.E. Jones) A. Heller subsp. speciformis A.D. Grant & V.E. Grant	annual	UPL
	Polemoniaceae	Gilia cana subsp. triceps (Brand) A. D. Grant & V. Grant	annual	UPL
	Polemoniaceae	Gilia ochroleuca M. E. Jones subsp. ochroleuca	annual	UPL
	Polemoniaceae	Gilia stellata A. A. Heller	annual	UPL
	Polemoniaceae	Gilia transmontana (H. Mason & A. D. Grant) A. D. Grant & V. Grant	annual	UPL
	Polemoniaceae	Ipomopsis polycladon (Tor.) V. Grant	annual	UPL
	Polemoniaceae	Leptosiphon chrysanthus J.M. Porter & R. Patt.	annual	UPL
	Polemoniaceae	Linanthus demissus (A. Gray) Greene	annual	UPL
	Polemoniaceae	Linanthus jonesii (A. Gray) E. Greene	annual	UPL
	Polygonaceae	Chorizanthe brevicornu Torr.	annual	UPL
	Polygonaceae	Chorizanthe staticoides Benth.	annual	UPL
	70			UPL
	Polygonaceae	Eriogonum brachypodum Torr. & A. Gray	annual	
	Polygonaceae	Eriogonum contiguum (Rev.) Rev.	annual	UPL
	Polygonaceae	Eriogonum davidsonii Greene	annual	UPL
	Polygonaceae	Eriogonum deflexum Torr.	annual	UPL
	Polygonaceae	Eriogonum elongatum Benth.	perennial herb	UPL
	Polygonaceae	Eriogonum fasciculatum Benth. var. polifolium (Benth. in A. DC.) Torr. & A. Gray	shrub	UPL
	Polygonaceae	Eriogonum inflatum Torr. & Frém.	annual	UPL
	Polygonaceae	Eriogonum maculatum A. A. Heller	annual	UPL
	Polygonaceae	Eriogonum nidularium Coville	annual	UPL
	Polygonaceae	Eriogonum plumatella Durand & Hilg.	shrub	UPL
	Polygonaceae	Eriogonum pusillum Torr. & A. Gray	annual	UPL
	Polygonaceae	Eriogonum rixfordii S. Stokes	annual	UPL
	Polygonaceae	Eriogonum thomasii Torr.	annual	UPL
	Polygonaceae	Oxytheca perfoliata Torr. & A. Gray	annual	UPL
*	Polygonaceae	Polygonum argyrocoleon Kunze	annual	FAC
*	Polygonaceae	Polygonum aviculare L.	annual	FAC
*	Polygonaceae	Polygonum ramosissimum Michaux	annual	FAC
	Polygonaceae	Rumex hymenosepalus Torr.	perennial herb	UPL
	7.0	Rumex salicifolius Weinm.	perennial herb	FACW
	Polygonaceae		•	
	Portulacaceae	Portulaca oleracea L.	annual	FAC
	Pteridaceae	Adiantum capillus-veneris L.	perennial herb	FACW
	Pteridaceae	Myriopteris parryi (D. C. Eaton) Grusz & Windham	perennial herb	UPL
	Ranunculaceae	Clematis ligusticifolia Nutt.	perennial herb	FAC
	Ranunculaceae	Ranunculus cymbalaria Pursh	perennial herb	OBL

Table 3.—Continued.

*	Family	Species	Life form	Wetland
	Resedaceae	Oligomeris linifolia (M. Vahl) J. F. Macbr.	annual	UPL
	Rhamnaceae	Ziziphus obtusifolia (Hook. ex Torr. & A. Gray) A. Gray	shrub	UPL
	Rosaceae	Coleogyne ramosissima Torr.	shrub	UPL
	Rosaceae	Prunus fasciculata A. Gray	shrub	UPL
	Rosaceae	Purshia tridentata (Pursh) DC. var. glandulosa (Curran) M. E. Jones	shrub	UPL
	Rosaceae	Rosa californica Cham. & Schlecht.	shrub	FAC
	Rosaceae	Rosa woodsii Lindl.	shrub	FACU
	Rubiaceae	Galium angustifolium Nutt. var. angustifolium	perennial herb	UPL
	Rubiaceae	Galium angustifolium subsp. gracillimum Dempster & Stebbins	perennial herb	UPL
*	Rubiaceae	Galium aparine L.	annual	FACU
	Rubiaceae	Galium stellatum Kellogg	shrub	UPL
	Ruscaceae	Nolina bigelovii (Torr.) S. Watson	perennial herb	UPL
	Salicaceae	Populus fremontii S. Watson	tree	FAC
	Salicaceae	Salix exigua Nutt.	shrub	FACW
	Salicaceae	Salix gooddingii C. Ball	tree	FACW
	Salicaceae	Salix laevigata Bebb	tree	FACW
	Salicaceae	Salix lasiandra Benth.	tree	FACW
	Salicaceae	Salix lasiolepis Benth.	shrub	FACW
	Saururaceae	Anemopsis californica (Nutt.) Hook. & Arn.	perennial herb	OBL
	Scrophulariaceae	Scrophularia californica Cham. & Schlecht.	perennial herb	FAC
	Selaginellaceae	Selaginella bigelovii Underw.	perennial herb	UPL
*	Simaroubaceae	Ailanthus altissima (Mill.) Swingle	tree	FACU
	Solanaceae	Datura wrightii Regel	perennial herb	UPL
	Solanaceae	Lycium andersonii A. Gray	shrub	UPL
	Solanaceae	Lycium cooperi A. Gray	shrub	UPL
	Solanaceae	Nicotiana attenuata Torr.	annual	FACU
	Solanaceae	Nicotiana attenuata 1011. Nicotiana obtusifolia Martens & Galeotti	perennial herb	FACU
	Solanaceae		annual	UPL
		Physalis crassifolia Benth.		
	Solanaceae	Solanum americanum Mill.	annual	FACU
4	Solanaceae	Solanum douglasii Dunal in DC.	perennial herb	FAC
4	Tamaricaceae	Tamarix aphylla (L.) Karsten	shrub	FAC
4	Tamaricaceae	Tamarix chinensis Lour.	tree	FAC
~	Tamaricaceae	Tamarix ramosissima Ledeb.	tree	OBL
	Themidaceae	Dipterostemon capitatus (Benth.) Rydb.	perennial herb	FACU
	Theophrastaceae	Samolus parviflorus Raf.	perennial herb	OBL
	Typhaceae	Typha domingensis Pers.	perennial herb	OBL
	Typhaceae	Typha latifolia L.	perennial herb	OBL
*	Ulmaceae	Ulmus pumila L.	tree	UPL
	Urticaceae	Parietaria hespera Hinton	annual	FACU
	Urticaceae	Urtica dioica L. subsp. holosericea (Nutt.) Thorne	perennial herb	FAC
	Viscaceae	Phoradendron californicum Nutt.	shrub	UPL
	Viscaceae	Phoradendron juniperinum A. Gray	shrub	UPL
	Viscaceae	Phoradendron leucarpum (Raf.) Reveal & M.C. Johnst. subsp. macrophyllum (Engelm.) J.R. Abbott & R.L. Thomps.	shrub	UPL
	Vitaceae	Vitis girdiana Munson	shrub	FAC
	Zannichelliaceae	Zannichellia palustris L	perennial herb	OBL
	Zygophyllaceae	Larrea tridentata (DC.) Coville	shrub	UPL
*	Zygophyllaceae	Tribulus terrestris L.	annual	UPL

large proportion of sites, with nearly 50% of the springs having fewer than 20 taxa present (Table 1). Dissimilarity between springs may also be influenced by the wide dispersion of sampling locations across a broad geographic region, and the relatively high proportion of upland taxa. Upland plant taxa were primarily composed of annual herbs, which are ephemeral by nature, and their occurrence may be more influenced by local conditions (e.g., precipitation and temperature) than wetland taxa.

The most frequently encountered taxa were wetland and nonnative taxa; these are groups that are known to have high dispersal capacity (Soomers et al. 2013; Schöpke et al. 2019).

Wetland plant taxa are frequently dispersed by wind and water, and wind dispersal has been shown to be an effective means for relatively long-distance dispersal (Soomers et al. 2013). Wind-dispersed taxa (e.g., *Populus fremontii*, *Salix* sp., and *Typha* sp.) may be especially important contributors to community assembly following significant disturbance (e.g., fire, grazing, or other habitat modification) because these fragmented habitats are not hydrologically connected by surface water (Soomers et al. 2013). Nonnative taxa are frequently readily dispersed and easily established (McKinney and La Sorte 2007). The most common nonnative species we documented were annual grasses that are known for their wide dispersal capacity and potential to invade

Figure 4.—Selected rare plants documented as a part of this study. (A) Chloropyron tecopense (Orobanchaceae). (B) Enceliopsis covillei (Asteraceae). (C) Fimbristylis thermalis (Cyperaceae). (D) Juncus cooperi (Juncaceae).

and dominate habitats (Curtis and Bradley 2015; Brooks et al. 2016).

Taxa of Conservation Concern

Eight taxa of conservation concern were documented within the study area; three of these are wetland plant taxa. There are at least 23 plant taxa of conservation concern known to occur in wetland habitats in the California desert (CNPS 2022). The majority of these were not documented as a part of this study because they may be associated with spring outflow habitats or shallow groundwater (e.g., alkali wetland, marshes, and meadows), and may not be located at spring sources themselves. Rare plant taxa in California also tend to have highly limited and specific distributions (Thorne et al. 2009). Systematic surveys are needed to determine the status of rare plant taxa associated with desert springs in California because rare plants and their habitat

Table 4.—List of plant taxa of conservation concern, their associated conservation ranks (CNPS 2022), and the number of springs in which they were documented.

Family	Taxon	CNPS Rare Plant Rank ^a	State Rank ^b	Global Rank	# of springs
Orobanchaceae	Chloropyron tecopense	1B.2	S1	G2	1
Polygonaceae	Eriogonum contiguum	2B.3	S2	G3	1
Euphorbiaceae	Euphorbia revoluta	4.3	S4	G5	1
Euphorbiaceae	Euphorbia vallis-mortae	4.2	S3	G3	1
Cyperaceae	Fimbristylis thermalis	2B.2	S1S2	G4	1
Juncaceae	Juncus cooperi	4.3	S3	G4	3
Asteraceae	Enceliopsis covillei	1B.2	S2	G2	1

^a California Native Plant Society (CNPS) Rare Plant Rank:

are highly impacted by the same suite of disturbances that affect desert springs including groundwater pumping, habitat conversion, invasive species, cattle grazing, and feral animals (Fraga et al. 2021; Parker et al. 2021).

Chloropyron tecopense (Tecopa bird's beak) is presumed extirpated at Borehole Spring. Since 2008, discharge at Borehole Spring appears to have slowly decreased, although recreational use of the spring and other human activities have increased substantially during that time frame resulting in channel modifications and vehicle trespass (Partner Engineering and Science, Inc. 2020). This demonstrates the vulnerability of rare plant taxa to local extinction when their habitats are subject to hydrological change and other disturbance.

Species Persisting from Cultivation

We documented nine species persisting from cultivation. These are primarily large shrubs or trees that are known to occur in wetland environments. These taxa can have a disproportionate influence on spring habitats (Sala et al. 1996; Fleishman et al. 2003; Neale et al. 2011). For instance, Tamarix can increase water loss from wetland environments due to high rates of evapotranspiration from their high leaf surface area (Sala et al. 1996). Similar mechanisms could be occurring in large trees and shrubs planted at sites that have large water demands. Further, large, woody, nonnative species have a greater community composition effect because they can displace native species and modify the structure and composition of the associated flora via competition for resources such as water, space, and light (Fleishman et al. 2003). However, wildlife (e.g., native birds and mammals) may also utilize these large trees and shrubs persisting from cultivation for shelter, shade, and nesting sites, complicating recommended management actions such as nonnative species removal.

Evidence of Floristic Change

Herbarium specimen records provide valuable baseline data that can be used to evaluate floristic change at sites, especially relating to changing hydrology and water availability at desert springs. We detected floristic change at Mesquite Spring, which currently occupies a relatively small footprint (0.142 ha) and no longer has surface water present (Table 1). Four perennial native wetland taxa no longer occur at the site and are presumed extirpated due to changes in hydrological conditions. Historical records indicate that water flowed at the site and that perhaps wild grapes (*Vitis* sp.) and roses (*Rosa* sp.) once grew there (Parker et al. 2021). Our study documented the loss of four wetland taxa. The floristic data provided here serve as another temporal point to evaluate change in plant species composition through time, which will become increasingly important as the climate is expected to become hotter and drier.

Floristic Diversity as a Metric for Conservation Value

A botanical assessment of the 48 springs in this study is a first step toward evaluating their relative importance for biodiversity conservation in a changing climate. Species richness is frequently used as a metric for assessing conservation value and priorities (Fleishman et al. 2006). However, beyond species richness, a more complete evaluation of the site-level floristic diversity can provide additional criteria to evaluate conservation value. This may include the proportion of native versus nonnative taxa, diversity of life forms that influence structure and function of ecosystems, species persistence and longevity, and the proportion of taxa that are rare and sensitive to land use change.

The results from this floristic inventory have several important implications for assessment of the conservation value of desert springs, and for land management and restoration activities. First, these ecosystems collectively support a large proportion of plant diversity in the California desert. They are a valuable resource for the conservation of landscape-scale plant diversity because they serve as reservoirs and refugia. Second, rare plant taxa are vulnerable to local extirpation, especially due to hydrological change. Third, the high beta diversity and dissimilarity between spring sites indicates that each spring represents a unique assemblage of plant species. Thus,

¹B.2: rare, threatened, or endangered in California or elsewhere; moderately threatened.

²B.2: rare, threatened, or endangered in California but more elsewhere; moderately threatened.

²B.3: rare, threatened, or endangered in California but more elsewhere; not very threatened.

^{4.2:} limited distribution watch list; moderately threatened.

^{4.3:} limited distribution watch list; not very threatened.

^b California State Rank:

S1: critically imperiled because of extreme rarity.

S2: imperiled due to restricted range.

S1S2: rank is between S1 and S2.

S3: vulnerable due to restricted range.

S4: apparently secure; uncommon but not rare.

restoration and management activities at California desert springs likely need to be highly individualized and site specific. Finally, to maximize the potential for desert springs to serve as refugia under changing climate conditions, inventory and monitoring are essential to recognize warning signs, including changing species composition and local extirpation of wetland-dependent species. Protection from non-climate threats such as water diversion and groundwater pumping, disturbance from feral animals, grazing, and habitat conversion are key to support long-term conservation of these life-sustaining ecosystems.

ACKNOWLEDGMENTS

We thank Duncan Bell, Erin Berkowitz, Wendy Boes, Sarah De Groot, Joy England, Carlos Garcia, Joselyn Gonzalez, LeRoy Gross, Nina House, Maria Jesus, Tiffany Larrabee, My-Lan Le, Anthony Perez, Mariana Rodriguez, Kim Schaefer, Kristy Snyder, Alejandra Soto, Byron Valdez, Rachel Wing, and Liz Womack for their assistance with field work. We thank Christina Lund and Chris Otahal at the Bureau of Land Management for assisting with permits. Patrick Donnelly provided comments on an early draft of this manuscript. This work was funded by The Nature Conservancy and California Botanic Garden.

Naomi Fraga is Director of Conservation Programs at California Botanic Garden and Research Assistant Professor at Claremont Graduate University in Claremont, California. She received her Ph.D. in Botany from Claremont Graduate University, and she also holds a M.S. in Botany from Claremont Graduate University and a B.S. in Botany and Biology from California Polytechnic University, Pomona. Her research interests include plant geography, conservation biology, rare plants, and taxonomy of monkeyflowers (Phrymaceae). She has been involved in floristics research since 2001.

Brian Cohen is a Spatial Data Scientist for The Nature Conservancy's California Program. During his 17 years at the Conservancy, Brian has interpreted data and developed visual tools to help solve California's most pressing environmental challenges including the impact of development of renewable energy in the Mojave/Sonoran Desert, the potential impact of sea level rise along the coast of California, mountain lion movement analysis in Southern California, and large-scale species recovery efforts on California islands.

Andy Zdon is a hydrogeologist and Technical Director for Roux with more than 33 years of hydrogeological experience in a variety of hydrogeology-related projects. He is a California Professional Geologist, Certified Hydrogeologist and Certified Engineering Geologist, Arizona Professional Geologist, and Utah Professional Geologist.

Maura Palacios Mejia is a professor in the Biology department at Mt. San Antonio College. She received her Ph.D. in Wildlife & Fisheries Sciences from Texas A&M University, M.S. in Biology with an emphasis in Marine Biology from California State University, Los Angeles, and a B.S. in Marine Biology & Zoology from California State University, Long Beach. Her research interests use molecular methods like environmental DNA to assess ecological communities to inform or evaluate conservation and

restoration management practices. She also shares a strong passion for broadening access to sustainable organic gardening, particularly in underrepresented communities.

Sophie Parker is a Lead Scientist for the Climate Program in the California chapter of The Nature Conservancy. She has conducted research on a variety of ecology and conservation science topics over the past two decades, including soil and ecosystem ecology, renewable energy siting, ecology of desert springs, and urban biodiversity and nature-based solutions. She holds a B.A. in Biological Sciences from Wellesley College and a Ph.D. in Ecology, Evolution, and Marine Biology from the University of California, Santa Barbara.

LITERATURE CITED

- André, J.M. 2014. Floristic diversity and discovery in the California Desert. Fremontia 42:3–8.
- Andy Zdon and Associates. 2016. Mojave Desert springs and waterholes: Results of the 2015–2016 Mojave Desert spring survey. Report prepared for Transition Habitat Conservancy, Bureau of Land Management, and The Nature Conservancy.
- Baldwin, B.G., D. Goldman, D.J. Keil, R. Patterson, and T.J. Rosatti, eds. 2012. The Jepson Manual: Vascular Plants of California. University of California Press, Berkeley, CA.
- Bogan, M.T., N. Noriega-Felix, S.L. Vidal-Aguilar, L.T. Findley, D.A. Lytle, O.G. Gutiérrez-Ruacho, J.A. Alvarado-Castro, and A. Varela-Romero. 2014. Biogeography and conservation of aquatic fauna in spring-fed tropical canyons of the southern Sonoran Desert, Mexico. Biodiversity and Conservation 23:2705–2748.
- Brooks, M.L., C.S. Brown, J.C. Chambers, C.M. D'Antonio, J.E. Keeley, and J. Belnap. 2016. Exotic annual *Bromus* invasions: Comparisons among species and ecoregions in the western United States. Pp. 11–60 *in* M. Germino, J. Chambers, and C. Brown, eds., Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US. Springer Series on Environmental Management. Springer, Cham, Switzerland.
- Calflora. 2022. Information on California plants for education, research and conservation. The Calflora Database, Berkeley, CA. Accessed 2022 from https://www.calflora.org/.
- Cartwright, J.M, K.A. Dwire, Z. Freed, S.J. Hammer, B. McLaughlin, L.W. Misztal, E.R. Schenk, J.R. Spence, A.E. Springer, and L.E. Stevens. 2020. Oases of the future? Springs as potential hydrologic refugia in drying climates. Frontiers in Ecology and the Environment 18:245–253.
- [CCH2] Consortium of California Herbaria. 2019. Specimen data. Accessed 2019 from https://www.cch2.org/portal/index.php.
- [CNDDB] California Natural Diversity Database. 2018. RareFind 5. Version 5.2.14. California Department of Fish and Wildlife. Accessed 2018 from https://map.dfg.ca.gov/rarefind/view/RareFind.aspx.
- [CNPS] California Native Plant Society. 2022. Inventory of rare and endangered plants of California (online edition, v9-01 1.0). Rare Plant Program. Accessed 2022 from http://www.rareplants.cnps.org.
- Curtis, C.A., and B.A. Bradley. 2015. Climate change may alter both establishment and high abundance of red brome (*Bromus rubens*) and African mustard (*Brassica tournefortii*) in the semiarid southwest United States. Invasive Plant Science and Management 8:341–352.
- Davis, J.A., A. Kerezsy, and S. Nicol. 2017. Springs: Conserving perennial water is critical in arid landscapes. Biological Conservation 211:30–35.
- de Grenade, R. 2013. Date palm as a keystone species in Baja California peninsula, Mexico oases. Journal of Arid Environments 94:59–67.

- Fleishman, E., N. McDonal, R. MacNally, D.D. Murphy, J. Walters, and T. Floyd. 2003. Effects of floristics, physiognomy and non-native vegetation on riparian bird communities in a Mojave Desert watershed. Journal of Animal Ecology 72:484–490.
- Fleishman, E., R. Noss, and B. Noon. 2006. Utility and limitations of species richness metrics for conservation planning. Ecological Indicators 6:543–553.
- [FNA] Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico [online]. 22+ vols. New York, NY and Oxford, UK. Accessed 2021 from http://beta.floranorthamerica.org.
- Fraga, N.S., A.L. Miller, S.J. De Groot, C. Lee, C.L. Lund, and K. Moore-O'Leary. 2021. Status of the Amargosa niterwort (Amaranthaceae) in California and Nevada. California Fish and Wildlife Journal, CESA Special Issue: 78–95.
- Glenn, E.P., L. Mexicano, J. Garcia-Hernandez, P.L. Nagler, M.M. Gomez-Sapiens, D. Tang, M.A. Lomeli, J. Ramirez-Hernandez, and F. Zamora-Arroyo. 2013. Evapotranspiration and water balance of an anthropogenic coastal desert wetland: Responses to fire, inflows and salinities. Ecological Engineering 59:176–184.
- Jepson Flora Project, eds. 2022. Jepson eFlora. Accessed 6 Jan 2022 from https://ucjeps.berkeley.edu/eflora/.
- McKinney, M.L., and F.A. La Sorte. 2007. Invasiveness and homogenization: Synergism of wide dispersal and high local abundance. Global Ecology and Biogeography 16:394–400.
- McLaughlin, B.C., D.D. Ackerly, P.Z. Klos, J. Natali, T.E. Dawson, and S.E. Thompson. 2017. Hydrologic refugia, plants, and climate change. Global Change Biology 23:2941–2961.
- Meixner, T., A.H. Manning, D.A. Stonestrom, D.M. Allen, H. Ajami, K.W. Blasch, A.E. Brookfield, C.L. Castro, J.F. Clark, D.J. Gochis, et al. 2016. Implications of projected climate change for groundwater recharge in the western United States. Journal of Hydrology 534:124–138.
- Neale, C.M.U., H. Geli, S. Taghvaeian, A. Masih, R.T. Pack, R.D. Simms, M. Baker, J.A. Milliken, S. O'Meara, and A.J. Witherall. 2011. Estimating evapotranspiration of riparian vegetation using high resolution multispectral, thermal infrared and lidar data. Proceedings of SPIE 8174, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, C.M.U. Neale and A. Maltese, eds. Prague, Czech Republic.
- Omernik, J.M. 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77:118–125.
- Palacios Mejia, M., E. Curd, K. Edalati, M.A. Renshaw, R. Dunn, D.
 Potter, N. Fraga, J. Moore, J. Saiz, R. Wayne, and S.S. Parker. 2021.
 The utility of environmental DNA from sediment and water samples for recovery of observed plant and animal species from four Mojave Desert springs. Environmental DNA 3:214–230.
- Parker, S.S., A. Zdon, W.T. Christian, B.S. Cohen, M. Palacios Mejia, N.S. Fraga, E.E. Curd, K. Edalati, and M.A. Renshaw. 2021. Conservation of Mojave Desert springs and associated biota: Status, threats, and policy opportunities. Biodiversity and Conservation 30:311–327.
- Partner Engineering and Science, Inc. 2020. 2020 Amargosa state of the basin report, Inyo and San Bernardino counties, California and Nye and Clark counties, Nevada.
- Patten, D.T., L. Rouse, and J.C. Stromberg. 2008. Isolated spring wetlands in the Great Basin and Mojave deserts, USA: Potential response of vegetation to groundwater withdrawal. Environmental Management 41:398–413.
- Sada, D.W., E. Fleishman, and D.D. Murphy. 2005. Associations among spring-dependent aquatic assemblages and environmental and land use gradients in a Mojave Desert mountain range: Spring-dependent assemblages and disturbance gradients. Diversity and Distributions 11:91–99.

- Sala, A., S.D. Smith, and D.A. Devitt. 1996. Water use by *Tamarix ramosissima* and associated phreatophytes in a Mojave Desert floodplain. Ecological Applications 6:888–898.
- Schöpke, B., J. Heinze, M. Pätzig, and T. Heinken. 2019. Do dispersal traits of wetland plant species explain tolerance against isolation effects in naturally fragmented habitats? Plant Ecology 220:801–815.
- SEINet. 2019. SEINet data portal. Accessed 2019 from https://swbiodiversity.org/seinet/.
- Soomers, H., D. Karssenberg, M.B. Soons, P.A. Verweij, J.T.A. Verhoeven, and M.J. Wassen. 2013. Wind and water dispersal of wetland plants across fragmented landscapes. Ecosystems 16:434– 451
- Thorne, J.H., J.H. Viers, J. Price, and D.M. Stoms. 2009. Spatial patterns of endemic plants in California. Natural Areas Journal 29:344–366.
- U.S. Army Corps of Engineers. 2022. National Wetland Plant List. Accessed 2022 from https://wetland-plants.sec.usace.army.mil/nwpl_static/v34/home/home.html.
- Zdon, A., M.L. Davisson, and A.H. Love. 2018. Understanding the source of water for selected springs within Mojave Trails National Monument, California. Environmental Forensics 19:99–111.
- Zdon, A., and A.H. Love. 2020. Groundwater forensics approach for differentiating local and regional springs in arid eastern California, USA. Environmental Forensics 22:302–314.