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Few comprehensive studies exist focusing
on the characterization of nondiatom eukary-
otic algal flora in arid and semiarid deserts of
North America. Arid and semiarid des erts are
separated on the basis of annual precipitation;
arid deserts experience from 60–100 mm to
150–250 mm annual precipitation, while semi-
arid deserts experience from 150–250 mm to
250–500 mm precipitation (Meigs 1953). In
most of the previous studies, algal identifica-
tion was made on the basis of morphological

and life-cycle data. Using these techniques,
Johansen et al. (1993) identified 90 algal taxa,
including 47 chlorophyte and 9 xanthophyte
taxa, in a semiarid sagebrush steppe commu-
nity in the Lower Columbia Basin (WA).
Flechtner et al. (2008) identified 56 algal taxa,
including 16 nondiatom eukaryotic algal taxa,
in samples from San Nicolas Island, the
largest of the Channel Islands off the coast of
California; they described 2 new chlorophyte
species.
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NEWLY REVEALED DIVERSITY OF GREEN MICROALGAE FROM 
WILDERNESS AREAS OF JOSHUA TREE NATIONAL PARK (JTNP)

Valerie R. Flechtner1, Nicole Pietrasiak2, and Louise A. Lewis3

ABSTRACT.—Documentation of the biodiversity of eukaryotic algae from desert systems is sparse. Our objective was
to characterize microalgae from soil samples collected throughout Joshua Tree National Park, California, USA. Morpho-
logical, life-cycle, and DNA sequence data were collected for 100 microalgal isolates distributed over 18 sites in Joshua
Tree National Park. Phylogenetic analysis of the 18S rDNA data separated the green algae into 15 major clades—10 in
the class Chlorophyceae and 5 in the class Trebouxiophyceae—containing 2 or more lineages plus 9 lineages represented
by a single isolate. Five isolates belonging to the class Xanthophyceae and 2 isolates belonging to Eustigmatophyceae
were also identified. Some green algal isolates could be placed with confidence in known genera including Bracteacoccus,
Chlorosarcinopsis, Myrmecia, Neochlorosarcina, Scenedesmus, and Stichococcus, whereas several green isolates could
not be assigned to known genera based on morphological or molecular data. Both morphological and molecular data
were important to identifying this biodiversity. Due to the paucity of informative morphological characters, morphology
alone does not capture the species diversity found at sites. Molecular data are a richer source of characters with which
to identify the algae, but more representative sequences of soil algae are needed in public databases to make identifica-
tion of any new taxa straightforward. Overall, our data suggest that the biodiversity of these hot deserts still is largely
unknown and unexplored.

RESUMEN.—La documentación sobre la biodiversidad de las algas eucariotas de los sistemas de desierto es escasa.
Nuestro objetivo fue caracterizar las microalgas de muestras de suelo colectadas a lo largo del Parque Nacional Joshua
Tree en California (Estados Unidos). Se recopilaron datos sobre la morfología, el ciclo de vida y las secuencias de ADN
de 100 microalgas aisladas de 18 puntos del Parque Nacional Joshua Tree. El análisis filogenético del gen rADN 18S
separó a las algas verdes en 15 clados principales—10 en la clase Chlorophyceae y cinco en la clase Trebouxiophyceae—
que contienen dos o más linajes más nueve linajes representados por un solo aislado. También se identificaron cinco ais-
lados que pertenecen a la clase Xanthophyceae y dos aislados que pertenecen a la clase Eustigmatophyceae. Algunos
aislados de algas verdes pudieron ubicarse con certeza en géneros conocidos, incluyendo a Bracteacoccus, Chlorosar-
cinopsis, Myrmecia, Neochlorosarcina, Scenedesmus y Stichococcus, mientras que varios aislados de algas verdes no
pudieron asignarse a géneros conocidos con base en su información morfológica o molecular. Tanto la información mor-
fológica como la molecular fueron importantes para identificar esta biodiversidad. La morfología por sí sola no captura la
diversidad de las especies que se encontró en los sitios debido a la escasez de características morfológicas informativas.
Los datos moleculares son una fuente más abundante de rasgos con las cuales se pueden identificar a las algas, pero se
necesitan secuencias más representativas de algas terrestres en bases de datos públicas para identificar de manera
inequívoca cualquier nuevo taxón. En general, nuestros datos sugieren que la biodiversidad de estos desiertos de ele-
vadas temperaturas aún permanece mayormente desconocida e inexplorada.
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Particularly in hot deserts, such as the
Mojave and the Colorado Deserts, floristic stud-
ies are sparse. Only a few soil studies, concen-
trated during the 1960s, were conducted in
this region (Cameron 1960, 1964, Durrell 1962,
Shields and Drouet 1962, Hunt and Durrell
1966). Floristic emphasis was placed on cyano -
bacteria or diatoms; only a small number of
green algae were identified. More recently,
Flechtner and Lewis have demonstrated that
considerable eukaryotic algal diversity can
exist in soils from hot, dry deserts in the south -
western United States and in Mexico (Flecht-
ner et al. 1998, Lewis and Flechtner 2002,
Lewis and Lewis 2005) and have described 3
new species of Scenedesmus based on a com-
bination of morphological and DNA sequence
data (Lewis and Flechtner 2004).

Morphological approaches have tradition-
ally been accepted as important tools in defin-
ing the algal flora of a given locale, and some
investigators still rely solely on these tech-
niques (Flechtner et al. 1998, 2008, Škaloud
2009). But light microscopy has limitations.
Many algae need to be examined from cultured
materials in order to observe motile stages.
Some algal species (e.g., Chlorella) are small,
have very simple morphology, and do not pro-
duce alternative life stages such as gametes or
zoospores. Morphological plasticity influenced
by nutritional components or the physical
form of the substrate medium has been docu-
mented for members of the genera Scenedesmus
(Trainor and Egan 1990) and Pleurastrum
(Sluiman and Gärtner 1990), respectively; envi -
ronmental factors can also affect algal morphol -
ogy (Luo et al. 2006). Where plasticity exists,
the placement of an isolate in the correct taxo-
nomic position using morphological traits is
difficult. It is often necessary, therefore, to
supplement morphological data obtained using
light microscopy with ultrastructural charac-
teristics or DNA sequence analysis.

During a study investigating the distribu-
tion and abundance of various types of micro-
biotic soil crusts, Pietrasiak et al. (2011) col-
lected surface soil samples from 75 sites in
undisturbed wilderness areas within Joshua
Tree National Park (JTNP). The availability of
a large sample set made possible a detailed
study of the algal flora present in the soils.
This manuscript focuses primarily on the green
algae identified in a subset of these samples. We
used a combination of DNA sequence analysis

and light microscopy examination of vegeta-
tive and motile phases to investigate the diver-
sity of the green algal flora in 18 sites in JTNP.
Our research goals were (1) to characterize the
new eukaryotic algal isolates using morpho-
logical traits; (2) to incorporate molecular phy-
logenetic analysis to further identify the species
and place the green algal isolates into a larger
known green algal tree of life; and (3) to enrich
our knowledge of the diversity of eukaryotic
soil algae of Joshua Tree National Park.

METHODS

Study Area

Joshua Tree National Park (JTNP) is located
in southern California about 140 miles east of
Los Angeles. The park encompasses almost
800,000 acres (3238 km2). Its southern bound -
ary lies in the Colorado Desert, and its north-
ern boundary lies in the Mojave Desert. It
was declared a national monument in 1936,
and presently, significant portions of the park
are wilderness areas that are protected from
anthropomorphic disturbance. This protection
makes the park an ideal site for the study of
the distribution of microbiotic soil crusts and
their algal components.

Sampling

In 2006, Pietrasiak et al. (2011) conducted
an extensive ecological survey of microbiotic
soil crusts by characterizing 75 sites represent-
ing all wilderness segments of JTNP. Composite
surface soil samples (0–1 cm) were collected
along transects. From this pool of 75 surveyed
sites, we chose 18 sites for an extensive floris-
tic study on free-living (nonlichenized) green
algae that represent the spatial extent of the
park (Fig. 1). Universal Transverse Mercator
coordinates for the 18 study sites appear in
Appendix 1.

Characterization of Eukaryotic Algae

Composite surface soils were plated onto
agar-solidified Z8 and Bold’s Basal Medium
(BBM), and colony-forming units of algae
were isolated (Flechtner et al. 1998). Repre-
sentative colonies selected for further study
were subcultured in either liquid BBM or
agar-solidified BBM plates. Unialgal stock cul-
tures of selected isolates were maintained on
agar-solidified slants. Each isolate was identi-
fied by indicating the site from which it was
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isolated followed by the strain number; thus,
the designation WJT36VFNP5 indicates the
fifth isolate obtained from site 36.

The presence of an extracellular matrix was
determined by suspending plate-grown cul-
tures in India ink. Starch production was
determined by staining with Gram’s iodine.
Zoospore production was often difficult to
achieve. We found the best procedure was to
(1) heavily streak small plates of agar-solidified
BBM and incubate them until confluent growth
had been achieved (2–5 days); (2) make a
heavy suspension of cells in a small volume
(0.5–1.0 mL) of sterile water in a small sterile
glass tube in the late afternoon; (3) wrap the
tubes in aluminum foil and place them in a
beaker that was subsequently wrapped in foil;
(4) incubate the cultures overnight in the dark
at 25 °C; and (5) unwrap and examine the cul-
tures individually after 15–19 h incubation.
Alternatively, for some cultures, zoospore pro-
duction was best in cultures freshly inoculated
onto agar-solidified BBM and incubated on a
15-h light : 9-h dark cycle for 1–3 days. Once
the presence of motile zoospores had been
detected, zoospores were fixed in 3% formalin
by adding 4 μL of a 10% formalin solution to 9
μL of the zoospore suspension for morpholog-
ical characterization. Specimens were exam-

ined using an Olympus BH-2 photomicro-
scope with Nomarski DIC optics and pho-
tographed using an Olympus DP25 camera.
Taxonomic identifications were made using a
standard key (Ettl and Gärtner 1995) or pri-
mary literature.

DNA Sequence Analysis

DNA was extracted using DNEASY or
MOBIO PowerPlant extraction kits following
the manufacturer’s protocol. For most isolates,
the 3� half of the 18S rDNA gene region
(approximately 800 nucleotides) was targeted.
In some cases, nearly complete gene sequences
(over 1700 nucleotides) were obtained. Primers
for PCR amplification followed Lewis (1997).
Double-stranded amplified product was se -
quenced in 20-μL volumes using 18S sequenc -
ing primer with an ABI PRISM system by
reading electrophoresed labeled base calls.
Verification of base call reads was done through
forward- and reverse-strand sequencing (2
copies for each direction of DNA strands), and
a consensus sequence was created using
Sequencher Software (Gene Codes Corp.).
The consensus was compared to the GenBank
public database of sequences using BLAST
(Altschul et al. 1990) to check against contami-
nant sequences and to pinpoint close published
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Fig. 1. Map of Joshua Tree National Park showing the locations of study sites within the park.
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sequences for inclusion in phylogenetic analy-
sis. GenBank accession numbers appear in
Appendix 2.

Individual Trebouxiophyceae and Chloro-
phyceae alignments were prepared manually,
in Text Wrangler, using the rDNA data from
the JTNP isolates and a selection of nearest
NCBI Blast matches. The chlorophycean align-
ment included 155 taxa in total and 1788 char-
acters, and the trebouxiophycean alignment had
62 taxa and 1777 characters. Homologies in
the alignment were informed through an esti-
mated secondary structure (using MARNA—
Siebert and Backofen 2005), and when homol-
ogy could not be unambiguously assessed,
sites were excluded. A total of 85 and 96 char-
acters were excluded from the chlorophycean
and trebouxiophycean analyses, respectively.
Phylogenetic analyses were performed using
maximum likelihood in PAUP (Swofford 2002)
with the GTR + gamma model of substitution.
In addition, Bayesian phylogenetic analyses
were performed to obtain branch posterior
probabilities (MrBayes—Huelsenbeck and
Ronquist 2001, Ronquist and Huelsenbeck
2003) under a GTR + I + gamma model. For
each data set, 2 independent runs were done,
each using 1 cold and 3 heated chains. The
analysis was run for 107 generations, with trees
sampled every 1000 generations. The output
was examined in Tracer v1.4.1 (Rambaut and
Drummond 2003) in order to examine conver-
gence of the runs. The first 200 trees of each
run were discarded as burnin, and the remain-
ing trees were used to produce the 50%
majority-rule consensus tree with branch sup-
port values.

RESULTS AND DISCUSSION

Morphological data was collected for
approximately 300 isolates. From these 300,
ninety-five isolates from the classes Chloro-
phyceae and Trebouxiophyceae and 5 isolates
from the classes Xanthophyceae and Eustig-
matophyceae were selected for DNA sequence
analysis. Separate phylogenetic analyses of the
chlorophycean taxa and trebouxiophycean taxa
were performed, with each of the resulting
phylogenetic trees showing relationships of
the JTNP taxa to one another and to published
18S rDNA sequences. The phylogenetic analy -
ses produced trees containing 15 major JTNP
lineages (those having multiple isolates repre-

sented), including 10 major chlorophyte (Fig. 2)
and 5 major trebouxiophyte (Fig. 3) algae.

Chlorophyceae and Trebouxiophyceae

TAXONOMIC ASSIGNMENT OF CHLOROPHY -
CEAN ISOLATES.—Approximately 75% of the
green algal isolates (n = 69) and 10 of the 15
clades identified on the basis of 18S rDNA
sequence analysis fall into the class Chloro-
phyceae; 3 of the chlorophycean clades (clades
2, 6, and 8) could be reliably assigned to known
genera on the basis of morphological and mo -
lecular data (Figs. 2, 4). JTNP isolates belong-
ing to clade 2 are aligned with certain species
of the genus Chlorosarcinopsis (Fig. 4) and
were commonly seen (Fig. 2). Members of this
clade have a parietal chloroplast with a pyrenoid
surrounded by an entire starch hull, produce
packets of 2–8 cells by dividing vegetatively,
produce naked zoospores, develop carotenoid
pigment in stationary phase cultures, and are
embedded in an extracellular matrix, at least
in young cultures (Fig. 5A–5C). Phylogeneti-
cally, these isolates are most closely related to
the species C. arenicola, C. eremi, and C. vari-
abilis and are part of the A(c) clade of Watan-
abe et al. (2006). Several morphotypes exist
within clade 2, a level of variation that suggests
the presence of several putative new species.
Members of clade 6 belong to the genus Neo -
chlorosarcina clade D(b) of Watanabe et al.
(2006). This genus is similar to the genus
Chlorosarcinopsis in having spherical cells
with a parietal chloroplast and pyrenoid with
an entire starch hull, forming packets through
vegetative cell division, and producing carot -
enoid in stationary phase cultures (Fig. 5D).
The diacritical feature separating the genus
Neochlorosarcina from the genus Chlorosar-
cinopsis is the nature of the zoospore (Watan-
abe 1983). Zoospores of Neochloro sarcina pos-
sess a thin cell wall and round up very slowly
once they stop moving, whereas the zoospores
of Chlorosarcinopsis are naked and round up
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Fig. 2. Phylogenetic relationships among the Joshua Tree
National Park (JTNP) green algae and selected related
published sequences from algae in class Chlorophyceae.
One of 2 maximum likelihood trees is shown (tree score,
–lnL = 13621.42). Ten clades of JTNP algae are repre-
sented as collapsed triangles, with details of each pre-
sented in Fig. 4. Taxon labels indicate previously obtained
sequences from desert isolates by a pound sign (#).
Bayesian posterior probabilities are shown for groupings,
with an asterisk (*) indicating values of 1.0. The scale bar
indicates the expected number of substitutions per site.
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very quickly. Our isolates meet all of the mor-
phological criteria of the genus Neo chloro -
sarcina. DNA sequence analysis shows that 4
isolates group with N. negevensis (Fig. 4), and
the morphological characteristics of these iso-
lates are consistent with the known species.

Members of clade 8 belong to the genus
Bracteacoccus. Cells are usually spherical, con-
tain multiple chloroplasts without pyrenoids,
and produce naked zoospores with 2 flagella
of uneven length (Fig. 5E–5F). Molecular data
shows them aligning with Bracteacoccus (Fig. 4).

48 MONOGRAPHS OF THE WESTERN NORTH AMERICAN NATURALIST [Volume 6

Makinoella tosaensis (AF228691)

WJT71VFNP21

Oocystis heteromucosa (AF228689)

Tetrachlorella alternans (AF228687)

Chlorella sp. (EF159951)

Eremosphaera viridis (AF387154)

Oocystis solitaria (AF228686)

15 (3i, 3s)

Uncultured (EF023670)

Myrmecia incisa (AY762602)

Parietochloris cohaerens (EU878372)

Parietochloris ovoidea (EU878374)

Myrmecia bisecta (Z47209)

WJT24VFNP38

Coccomyxa pringsheimii (AY762603)

Paradoxia multiseta (AY422078)

Coccomyxa sp. (AM981206)

14 (2i, 2s)

13 (5i, 5s)

12 (3i, 3s)

11 (11i, 5s)

Fusochloris perforatum (M62999)

Chlorella sp. (AF516675)#

Trebouxia asymmetrica (Z21553)

Trebouxia impressa (Z21551)

Stichococcus sp. (AY377441)# 

Prasiola crispa (AJ416106)

Stichococcus bacillaris (AB055864)

0.01

*

0.97

0.99

*

*

*

*

*

*

*

*

*

*

*
*

0.64

0.65

0.56

0.69 0.71

0.55

Fig. 3. Phylogenetic relationships among the Joshua Tree National Park (JNTP) green algae and selected related pub-
lished sequences from algae in class Trebouxiophyceae. One of 44 maximum likelihood trees is shown (tree score, –lnL
= 6872.001). Five clades of JTNP algae in this class are represented as collapsed triangles, with details of each pre-
sented in Fig. 4. Taxon labels indicate previously obtained sequences from desert isolates by a pound sign (#). Bayesian
posterior probabilities are shown for groupings, with an asterisk (*) indicating values of 1.0. The scale bar indicates the
expected number of substitutions per site.

Downloaded From: https://bioone.org/journals/Monographs-of-the-Western-North-American-Naturalist on 02 May 2024
Terms of Use: https://bioone.org/terms-of-use



2013] GREEN MICROALGAL DIVERSITY OF JTNP 49

1 2

Spongiochloris spongiosa (U63107)
Protosiphon botryoides (U41177)

Chlorosarcinopsis aggregata (AB218695)
Chlorosarcinopsis minor (AB049415)

Pleurastrum insigne (Z28972)
Chlamydopodium vacuolatum (M63001)

Chlorococcum oleofaciens (U41176)

WJT66VFNP77
WJT43VFNP16
WJT40VFNP8
WJT24VFNP10

WJT66VFNP30A

WJT43VFNP8
WJT66VFNP7

WJT9VFNP1A

*

*
*

0.99

2

5)

Chlorosarcinopsis sp. (AY271673)#

Chlorosarcinopsis sp. (AF516678)#
Chlorosarcinopsis sp. (AF513371)#
Chlorosarcinopsis eremi (AB218706)

Chlorosarcinopsis variabilis (AB218704)

Chlorosarcinopsis arenicola (AB218701)

WJT4VFNP30B
WJT16VFNP5

WJT8VFNP1
WJT24VFNP12
WJT43VFNP28
WJT46VFNP9

WJT71VFNP16

3

4

*

*

04)

3
WJT71VFNP9

WJT71VFNP3

WJT25VFNP1

4 WJT9VFNP7B

WJT36VFNP12

WJT24VFNP4

WJT66VFNP9

*

*

*

5

A

B

WJT9VFNP2B

WJT9VFNP8B

WJT66VFNP31

Volvox carteri (X53904)

WJT4VFNP4
WJT32VFNP3

*

0.99

6 Neochlorosarcina negevensis 

WJT4VFNP17
WJT66VFNP5

WJT54VFNP4

WJT40VFNP11

WJT43VFNP13

WJT66VFNP54

WJT36VFNP8

(AB218715)

*

7 WJT24VFNP16
WJT24VFNP24
WJT36VFNP18

WJT74VFNP6

Actinochloris sp. (AY271674)#

0.98

8 WJT4VFNP35
Bracteacoccus medionucleatus (U63098)

WJT2VFNP14 Br. occidentalis
Bracteacoccus occidentalis (AF516676)#

Bracteacoccus giganteus (U63099)
Bracteacoccus aerius (U63101)

WJT36VFNP6 Br. glacialis
Bracteacoccus xerophilus (AF513379)#

WJT40VFNP9
WJT24VFNP45

WJT4VFNP36B
WJT4VFNP41 Br. occidentalis
WJT8VFNP19 Br. occidentalis
WJT9VFNP16A Br. occidentalis

WJT9VFNP12B Br. pseudominor
WJT71VFNP15 Br. pseudominor

*

0.72

9 WJT43VFNP6
WJT43VFNP18A

WJT43VFNP18D
WJT43VFNP27
WJT66VFNP50A

WJT74VFNP5
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Radiococcus polycoccus
 (AF388378)

0.84

*

*

10 WJT54VFNP1

WJT54VFNP11
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*

11 WJT4VFNP13
WJT8VFNP18

WJT9VFNP19
Micractinium pusillum (AM231740)
Micractinium sp. (FM205864)

Chlorella vulgaris (X13688)
WJT36VFNP9

WJT4VFNP5
Chlorella sp. (FM205862)
WJT66VFNP79
Chlorella sorokiniana (FM205860)
Micractinium reisseri (AB506071)
WJT36VFNP23
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0.97

*
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Fig. 4. Caption and panels 12–15 on page 50.
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These isolates, along with other taxa isolated
from a variety of locales in North America and
Europe, are part of a manu script reevaluating
the genus Bracteacoccus. WJT isolates fall into
1 known species (B. pseudominor) and 3 new
Bracteacoccus species (Fučíková et al. in press).

Unlike algae in clades 2, 6, and 8, clade 7
contains isolates identified on morphological
basis only as belonging to the genus Actino -
chloris. Vegetative cells of these isolates (Fig.
5G) are spherical to more rarely ovoid, large
(30–80 μm in diameter), and multinucleate;
they possess an asteroid chloroplast containing
a pyrenoid with multiple starch grains, have a
cell wall which thickens with age, and produce
autospores and walled zoospores. Isolates
WJT24VFNP24 and WJT74VFNP6 contain

one or more very large inclusions in the cyto-
plasm (Fig. 5H). Molecular analysis shows se -
quence similarities among the isolates. It is
not possible to verify the generic placement of
these isolates identified as Actinochloris be -
cause there are no 18S rDNA sequences for
known species of this genus in the GenBank
public database.

Several JTNP isolates are phylogenetically
allied and share morphological and molecular
similarities to one or more known genera.
Whereas we cannot at this time confidently
place these isolates into a specific genus, the
morphological features of our isolates are con-
sistent with the general characteristics of some
of the known taxa with which they are phylo-
genetically allied.

Clade 1 contains 8 isolates and known
species of the genera Pleurastrum, Chloro -
coccum, Chlamydopodium, Chlorosarcinopsis,
Protosiphon, and Spongiochloris (Fig. 4).
WJT24VFNP10 died before a thorough mor-
phological study could be performed. The
remaining 7 have similar morphological char-
acteristics. Mature vegetative cells are spheri-
cal or, less often, ovoid, typically 8–20 μm in
diameter, and are uninucleate, at least in young
cultures (Fig. 5I). The chloroplast is parietal
with typically one pyrenoid; red or orange pig-
ment is produced as the culture ages (Fig. 5J).
Asexual reproduction occurs through autospores
and, where observed, walled zoospores that are
3–5 μm wide and 5.5–8 μm long (Fig. 5K–5L).
These characteristics are most consistent with
members of the genus Chlorococcum, but
additional molecular and morphological data
are necessary to confirm this placement.

Five isolates that we identified as chlamy-
domonads on the basis of a motile vegetative
phase and production of walled zoospores form
a bipartite phylogenetic lineage (clades 5A and
5B). Genus assignments were problematic.
Within clade 5A, isolates WJT9VFNP2B and
WJT9VFNP8B (Fig. 5O) are morphologically
similar. Cells are ovoid when young and remain
ovoid or, more rarely, become spherical in
older cultures. They are embedded in a gelati-
nous extracellular matrix and have a parietal
chloroplast with one pyrenoid covered with
multiple starch grains. Young cultures are com -
posed primarily of sporangia or flagellated
walled zoospores that are rarely motile; spo-
rangia produce 2 (more rarely 4 or 8) zoo spores.
The morphology of WJT66VFNP31 (Fig. 5M)
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Fig. 4. Details of the phylogenetic relationship within
fifteen “collapsed” clades in Figures 1 and 2, each represent -
ing 2 or more isolates of Joshua Tree National Park (JTNP)
green algae and any related published algal sequences.
Taxon labels indicate previously obtained sequences from
desert isolates by a pound sign (#). Bayesian posterior
probabilities are shown for groupings, with an asterisk (*)
indicating values of 1.0.
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Fig. 5. Representative chlorophyte taxa from clades 1, 2, 5, 6, 7, and 8 (strain numbers are indicated in parentheses).
Panels A–C, clade 2, Chlorosarcinopsis: A, packets formed by vegetative cell division (WJT71VFNP5); B, extracellular
matrix revealed by India ink staining (WJT16VFNP5); C, naked zoospores (WJT71VFNP5). Panel D, clade 6, Neo -
chlorosarcina (WJT66VFNP5). Panels E–F, clade 8, Bracteacoccus: E, stationary phase cells with thickened walls
(WJT4VFNP41); F, vegetative cell with multiple chloroplasts (WJT2VFNP14). Panels G–H, clade 7, Actinochloris:
G, vegetative cells with asteroid chloroplast and pyrenoid covered with starch grains (WJT36VFNP18); H, thick-walled
cell with inclusion (WJT24VFNP24). Panels I–L, clade 1: I, vegetative culture with young cells and mature cells with
thickened cell walls (WJT43VFNP16); J, pigmented cells and persistent cell walls (WJT66VFNP30A); K, several genera-
tions of sporangia (WJT9VFNP1A); L, walled zoospores (WJT43VFNP16). Panels M–N, clade 5a, Heterochlamy-
domonas: M, vegetative cells and sporangia (WJT66VFNP31); N, sporangia and young vegetative cells in extracellular
matrix (WJT9VFNP2B). Panel O, clade 5b, Chlamydomonas, dividing vegetative cells and older pigmented cells
(WJT32VFNP3). Panels A–M and O: scale bar = 10 μm; panel N: scale bar = 5 μm.

Downloaded From: https://bioone.org/journals/Monographs-of-the-Western-North-American-Naturalist on 02 May 2024
Terms of Use: https://bioone.org/terms-of-use



is different from the other 2 isolates in this
clade. While young cells are ovoid, mature
vegetative cells are primarily spherical. The
pyrenoid is large and central with a thick hull;
the chloroplast is often divided into thick
strands or lobes. Walled flagellated zoospores
are also produced, as well as broadly ovoid or
spherical nonflagellated cells that may be
autospores. Molecular analysis also shows that
this isolate has 18S rDNA sequence similari-
ties to Heterochlamydomonas, and the general
morphology of these isolates is consistent with
those of this genus. A diacritical feature that
defines the genus Heterochlamydomonas is
the presence of walled zoospores with flagella
of uneven length. This feature is difficult to
ascertain. To determine whether flagella are
equal or unequal in length, one needs to observe
a flagellated cell with the flagella lying paral-
lel. While we did see flagellated cells, they
were not plentiful, and in no case were we
able to observe parallel flagella. Our isolates
are embedded in an obvious gelatin layer. The
presence of gelatin is mentioned for only one
known species of Heterochlamydomonas (H.
inaequalis) and is designated as being associ-
ated with the wall of individual cells (Cox and
Deason 1969). Our isolates form a clade asso-
ciated with but separate from the 3 known
species and Heterochlamydomonas, and it is
possible that they are new species in the
genus. The correct generic placement of these
isolates requires further study. The 2 isolates
in clade 5B are spherical, are of similar size
(5–16 μm in diameter), contain a chloroplast
with a pyrenoid, and are embedded in an extra -
cellular matrix. Some cells have either a thick-
ened cell wall or an individual gelatin hull
(Fig. 5N). Older cells accumulate carot enoid
pigment. Asexual reproduction is via walled
zoospores that are most often produced in
pairs (more rarely 4 or 8); mating and zygote
production were also observed. The 18S rDNA
sequence data groups these isolates with C.
reinhardtii and Volvox carteri. The isolates are
similar to members of the genus Chlamy-
domonas in having a motile vegetative phase,
walled zoospores, and sexual reproduction; they
may represent palmelloid stages of Chlamy-
domonas species.

The 10 isolates in clade 9 share the morpho -
logical traits of being spherical, large (25–75 μm
in diameter), and multinucleate and having a
textured chloroplast with one to multiple pyre -

noids. Isolates differ in cell diameter and chloro -
plast morphology, including the number of
pyrenoids present (Fig. 6A–6E). Production of
zoospores is rare, and in those isolates where
zoospores have been detected, they are naked
(Fig. 6F). DNA analysis groups the isolates in
clade 9 with Radiococcus polycoccus (Fig. 4),
but the morphology of these isolates is not
consistent with the morphological characteris-
tics of this genus. Our isolates resemble mem-
bers of the genera Spongiochloris and Neo -
chloris that are separated morphologically on
the basis of chloroplast structure and molecu-
larly on the basis of 18S rDNA sequences.
Within the genus Spongiochloris, a variety of
chloroplast morphologies are described. Mo -
lecular data are available for single species of
Spongiochloris (S. spongiosa) and for 2 species
of Neochloris (N. aquatica and N. vigenis), and
shows that S. spongiosa is well separated phy-
logenetically from Neochloris. Additional se -
quence data, including sequences from other
known Spongiochloris species, is necessary to
clarify the generic assignment of the isolates
in this clade.

The 3 WJT isolates forming clade 3 are
morphologically similar. Cells are 5–16 μm in
diameter, ovoid to spherical, have a parietal
chloroplast with a textured surface and one
pyrenoid, are uninucleate, and produce mor-
phologically similar walled zoospores (Fig. 6G).
Molecular analysis shows these 3 taxa group-
ing with members of the genus Chlorogonium
(Fig. 2). The morphology of our isolates is
inconsistent with that of Chlorogonium, which
are spindle-shaped and 5–15 times as long as
they are wide. The morphology of our isolates
does not fit any known chlorophycean genus,
and clade 3 may therefore represent a genus
new to science. Additional research is required
to resolve this issue.

Isolates in clade 4 do not fall into any known
genus based on morphological or molecular
data. Cells are spherical to ovoid, 7–30 μm in
diameter, and uninucleate (Fig. 6H). The chloro -
plast fills the cell; the surface has folds or shal-
low striations and multiple pyrenoids; the hull
of the pyrenoid is thin and irregular (Fig. 6I).
Reproduction occurs via walled zoospores, and
autospores produced 16–64 per sporangium
(Fig. 6J). Although these strains are related on
the basis of 18S rDNA sequence data, morpho -
logical differences among the isolates suggest
they may represent several different species.
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Fig. 6. Representative chlorophyte taxa from clades 3, 4, 9, and 10, as well as chlorophyte taxa that are not closely ma tched
to existing published 18S rDNA sequences (strain numbers are indicated in parentheses). Panels A–F, various chloroplast
structures seen in members of clade 9: A, multiple pyrenoids (WJT2VFNP6); B, pigmented vegetative cells and autospores
(WJT66VFNP78); C, spongy chloroplast surface (WJT2VFNP21); D, striated chloroplast surface (WJT4VFNP18D); E, stri-
ated chloroplast surface with multiple pyrenoids (WJT74VFNP5); F, naked spore (WJT2VFNP6). Panel G, clade 3, vegeta-
tive cells and walled zoospore indicated by arrow (WJT25VFNP1). Panels H–J, clade 4: H, vegetative cells showing thick-
ened outer hull (WJT9VFNP7B); I, vegetative cells with multiple pyrenoids (WJ24VFNP4); J, sporangium with zoospores
(WJT36VFNP12). Panel K, clade 12, vegetative cells and autospores (WJT54VFNP11). Panels L–R, taxa which do not fall
into clades: L, Scenedesmus sp. (WJT2VFNP26); M, Tetracystis sp. showing mature vegetative cells and autospores
(WJT46VFNP16); N, Tetracystis aeria showing vegetative cells and sporangia (WJT43VFNP31A); O, unknown chloro-
phyte showing mature vegetative cells and sporangium with 4 daughter cells (WJY43VFNP1); P, unknown chlorophyte
showing vegetative cell division (WJT43VFNP26); Q, unknown chlorophyte showing pyrenoid with multiple large starch
grains (WJT24VFNP48); R, unknown chlorophyte showing cells with thick hulls embedded in gelatin (WJT73VFNP2).
Panels A–F, H, and J–R: scale bar = 10 μm; panels G and I: scale bar = 5 μm.
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The isolates in clade 10 are mostly solitary,
spherical with a thin cell wall, and 4–16 μm in
diameter (Fig. 6K). Young cells are uninucle-
ate; older cells appear to be multinucleate.
The chloroplast is parietal, often lobed and
with finger-like projections or thick strands,
and lacks a pyrenoid. Sporangia producing 2–8
autospores that can be retained in the mother
cell wall are seen in all 3 strains; naked zoo -
spores were observed in WJT74VFNP4. DNA
sequence data shows these 3 isolates to be
most closely related to the genera Pediastrum
and Hydro dictyon (Fig. 2). These genera, which
are composed of closed coenobia forming a
sac-like network of very large (up to 15 mm in
length) cells or a plate of cells, occur in fresh-
water habitats. The JTNP isolates bear no
morphological similarity to these genera.

Several isolates do not show 18S rDNA se -
quence similarity to any of the other WJT iso-
lates examined in this study. Of these, 2 can be
assigned to known genera; for others, there is
not clear generic affiliation. WJT2VFNP26
(Fig. 6L) aligns with the genus Scenedesmus
based on both morphological and molecular
data. Several taxa in this genus (MX7VF7,
YPGChar, LG2VF16, and SEV3VF49) are newly
described taxa isolated from desert soils in
North America. WJT2VFNP26 is similar to S.
bajacalifornicus and S. deserticola in morphol-
ogy but is separated well enough from known
Scenedesmus species in the tree that it is prob-
ably a new species within the genus.

WJT4VFNP31A (Fig. 6N) fits in the genus
Tetracystis based on 18S rDNA gene data (Fig.
2) and morphology. The isolate produces auto -
spores that are retained in a stretched mother
cell wall and walled zoospores with 2 flagella
of equal length. Molecular analysis shows iso-
late WJT4VFNP31A to be closely related to T.
aeria, and the morphological characteristics of
the isolate are consistent with those reported
for this species. The morphology of isolate
WJT46VFNP16 is also consistent with its place -
ment in the genus Tetracystis. The vegetative
cells of WJT46VFNP16 are uninucleate, ovoid
to spherical, and are 7.5–32 μm in diameter
(Fig. 6M). The parietal chloroplast is asteroid
in young cells with a single pyrenoid that is
initially covered with small starch grains and
then develops a thick hull. Granules accumu-
late in the cytoplasm and enlarge with age,
obscuring the details of chloroplast structure in
older cells. Vegetative reproduction is via auto -

spores that are produced 4–8 per sporangium
and retained in the stretched mother cell wall
and in walled zoospores. WJT46VFNP16 does
not cluster closely with WJT4VFNP31A based
on 18S rDNA sequence data and is not linked
to any known Tetracystis species; it may be a
new species in this genus.

DNA sequence analysis identified several
isolates that did not group with any other
JTNP taxa and were not aligned with known
genera. Isolate WJT43VFNP26 forms vegetative
cells that are spherical and uninucleate. Cells
divide to form diads, tetrads, or octets and are
found in groups or retained in a mother cell
wall (Fig. 6P); solitary cells are seldom seen.
The chloroplast is parietal and robust, filling
the cell. The chloroplast surface is without struc -
ture. There is one pyrenoid with a thick hull,
entire or composed of several large starch
grains. The cell wall forms a structured matrix
that remains after vegetative cells die; this
matrix is somewhat thickened. Production of
walled zoospores, 3.2–5.5 μm wide and 8–10
μm long, is copious. Zoospores are torpedo
shaped with an anterior nucleus, 2 anterior
contractile vacuoles, and median stigma. Se -
quence data shows isolate WTJ43VFNP26
grouping with 2 species of Chlamydomonas
(Fig. 2), but the morphology of this isolate is
not consistent with placement in this genus.

Isolate WJT24VFNP48 forms spherical cells
with a parietal chloroplast containing one py -
renoid; this isolate divides vegetatively to form
packets of 2 or 4 cells, and forms zoo spores
that round up when they stop moving. This
isolate has several noteworthy characteristics.
The pyrenoid is covered with several large,
robust starch grains (Fig. 6Q). The zoo spores
are metabolically active; they move with a
snake-like motion and bend and round up
slowly when they stop moving. Red pigment is
produced as the culture ages. The cells appear
to be embedded in a matrix, and in some cases,
gelatin hulls can be seen around individual
cells. DNA sequence data shows this isolate to
be well separated from other Chloro sarcinop -
sis and Neochlorosarcina species (Fig. 2); it
may therefore represent a new algal genus.

Two isolates, WJT43VFNP1 (Fig. 6O) and
WJT73VFNP2 (Fig. 6R), have morphological
characteristics similar to those described for
members of the genus Chloromo nas, but nei-
ther shares 18S rDNA sequence similarities
with any known member of this genus (Fig. 2).
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Vegetative cells are uninucleate, ovoid to spheri-
cal, and contain an asteroid with 1–2 pyrenoids
covered with large starch grains; the cell wall
can thicken somewhat with age. Vegetative
reproduction is via autospores or walled zoo -
spores that are produced 4–8 per mother cell.

TAXONOMIC ASSIGNMENT OF TREBOUXIO-
PHYCEAN ISOLATES.—Approximately 25% of
the isolates described in this study (n = 26)
fall into the class Trebouxiophyceae. Clade 12
is composed of isolates of several morphological
types. Two of the WJT isolates, WJT8VFNP40
and WJT71VFNP8 (Fig. 7B), have lobed chloro -
plasts, but the chloroplast morphology of
WJT71VFNP8 is more irregular than that of
WJT8VFNP40; in both cases, a pyrenoid cov-
ered with multiple starch grains is present.
Both produce autospores and naked zoospores
(Fig. 7C). WJT66VFNP21 (Fig. 7A) has a lobed
chloroplast but lacks a pyrenoid; this isolate also
produces motile zoospores. Molecular analysis
of the 3 WJT isolates in clade 12 places them in
a cluster with 2 known members of the genus
Parietochloris (Figs. 3, 4). The morphologies of
isolates WJT8VFNP40 and WJT71VFNP8 are
consistent with the characteristics of this genus.

Members of clade 13 have a lobed chloroplast
with no pyrenoid (Fig. 7D). Zoospore produc-
tion was detected in only WJT32VFNP11B;
zoospores were naked and no stigma was ob -
served. Molecular data places them in the
genus Myrmecia (Fig. 3), which now includes
M. astigmatica, M. biatorella, and M. israelien-
sis (Friedl 1995); the morphology of the iso-
lates is consistent with this placement.

Clade 14 contains 2 isolates which group
with members of the genus Stichococcus based
on 18S rDNA sequence data (Figs. 3, 4). The
morphology of WJT66VFNP61 (Fig. 7E) is
consistent with this placement. WJT24VFNP30
forms small packets (Fig. 7F), and this mor-
phology is more consistent with the genus
Diplosphaera than with the genus Stichococcus.

The isolates that compose clade 11 are small
spherical or ovoid algae with a parietal chloro-
plast and a thin cell wall, and they do not pro-
duce zoospores; a pyrenoid is present in all
taxa except WJT66VFNP53. These character-
istics, coupled with their placement in Tre-
bouxiophyceae on the basis of 18S rDNA data,
suggests that they are members of the family
Chlorellaceae. This family has been the focus
of extensive study by several groups during
the last 12 years (Huss et al. 1999, Krienitz et

al. 2004, Luo et al. 2006, 2010). Based on mo -
lecular data (18S and ITS), the family is divided
into 7 clades: Actinastrum, Chlorella, Didymo-
genes, Hegewaldia, Meyerella, and Micractinium
(Krienitz et al. 2004, Luo et al. 2010). Most of
the taxa examined in this study are planktonic;
edaphic soil isolates were found only in the
genera Chlorella and Micractinium.

Molecular analysis (Fig. 4) shows the iso-
lates in clade 11 (Fig. 6G–6K) to be most closely
related to members of the genera Chlorella
and Micractinium, genera shown by several
investigators to be closely related phylogeneti-
cally (Krienitz et al. 2004, Luo et al. 2006,
2010). Initially, the relationship to Micractinium
seemed unlikely since 2 diacritical features of
this genus are growth in colonies and the for-
mation of spikes on the cell wall. But Luo et
al. (2006) have shown that strains of Micrac-
tinium pusillam possess these characteristics
only when a specific grazer, the rotifer Bra-
chionus calciflorus, is present in the medium.
Since this grazer was not present in our cul-
tures, it is possible that some of our isolates,
which are identified as Micractinium, are in -
deed members of that genus, whose members
are capable of forming spikes but do not do so
under the culture conditions employed in this
study. Further study is needed to resolve the
generic placement of these isolates.

Clade 15 contains 3 isolates that are related
to each other based on 18S rDNA sequence
data but do not show affiliation with any
known genera (Figs. 3, 4). WJT2VFNP25 and
WJT32VFNP13B (Fig. 7L) are morphologi-
cally similar to Chlorosarcina brevispinosa in
that they divide vegetatively to form packets,
produce thick-walled cells with surface exten-
sions, and have a parietal chloroplast lacking a
pyrenoid; they produce naked zoospores that
lack a stigma (Fig. 7M). The morphology of
WJT71VFNP22 is different. Most cells of this
isolate have one or more inclusions that resem-
ble naked pyre noids that do not stain with
iodine and lack surface extensions (Fig. 7N).
No zoospore production was observed.

Originally, the genus Chlorosarcina was
described as containing 3 species (C. brevis -
pinosa, C. longispinosa, and C. stigmatica), and
it was placed in the class Chlorophyceae with
C. stigmatica as the type species (Deason
1959). Subsequently, Deason and Floyd (1987)
separated C. stigmatica from C. longispinosa
and C. brevispinosa based on ultrastructural
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Fig. 7. Representative trebouxiophyte taxa (strain numbers indicated in parentheses). Panels A–C, clade 12, Parieto -
chloris: A, lobed chloroplast (WJT66VFNP21); B, autospores at upper left, pyrenoid covered with starch grains at lower
right (WJT71VFNP8); C, naked zoospore (WJT71VFNP8). Panel D, clade 13, Myrmecia showing lobed chloroplast and
auto spores (WJT32VFNP11B). Panels E–F, clade 14, Stichococcus: E, single cells (WJT66VFNP61); F, packets
(WJT24VFNP30). Panels G–K, clade 11: G, single cells with parietal chloroplast (WJT36VFNP23); H, single cells with
pyrenoid and sporangium with 4 daughter cells (WJT4VFNP5); I, spherical and ovoid cells (WJT36VFNP9); J, spherical
cells with thickened cell walls (WJT9VFNP19); K, cells with large vacuole (WJT8VFNP18). Panels L–N, clade 15:
L, single and dividing vegetative cells, some with extensions indicated by arrow (WJT32VFNP13B); M, naked zoospore
(WJT32VFNP13B); N, packet of dividing cells, some with an inclusion indicated by arrow (WJT71VFNP22). Panel
O, unknown trebouxiophyte showing single cells and sporangia with 4 autospores (WJT24VFNP38). Panel P, unknown
trebouxiophyte showing multiple chloroplasts, each with its own pyrenoid (WJT71VFNP21). Panels B–C and E–P: scale
bar = 10 μm; panels A and D: scale bar = 5 μm.
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characteristics and placed C. longispinosa and
C. brevispinosa in the Pleurastrophyceae (now
Trebouxiophyceae) based on several charac-
teristics, including counterclockwise orienta-
tion of the flagellar apparatus components. In
their study evaluating the phylogenetic rela-
tionships and taxonomy of sarcinoid green
algae, Watanabe and coworkers did not deal
specifically with 3 Chlorosarcina species (C.
brevispinosa, C. longispinosa, and C. halophila)
because “they are excluded from the Chloro-
phyceae” (Watanabe et al. 2006). If the place-
ment of C. brevispinosa and C. longispinosa in
the Trebouxiophyceae is valid, then isolates
WJT2VFNP25 and WJT71VFNP22 may be
members of the genus Chlorosarcina. Since
there are no available 18S rDNA sequences
from C. brevispinosa or C. longispinosa, it is
not possible to use sequence homology to ver-
ify the placement of these isolates in Chloro -
sarcina at this time.

Isolate WJT24VFNP38 groups with Myrme -
cia bisecta, M. incisa, Parietochloris cohaer ens,
and P. ovoidea based on 18S rDNA se quence
similarity (Fig. 3); no other WJT isolates fall
into this group. Morphologically, the isolate
resembles Myrmecia in that it has spherical
cells with a lobed chloroplast lacking a pyre -
noid and forming 4 autospores which are re -
tained in the sporangium (Fig. 7O). Friedl (1995)
excluded M. bisecta from the genus Myrmecia
based on zoospore morphology and 18S rDNA
sequence data. Zoospore formation was not
observed for this isolate, and so it is not possi-
ble at this time to determine whether WJT24V
FNP38 forms the same type of zoospores as
M. bisecta. Additional morphological and mo -
lecular data are necessary to establish the cor-
rect phylogenetic placement of this isolate.

Isolate WJT71VFNP21 is not closely re -
lated to any other JTNP isolate. The18S rDNA
sequence data places it in the class Trebouxio-
phyceae but fails to define genus placement
(Fig. 3). The cells of this isolate are spherical,
large (more than 40 μm in diameter), and
multinucleate. The cell wall is thin in young
cells, thickening slightly with age. In young
cells, the chloroplast is comprised of strands
that traverse the cytoplasm, with multiple
pyrenoids encased in a robust entire hull. Later,
individual chloroplasts, each with its own pyre -
noid, are seen (Fig. 7P). These characteristics are
consistent with the genus Follicularia. Further

study is required to establish the correct phy-
logenetic placement of this isolate.

Xanthophyceae and Eustigmatophyceae

Xanthophytes and Eustigmatophytes were
rarely encountered in our sites. Five isolates, 3
Xanthophytes and 2 Eustigmatophytes, were
selected for DNA sequence analysis. No tree
has been constructed for these taxa because so
few were isolated from our sites.

TAXONOMIC ASSIGNMENT OF XANTHOPHYTE

ISOLATES.—WJT43VFNP18B and WJT43VF
NP32 were assigned to the genus Capitularia
based on cell morphology. They form short,
unbranched filaments that extend along the
agar rather than forked, upright filaments that
are characteristic of the related genus Hetero-
coccus (Fig. 8A–8B). Single cells 10–24 μm in
diameter are also observed frequently (Fig. 8D).
Cells contain multiple pyrenoids (Fig. 8D).
Autospores and zoospores were produced in
large spherical sporangia (Fig. 8C); free zoo -
spores were rarely observed (Fig. 8D). A search
of DNA sequences in public databases reveals
isolate WJT43VFNP18B as being most similar
to H. caespitosus and WJT43VFNP32 as being
most similar to H. chodatii. No 18S rDNA se -
quence data exists for the single Capitularia
species, C. radians. Ettl and Gärtner (1995)
consider the differentiation of the 6 genera in
the family Heterococcaceae to be artificial. The
morphological characteristics of our isolates
are most similar to H. chodatii (H. viridis), and
it may be that our isolates are members of the
genus Heterococcus.

Cells of both WJT43VFNP24 (Fig. 8E) and
WJT40VFNP19 (Fig. 8F) are spherical, 5–10
μm (occasionally to 18 μm) in diameter, and
uninucleate, with multiple small chloroplasts
lacking a pyrenoid. Autospore production was
observed; no zoospore production was detected.
DNA sequence analysis shows WJT43VFNP24
being related to P. meiringensis. The cell mor-
phology of our isolate is consistent with this
species, but P. meiringensis forms zoospores,
and we observed no zoospore formation with
our isolate. We did not obtain sequence data
for WJT40VFNP19.

A single isolate from the genus Xanthonema
was recovered; this isolate is morphologically
similar to X. hormidioides (Fig. 8G). We did
not obtain sequence data for this isolate.

TAXONOMIC ASSIGNMENT OF EUSTIGMATO-
PHYTE ISOLATES.—The 2 Eustigmatophyte
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Fig. 8. Representative xanthophyte and eustigmatophyte taxa (strain numbers are indicated in parentheses). Panels A–D,

Capitularia: A, short filaments with bulbous end (WJT43VFNP18B); B, short filament and individual cells (WJT43VFNP32);

C, sporangium with zoospores (WJT43VFNP32); D, vegetative cells with multiple pyrenoids and free zoospores at lower left

(WJT43VFNP32). Panels E–F, Pleurococcus: E, vegetative cells with lobed chloroplast and sporangia producing 4 daughter

cells (WJT43VFNP24); F, vegetative cells and sporangia (WJT40VFNP19). Panel G, Xanthonema (WJT36VFNP5). Panels

H–J, Eustigmatos: H, vegetative cells with pyrenoid indicated by arrow (WJT66VFNP74); I, vegetative cells showing pig-

ment and lobed chloroplast (WJT24VFNP32); J, vegetative cells and dividing cells (WJT24VFNP32). Panels A–D, F–G,

and I–J: scale bar = 10 μm; panels E and H: scale bar = 5 μm.
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isolates for which we have molecular data
(WJT24VFNP32 and WJT66VFNP74) show
close affinity to the species Eustigmatos vis-
cheria. The isolates have chloroplasts with
multiple deep lobes (Fig. 8I) and a polyhedral
pyrenoid (Fig. 8H). WJT24VFNP32 accumu-
lates droplets of red pigment (Fig. 8I). Both
isolates produce autospores as diads or tetrads
(Fig. 8J); zoospore formation was not observed.

CONCLUSIONS

We have demonstrated that Joshua Tree
National Park (JTNP) supports a diverse green
algal flora. Based on phylogenetic analyses of
18S rDNA sequence data, 24 distinct lineages
of green algae were determined, 17 in Chloro-
phyceae and 7 in Trebouxiophyceae. Nine lin-
eages are represented by a single isolate,
whereas most are represented by more than
one isolate (the 15 collapsed clades in Figs. 2
and 3, and shown in detail in Fig. 4). Members
of Xanthophyceae and Eustigmatophyceae were
encountered much less frequently, yet these
represented 4 different genera. When a given
lineage is represented by more than one iso-
late, morphological variation is evident among
the isolates, and often molecular variation is
present as well. Together, morphological and
molecular variation suggest untapped taxo-
nomic diversity. Other investigators have re -
corded extensive diversity of green microalgae
in aquatic environments (Fawley et al. 2004,
Škaloud 2009) and soils (Johansen et al. 1993,
Flechtner et al. 1998, 2008). Indeed, Fawley et
al. (2004) reported isolation of 273 strains from
4 different sites in North Dakota and Min-
nesota. Sequence analysis revealed 93 different
18S rDNA sequences among these isolates; of
these 93, only 4 sequences corresponded to
sequences in GenBank. Collectively, these
studies demonstrate that microalgae, includ-
ing those in JTNP soils, are poorly understood
and need further investigation.

Sequence data from the 3� end of the 18S
rDNA gene was used as a phylogenetic marker
in this study because ribosomal sequence data
are a common starting point in phylogenetic
studies (e.g., Nakada et al. 2008), and a num-
ber of 18S sequences are available in public
databases. But 18S data are a coarse-grained
estimator of diversity, particularly for compari-
son of species in a single genus. Recently, Hall
et al. (2010) assessed the efficacy of 7 molecu-

lar markers (cytochrome oxidase I, the ITS
region of the nuclear rRNA operon, a portion
of the chloroplast 23S rRNA gene, the plastid
encoded rbcL, and tufA) that are more vari-
able than the 18S rDNA gene to serve as bar
codes in freshwater green algae (Charophyceae,
Chlorophyceae, and Zygnematophyceae). They
were unable to identify any marker that was
useful in all 3 groups, but they concluded that
the ITS, rbcL, and tufA loci were able to dif-
ferentiate closely related chlorophyte species.
A case in point is our study of Scenedesmus
species. When we used 18S sequences to com -
pare newly isolated Scenedesmus strains recov -
ered from arid sites in the western United
States and Baja California, Mexico, with known
Scenedesmus species, only a few well-sup-
ported clades were recovered, reflecting a lack
of diversity in 18S sequences in this genus.
But when we expanded our sequence analysis
to include internal transcribed spacer (ITS1,
5.8S, and ITS2) sequence data, bootstrap analy -
sis resolved 5 distinct clades, demonstrated
that Scenedesmus lineages from arid soils align
separately from their aquatic relatives, and
allowed us to describe 3 new species in this
genus (Lewis and Flechtner 2004). Molecular
phylogenetic analysis of the isolates reported
in this study employing more variable makers
(e.g. ITS or rbcL) may reveal a higher level
of diversity than is suggested by our initial
findings.

The problems associated with identification
of microalgae at the genus and species levels
have been thoroughly discussed in a recent
review by Pröschold and Leliaert (2007).
These authors emphasize the importance of a
multiphasic approach involving morphological
characterization using a light microscope, ultra -
structural characterization using an electron
microscope, and DNA sequence analysis (e.g.,
Fučíková et al. in press). Both morphological
and molecular data were necessary to uncover
the diversity observed in this study. Use of
morphology alone would have masked the
true diversity of genera such as Bracteacoccus
and Chlorosarcinopsis, both of which contain
species that can be differentiated only on the
basis of molecular data. On the other hand,
obtaining DNA sequence data from new
microalgal isolates does not assure the identi-
fication of that isolate to the genus and species.
In some instances (e.g., clades 7 and 15), iso-
lates fit the morphological description of a
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known genus (Actinochloris and Chlorosar -
cina, respectively), but DNA sequence data
for known members of the genus is not avail-
able from GenBank. For some genera where
18S rDNA sequence data are available, the
data are often limited to a single species (e.g.,
Spongiochloris spongiosa); this limitation is
particularly problematic where the known
genus may be polyphylectic.

Many of the JTNP isolates examined in this
study do not align with known species of green
algae. These isolates may represent species or
even genera new to science. In order to fully
clarify the diagnosis of new isolates placed
provisionally in a known genus on the basis of
morphology, it is necessary to obtain type strains
and get comparable data, as was done for Scene -
desmus (Lewis and Flechtner 2004), Chloro -
sarcinopsis (Watanabe et al. 2006), Chlorella
(Luo et al. 2010), and Bracteacoccus (Fučíková
et al. in press).

Researchers attempting to identify newly
isolated microalgal taxa from North American
soils face additional challenges. Traditionally,
European researchers have been more active
in this field than have American researchers,
and as a consequence, most of the authoritative
texts (e.g., Ettl and Gärtner 1995) describe
European taxa and are not available in English.
Aquatic habitats have received more attention
than terrestrial habitats; as a consequence,
many of the algal genera and species for which
good morphological descriptions and molecu-
lar data exist are aquatic. In addition, many
earlier papers describing taxa from arid and
semiarid North American locales that would
be most useful for those researchers are out of
print and difficult to obtain.

There is currently no centralized reference
source describing terrestrial algae from arid
and semiarid regions of North America. Many
of the taxonomic studies providing detailed
morphological and physiological descriptions
of algal species are old and out of print. Algae-
base (www.algaebase.com) is a useful public
access database containing over 127,000 algal
species and over 10,800 images, but the num-
ber of taxa listed for North America is small.
We have developed our own web site (http://
hydrodictyon.eeb.uconn.edu/bcp/) as a research
and teaching resource, and we continue to
update this site as new data become available.
The site includes micrographs, descriptions
and links to sequence data for numerous iso-

lates from California, Utah, New Mexico, San
Nicolas Island, and Baja, California, Mexico.
It is our hope that further analysis of the taxa
isolated from JTNP will not only provide a
good understanding of the algal flora of this
park, but will be of use to researchers and
teachers working to identify the microalgae
present in desert soils and will also contribute
to our understanding of the phylogenetic rela-
tionships among green algae.
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APPENDIX 1. Universal Transverse Mercator GPS coordinates for the site sampled within Joshua Tree National Park. Coor-
dinates listed are within zone 11S, NAD83 datum.

Site ID Easting Northing Site ID Easting Northing

WJT2 639079 3775129 WJT40 580981 3758029
WJT4 601307 3756724 WJT43 564402 3761209
WJT8 611132 3750951 WJT46 618806 3741017
WJT9 600837 3748948 WJT54 625202 3749282
WJT16 633011 3762629 WJT61 657603 3761283
WJT24 611479 3736523 WJT66 576564 3769728
WJT25 627695 3757108 WJT71 648298 3760591
WJT32 642508 3774289 WJT73 645317 3757879
WJT36 578916 3767071 WJT74 618410 3758393

APPENDIX 2. Algal strains used in this study, organized into major taxonomic groups, with their corresponding locali-
ties (JTNP Area, as detailed in Appendix 1). For the isolates that were included in phylogenetic analyses, the GenBank
accession numbers and corresponding numbered clades illustrated in Figures 2–4 are reported. Previously published
sequences are indicated with an asterisk.

18S rDNA GenBank
JTNP Area Strain number Taxon accession number

CHLOROPHYCEAE CLADE

1 9 WJT9VFNP1A Chlorococcum sp. JX446402
1 24 WJT24VFNP10 Chlorococcum sp. JX446403
1 40 WJT40VFNP8 Chlorococcum sp. JX446404
1 43 WJT43VFNP8 Chlorococcum sp. JX446405
1 43 WJT43VFNP16 Chlorococcum sp. JX446406
1 66 WJT66VFNP7 Chlorococcum sp. JX446407
1 66 WJT66VFNP30A Chlorococcum sp. JX446408
1 66 WJT66VFNP77 Chlorococcum sp. JX446409
2 4 WJT4VFNP30B Chlorosarcinopsis sp. JX446410
2 8 WJT8VFNP1 Chlorosarcinopsis sp. JX446411
2 16 WJT16VFNP5 Chlorosarcinopsis sp. JX446412
2 24 WJT24VFNP12 Chlorosarcinopsis sp. JX446413
2 43 WJT43VFNP28 Chlorosarcinopsis sp. JX446414
2 46 WJT46VFNP9 Chlorosarcinopsis sp. JX446415
2 71 WJT71VFNP16 Chlorosarcinopsis sp. JX446416
3 25 WJT25VFNP1 Chlorophycean green alga JX446417
3 71 WJT71VFNP3 Chlorophycean green alga JX446418
3 71 WJT71VFNP9 Chlorophycean green alga JX446419
4 9 WJT9VFNP7B  Chlorophycean green alga JX446420
4 24 WJT24VFNP4 Chlorophycean green alga JX446421
4 36 WJT36VFNP12 Chlorophycean green alga JX446422
4 66 WJT66VFNP9 Chlorophycean green alga JX446423
5A 9 WJT9VFNP2B Heterochlamydomonas sp. JX446424
5A 9 WJT9VFNP8B Heterochlamydomonas sp. JX446425
5A 66 WJT66VFNP31 Heterochlamydomonas sp. JX446426
5B 4 WJT4VFNP4 Chlamydomonas-like green alga JX446427
5B 32 WJT32VFNP3 Chlamydomonas-like green alga JX446428
6 4 WJT4VFNP17 Neochlorosarcina sp. JX446429
6 36 WJT36VFNP8 Neochlorosarcina sp. JX446430
6 40 WJT40VFNP11 Neochlorosarcina sp. JX446431
6 43 WJT43VFNP13 Neochlorosarcina sp. JX446432
6 54 WJT54VFNP4 Neochlorosarcina sp. JX446433
6 66 WJT66VFNP5 Neochlorosarcina sp. JX446434
6 66 WJT66VFNP54 Neochlorosarcina sp. JX446435
7 24 WJT24VFNP16 Actinochloris sp. JX446436
7 24 WJT24VFNP24 Actinochloris sp. JX446437
7 36 WJT36VFNP18 Actinochloris sp. JX446438
7 74 WJT74VFNP6 Actinochloris sp. JX446439
8 2 WJT2VFNP14 Bracteacoccus occidentalis GQ985407*
8 4 WJT4VFNP35 Bracteacoccus sp. JX446440
8 4 WJT4VFNP36B Bracteacoccus sp. JX446441
8 4 WJT4VFNP41 Bracteacoccus occidentalis JX455835
8 8 WJT8VFNP19 Bracteacoccus occidentalis JQ259951*
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APPENDIX 2. Continued.

18S rDNA GenBank
JTNP Area Strain number Taxon accession number

8 9 WJT9VFNP16A Bracteacoccus occidentalis JQ259948*
8 9 WJT9VFNP12B Bracteacoccus pseudominor JQ259953*
8 24 WJT24VFNP45 Bracteacoccus sp. JX446442
8 36 WJT36VFNP6 Bracteacoccus glacialis JQ259940*
8 40 WJT40VFNP9 Bracteacoccus sp. JX446443
8 71 WJT71VFNP15 Bracteacoccus pseudominor HQ246324*
9 2 WJT2VFNP6 Radiococcus sp. JX446444
9 2 WJT2VFNP21 Radiococcus sp. JX446445
9 9 WJT9VFNP3A Radiococcus sp. JX446446
9 43 WJT43VFNP6 Radiococcus sp. JX446447
9 43 WJT43VFNP18A Radiococcus sp. JX446448
9 43 WJT43VFNP18D Radiococcus sp. JX446449
9 43 WJT43VFNP27 Radiococcus sp. JX446450
9 66 WJT66VFNP50A Radiococcus sp. JX446451
9 66 WJT66VFNP78 Radiococcus sp. JX446452
9 74 WJT74VFNP5 Radiococcus sp. JX446453
10 54 WJT54VFNP1 Hydrodictyaceae green alga JX446454
10 54 WJT54VFNP11 Hydrodictyaceae green alga JX446455
10 74 WJT74VFNP4 Hydrodictyaceae green alga JX446456
NA 2 WJT2VFNP26 Scenedesmus sp. JX446457
NA 4 WJT4VFNP31A Tetracystis sp. JX446458
NA 24 WJT24VFNP48 Chlorophycean green alga JX446459
NA 43 WJT43VFNP1 Chlorophycean green alga JX446460
NA 43 WJT43VFNP26 Chlorophycean green alga JX446461
NA 46 WJT46VFNP16 Chlorophycean green alga JX446462
NA 73 WJT73VFNP2 Chlorophycean green alga JX446463

TREBOUXIOPHYCEAE CLADE

11 4 WJT4VFNP1 Chlorellaceae green alga JX446464
11 4 WJT4VFNP5 Chlorellaceae green alga JX446465
11 4 WJT4VFNP13 Micractinium sp. JX446466
11 8 WJT8VFNP18 Micractinium sp. JX446467
11 9 WJT9VFNP13A Chlorellaceae green alga JX446468
11 9 WJT9VFNP19 Micractinium sp. JX446469
11 36 WJT36VFNP3 Chlorellaceae green alga JX446470
11 36 WJT36VFNP9 Chlorellaceae green alga JX446471
11 36 WJT36VFNP23 Chlorellaceae green alga JX446472
11 66 WJT66VFNP53 Chlorellaceae green alga JX446473
11 66 WJT66VFNP79 Chlorellaceae green alga JX446474
12 8 WJT8VFNP40 Parietochloris sp. JX446475
12 66 WJT66VFNP21 Parietochloris sp. JX446476
12 71 WJT71VFNP8 Parietochloris sp. JX446477
13 24 WJT24VFNP46 Myrmecia sp. JX446478
13 32 WJT32VFNP11B Myrmecia sp. JX446479
13 36 WJT36VFNP19 Myrmecia sp. JX446480
13 40 WJT40VFNP15 Myrmecia sp. JX446481
13 61 WJT61VFNP15 Myrmecia sp. JX446482
14 24 WJT24VFNP30 Stichococcus sp. JX446483
14 66 WJT66VFNP61 Stichococcus sp. JX446484
15 2 WJT2VFNP25 Trebouixiophyceae green alga JX446485
15 32 WJT32VFNP13B Trebouixiophyceae green alga JX446486
15 71 WJT71VFNP22 Trebouixiophyceae green alga JX446487
NA 24 WJT24VFNP38 Trebouixiophyceae green alga JX446488
NA 71 WJT71VFNP21 Trebouixiophyceae green alga JX446489

XANTHOPHYCEAE

43 WJT43VFNP18B Heterococcus sp. JX446490
43 WJT43VFNP32 Heterococcus sp. JX446491
43 WJT43VFNP24 Pleurococcus sp. JX446492
40 WJT40VFNP19 Pleurococcus sp. isolate only
36 WJT36VFNP5 Xanthonema sp. isolate only

EUSTIGMATOPHYCEAE

24 WJT24VFNP32 Eustigmatos sp. JX446493
66 WJT66VFNP74 Eustigmatos sp. JX446494
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