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IDENTIFYING EVOLUTIONARILY SIGNIFICANT UNITS AND
PRIORITIZING POPULATIONS FOR MANAGEMENT ON ISLANDS

Jeanne M. Robertson1-2:3, Kathryn M. LanginZ, T. Scott Sillett4,
Scott A. Morrison3, Cameron K. Ghalambor2, and W. Chris Funk2

ABSTRACT.—Islands host exceptionally high levels of endemism compared to mainland regions and are subject to dis-
proportionately high rates of extinction and imperilment. Therefore, the protection and preservation of taxonomic units
that are endemic to islands is a key component in mitigating the loss of global biodiversity. However, determining what
is “endemic” on islands can be challenging. Conservation units are commonly delineated based on genetic divergence at
neutral loci (e.g., genetic differentiation at microsatellite loci or reciprocal monophyly based on mitochondrial genes).
Island populations of nonvolant species are expected to meet this criterion, regardless of adaptive differences, due to
geographic isolation, founder effects, and small effective population sizes. We therefore argue that the delineation and
management of island endemic populations should not be based on neutral genetic divergence and reciprocal mono-
phyly alone. Instead, we recommend identifying island populations that have genetically based adaptations to their
unique environments. A comprehensive framework specifically designed to delineate evolutionarily significant units
(ESUs) on islands should be based on metrics of both neutral and adaptive genetic divergence. The California Channel
Islands host several taxa considered to be endemic, and we highlight 2 case studies to illustrate how this framework can
be applied. This approach can be applied broadly to continental islands and island archipelagos, enabling conservation
practitioners to use an objective framework to prioritize units of biological diversity for management.

RESUMEN.—Las islas albergan niveles excepcionalmente altos de especies endémicas en comparacién con las
regiones continentales, y estdn sujetas a niveles desproporcionadamente altos de extincion y peligro. La proteccion y
conservacion de las unidades taxonémicas que son endémicas de las islas es, por lo tanto, un componente clave para mit-
igar la pérdida global de biodiversidad. Sin embargo, determinar qué es “endémico” en las islas puede ser un reto. Las
unidades de conservacién son comtinmente delineadas basandose en divergencias genéticas en lugares neutrales (por
ejemplo, diferenciacion genética en loci microsatelitales o monofilia reciproca basada en genes mitocondriales). Se
espera que las poblaciones de las islas de especies que no pueden volar retnan estos criterios, independientemente de
diferencias de adaptacion, debido al aislamiento geografico, efectos de hundimiento y un tamano de poblacion efectivo
pequefio. Por lo tanto, argumentamos que la delineacién y el tratamiento de las poblaciones endémicas de la isla no
deberfan estar basados sélo en la divergencia genética neutral y en monofilia reciproca. En lugar de eso, nosotros apoy-
amos la identificacién de poblaciones de la isla que tienen adaptaciones basadas genéticamente exclusivamente para su
propio ambiente. Un marco comprensible especificamente disefiado para describir unidades evolutivamente impor-
tantes (UEIS) en las islas deberia estar basado en ambas mediciones, tanto en la neutral como en la divergencia genética
adaptativa. Las Islas del Canal de California albergan varios taxa que se consideran endémicos, y destacamos 2 casos
précticos para ilustrar como se puede aplicar esta estrategia. Este enfoque puede ser ampliamente aplicado a las islas
continentales y a las islas del archipiélago, permitiendo a los profesionales de la conservacién aplicar una estrategia
objetiva para priorizar unidades de diversidad biol6gica para su manejo.

Islands host exceptionally high levels of en-  species-level divergence but also populations

demism compared to mainland regions (Kier
et al. 2009). Unfortunately, they are also subject
to disproportionately high rates of extinction
and local extirpation (Johnson and Statterfsfield
1990, Whittaker and Fernandez-Palacios 2008).
Therefore, the protection and preservation of
taxonomic units that are endemic to islands is a
key component in mitigating the loss of global
biodiversity. Endemic units include not only

that are adaptively differentiated on islands.
Distinct intraspecific units could be in the early
stages of speciation and therefore represent
incipient species-level biodiversity. Moreover,
maintaining island populations adapted to dif-
ferent environmental conditions should maxi-
mize the potential of the populations to adapt to
future environmental changes such as climate
change. Therefore, it is critical to identify island
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populations that represent unique lineages
adapted to different environments.

Insular biota face myriad threats that make
conservation management challenging. Popu-
lations restricted to islands are prone to
demographic stochasticity and suffer from
long-term reductions in census and effective
population sizes, lower genetic and pheno-
typic diversity, and inbreeding depression
(Frankham 1997, Woolfit and Bromham 2005).
Their evolutionary history within the context
of depauperate communities has also played
a role in making them more susceptible to
the introduction of new species—whether
competitors, predators, or pathogens (Blondel
2000). These factors amplify the effects of
anthropogenic stressors like habitat loss,
invasive species, and climate change; and
these effects in turn have necessitated the
implementation of many intensive manage-
ment programs on islands around the world
(Wood 2000, Goldman et al. 2008, Gonzalez et
al. 2008, Cruz et al. 2009, Morrison et al. 2011).

Many insular taxa exhibit high levels of
genetic and phenotypic divergence from
mainland populations or from other islands
within the same archipelago, due in part to
the unique suite of microevolutionary forces
on islands that shape their trajectories (Barton
1996). Unless the island was once connected
to the mainland, the initial colonization event
usually involves a genetic bottleneck that
limits the newly formed insular population
to a subset of the genetic and phenotypic
diversity of the source population (Frankham
1997). Novel populations are subject to a
combination of selection pressures in their
insular environment and pronounced genetic
drift. The latter effect is stochastic in nature,
but the former—selection—has been shown
to operate deterministically for many traits,
which are collectively referred to as the
“insular syndrome” (Blondel 2000). Insular
populations tend to have fewer competitors
and predators, which can lead to directional
selection for reduced predator defenses
(Bowen and VanVuren 1997, Slikas et al.
2002), expanded niche space (Martin 1992),
increased intraspecific competitive abilities
(Robinson-Wolrath and Owens 2003), and a
number of other morphological, demographic,
and behavioral traits (Blondel 2000).

An important consideration in setting con-
servation priorities is the degree to which
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observed population divergence is adaptive
versus the result of stochastic processes like
founder effects (which are particularly pro-
nounced on islands). Most island populations
will show monophyly, or at least genetic differ-
entiation (divergence in allele or haplotype
frequencies) at neutral loci, due to founder
effects and genetic drift. Hence, monophyly is
not sufficient by itself to characterize the
degree of endemism of an island population.
We argue that degree of endemism—and so
perhaps degree of conservation priority—
should also require adaptive divergence from
mainland or other island populations. Further,
we propose a framework for categorizing
divergence in island populations, and we dis-
cuss how to apply this framework using con-
servation management case studies from the
California Channel Islands.

Evolutionarily Significant Units

Biodiversity conservation efforts tradition-
ally focus on maintaining one or more mini-
mum viable populations (MVP) of a focal taxon
that, in theory, should persist on ecological
time scales (Shaffer 1981). However, the past
decade has seen an increased emphasis on
conserving population-level genetic diversity
and the processes that promote adaptive evo-
lution within species (Crandall et al. 2000,
Moritz 2002). Given the intensifying nature of
ongoing threats to biological diversity, the lat-
ter strategy is aimed at enhancing the capacity
of species to adapt to future environmental
conditions and thus to increase the probability
of persistence over evolutionary time scales.
Conserving adaptive potential may be espe-
cially important for insular populations that
have limited ability to move in response to
environmental changes (e.g., shifts in climate)
and instead must adapt in situ.

The term “evolutionarily significant unit”
(ESU; sometimes also termed “evolutionary
significant unit”) was coined by Ryder (1986)
to describe intraspecific taxonomic units worthy
of conservation. The ESU concept is central to
the development of population management
strategies and the application of conservation
legislation, particularly in determining “distinct
population segments” (DPSs) as units of con-
servation for vertebrate species under the U.S.
Endangered Species Act (Fay and Nammack
1996, Groom et al. 2005). The conservation
genetics of Pacific salmon (Oncorhynchus spp.)
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provided important empirical examples for
application of an ESU to natural populations
under the Endangered Species Act (Waples
1991, 1995, CDFG 2002). However, the criteria
for delineating ESUs have varied considerably
over time (Crandall et al. 2000), and the inter-
pretation and application of ESUs and DPSs
has historically spurred scientific and public
debate (Waples 1998). Though Ryder’s (1986)
original definition focused on adaptive dif-
ferentiation, an increase in the availability of
genetic data facilitated a movement toward
ESU definitions that focus solely on the pres-
ence of genetic differentiation or reciprocal
monophyly at neutral loci (Moritz 2002, Zink
2004). Moritz (2002) asserts that the use of re-
ciprocal monophyly provides an unambiguous
definition of an ESU and preserves the
genetic diversity of irreplaceable, isolated
lineages. In contrast, Crandall et al. (2000)
argue that the original ESU definition put
forward by Ryder (1986) is more conservation
relevant and that adaptive variation and “eco-
logical exchangeability” (i.e., the degree to
which populations are adapted to the same
ecological niche and are thus exchangeable)
must be considered, not just neutral genetic
divergence and reciprocal monophyly (Shimizu
2008). Both viewpoints focus on the conserva-
tion of genetic diversity, as does the federal
requirement of genetic or morphological dis-
tinction for delineating distinct population seg-
ments (Fay and Nammack 1996), but each differ
in their emphasis on adaptive versus neutral
regions of the genome and the type of data
required to demonstrate that a population
qualifies as an conservation unit. Fraser and
Bernatchez (2001) argue that instead of debating
the relative merits of each definition, we should
recognize that both definitions have strengths
and weaknesses and we should apply the ap-
propriate definition(s) on a case-by-case basis.
Island flora and fauna represent a special case
for determining which ESU concept to apply.
We argue that the most useful ESU defini-
tion for island populations is one that incorpo-
rates both adaptive variation and measures
of neutral genetic divergence. Compared to
mainland and other insular populations, island
populations often show pronounced diver-
gence at neutral loci because of restricted
gene flow across oceanic barriers and the
strong effects of genetic drift in small isolated
populations (Patirana et al. 2002). Exceptions
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to this phenomenon include highly mobile
taxa that do not perceive oceans as a hard
barrier to dispersal (Postma and van Noordwijk
2005). Insular terrestrial populations of most
taxonomic groups tend to be sedentary and
thus likely to show reciprocal monophyly at
neutral loci (e.g., mtDNA), even if the time
since divergence was relatively recent (Neigel
and Avise 1986, Walker et al. 2006). This
necessitates separate conservation units on
each island or between island and mainland
sites under the Moritz (1994) ESU definition.
The ESU definition is especially important
for the conservation of insular populations
because these populations are frequently sub-
ject to intensive, population-specific manage-
ment actions (e.g., Coonan et al. 2010). We
suggest that using neutral genetic divergence
alone for delineating ESUs on islands is insuf-
ficient because the method may overestimate
the evolutionary significance of any island
population relative to other island and main-
land populations. The method may also impede
consideration of translocations as a manage-
ment strategy aimed at facilitating demo-
graphic or genetic rescue for small insular
populations. Conservation efforts on islands
should focus on identifying units of insular
endemism that are adaptively differentiated
from other mainland or insular populations
and that show marked genetic divergence.

Delineating ESUs on Islands

Effective management of insular popula-
tions requires an objective framework for
identifying and prioritizing intraspecific con-
servation units (Pullin and Stewart 2006). To
assess how others have defined ESUs on
islands, we conducted an ISI Web of Knowl-
edge literature search in March 2012 using
the following terms: [islands AND (evolution-
arily significant unit OR evolutionary signifi-
cant unit OR distinct population segment)].
The search returned 71 articles, 39 of which
were deemed relevant (Appendix). We included
only empirical studies of island taxa at the
population or subspecies level and excluded
review articles, perspective pieces, empirical
studies of marine or human populations, and
studies conducted on island taxa that had been
described as insular endemic species (rather
than populations or subspecies relative to the
mainland). We considered studies only when
an island ESU was based on a comparison to a
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Genetic divergence

Genetic and phenotypic
divergence

Genetically based
adaptations

Fig. 1. Most studies of island taxa use genetic data alone for ESU designation. While some studies include data on
morphological differences, there remains a paucity of studies that test whether these phenotypic differences are geneti-
cally based and adaptive prior to making conservation recommendations.

mainland population or other surrounding
island populations. Of the 39 studies, 45% used
genetic distance as the sole criterion for delinea-
ting a conservation unit, and 55% based their
designation on evidence of genetic and pheno-
typic differentiation (Fig. 1). Bottin et al. (2007)
was the only study to demonstrate that the
phenotypic traits unique to an insular popu-
lation represented genetically based, adaptive
differentiation, as opposed to phenotypically
plastic differences caused by environmental
effects. In the 39 studies, an ESU definition
focusing on neutral genetic divergence was ap-
plied much more frequently for insular popu-
lations than was ESU frameworks that inte-
grate data on neutral genetic and adaptive
phenotypic differentiation. Moreover, most
studies documenting genetic divergence at neu-
tral loci showed genetic differentiation as sig-
nificant differences in allele or haplotype fre-
quencies, rather than demonstrating recipro-
cal monophyly (but see Kanthaswamy et al.
2006, Hoglund et al. 2011; Appendix).

We suggest that management strategies on
islands should transition to putting a greater em-
phasis on adaptive differentiation. We are par-
ticularly concerned with cases where popula-
tions are distributed on multiple adjacent islands
or where populations are found on islands and
nearby mainland locations. In such cases, in-
sular populations are likely to exhibit neutral
genetic divergence relatively quickly, even in the

presence of some gene flow, because of initial
founder effects and subsequent genetic drift.
We propose a modified version of the frame-
work described by Crandall et al. (2000) for
delineating ESUs on continental islands and
on island archipelagos. Our framework is
aligned with Crandall et al. (2000) in that
populations must be genetically differentiated
(rejecting genetic exchangeability). However,
we put greater emphasis on the need to dem-
onstrate that observed phenotypic differences
are both genetically based and adaptive (i.e.,
increase fitness). We deemphasize the require-
ment that a population must have a unique
ecological role that is nonexchangeable with
sister populations on adjacent islands or the
mainland. We also argue that even if island
populations do not qualify as ESUs using our
framework, they may still warrant some level
of conservation prioritization, depending on
the degree of neutral, phenotypic, and adaptive
divergence from mainland or other island
populations (see “Summary and Recommen-
dations” and Table 1). The 3 components of this
modified framework are (1) neutral genetic
divergence, (2) phenotypic divergence, and
(3) genetically based local adaptation; and we
present the data required to test these criteria.

Neutral Genetic Divergence

Despite our a priori expectation that most
insular populations should show some degree of
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TABLE 1. Criteria for delineating evolutionarily significant units (ESUs) and conservation priority for insular popula-
tions based on neutral genetic, phenotypic, and adaptive divergence. Supporting evidence for divergence or designation
as an ESU (yes), failure to find evidence for divergence or ESU (no), missing data (no data), and unresolved (?).

Lines of evidence

Conclusion

Genetically based Evolutionarily
Neutral genetic Phenotypic adaptive significant Conservation
divergence divergence divergence unit priority
yes yes yes yes highest
yes yes no data ? higher
yes no data no data ? high
no yes yes no high
yes yes no no mid
yes no no no low
no yes no data no low
no yes no no low
no no no no lowest

genetic differentiation, we recognize the import-
ance of neutral genetic data to confirm isolation
of island populations. Therefore, as a first step in
identifying insular endemic populations, we
recommend comparing genetic divergence at
neutral loci across island and mainland popula-
tions or between island populations. We also
agree with the recommendation of Crandall et
al. (2000) for measuring genetic differentiation
on both historical and recent time scales. The
magnitude of recent genetic differentiation is
expected to vary among taxa due to differences
in life history and dispersal abilities and thus
should be considered with reference to the level
of genetic differentiation between species, sub-
species, and populations in other parts of the
taxon’s range (Oliva-Tejera et al. 2006).

Traditionally, phylogeographic studies use
mitochondrial, chloroplast, or nuclear DNA
sequence data to infer deeper historical rela-
tionships among populations, whereas landscape
genetic studies use microsatellite loci to quan-
tify genetic structure on more recent time
scales. Both approaches have been applied to
delineate island ESUs (Appendix). Gene flow
can also be estimated from measurements of
genomic variation across populations based
on single-nucleotide polymorphisms (SNPs),
thereby allowing characterization of adaptive
differentiation (Luikart et al. 2003, Hohenlohe
et al. 2010, De Wit et al. 2012).

Phenotypic Divergence

The second component of our framework
addresses variation in morphological, behav-
ioral, or demographic traits among islands and
between continental island and mainland popu-
lations. The first step in documenting adoptive

differentiation is quantifying divergence in
phenotypic traits that are easily measured, and
this practice has been applied to several island
studies to date (Appendix). Insular populations
often exhibit the insular syndrome: a suite of
morphological, life history, or behavioral traits
that appear to be adaptive for island environ-
ments (e.g., Postma and van Noordwijk 2005).
Divergence in traits used for courtship and
mating might also reveal island populations
that are in the early stages of speciation (West-
Eberhard 1983, Coyne and Orr 2004). However,
the mere detection of unique phenotypic
traits is not sufficient for establishing whether
adaptive differentiation has occurred. We
recommend that these data be used to frame
hypotheses and develop appropriate tests for
local adaptation.

Local Adaptation

The third component of our framework
requires testing whether island populations
are adaptively differentiated from mainland
or other island populations. Many studies in-
clude phenotypic divergence as supporting
evidence for subspecific or ESU designation
of island populations (Fig. 1). However, few
test whether these differences are the products
of adaptive evolution (Appendix), which testing
requires that traits have a genetic basis and
confer a fitness benefit in the local environment
(Funk and Fa 2006). Experimental, genomic,
and field studies can elucidate patterns of local
adaptation. Below we describe several different
approaches that can be applied to determine
whether observed phenotypic differences of
island populations are genetically based local
adaptations with fitness consequences.
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Identifying Adaptive Differentiation

EXPERIMENTAL STUDIES.—Reciprocal trans-
plant (RT) and common garden (CG) experi-
ments are the most common approaches for
investigating local adaptation (reviewed by
Kawecki and Ebert 2004, Rader et al. 2005).
These experimental designs are well suited for
sessile or small organisms (e.g., plants, some
insects, and small vertebrates; Losos et al. 2000)
and are powerful for distinguishing evolved
responses from environmentally mediated
ones. A review of RT and CG experiments
detected high levels of adaptive variation in
marine taxa, but few of those studies were
evaluated in an ESU framework (Conover et
al. 2006), emphasizing the disconnect between
studies of adaptive variation and conservation.
RT and CG experiments can be challenging
to conduct on vertebrates, especially species of
conservation concern (Mittelbach et al. 1999,
Ballentine and Greenberg 2010, Herczeg and
Valimaki 2011, Svanback and Eklov 2011). In
light of this limitation, we propose that in
situations where RT and CG experiments are
not feasible, population genomic and field
studies be used to determine the genetic basis
of phenotypic differences observed between
island and mainland populations.

POPULATION GENOMIC STUDIES.—Population
genomics is a powerful approach for charac-
terizing adaptive differentiation among island
populations (Hudson 2008, Morozova and
Marra 2008, Stapley et al. 2010). Sequencing
SNPs can be used to identify adaptively diver-
gent populations and to study reproductive
isolation and incipient speciation processes
(Nosil and Feder 2012), and this method has
been validated for known divergent ecotypes
(Lumley and Cusson 2013). One approach is
to compare genetic distances across thousands
of loci to identify outlier loci, presumably under
divergent selection, to characterize adaptive
differentiation among populations (Luikart et
al. 2003, Funk et al. 2012). Ideally, many loci
of adaptive significance should be examined
to quantify overall adaptive differentiation in
response to the multiple dimensions of envi-
ronmental variation. We advise against using
few genes of known function because this does
not characterize overall adaptive differentiation
(Funk et al. 2012). Genomic data are rapidly be-
coming more affordable and easier to obtain,
which will increase the importance of population
genomics in conservation (Allendorf et al. 2010,
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Lumley and Cusson 2013). For example, one
can conduct a population genomic study using
RAD tag technology for $50 to $100 per indi-
vidual (Allendorf et al. 2010), a cost that is less
than many long-term monitoring programs.

FIELD sTUDIES.—Studies that measure selec-
tion or test whether divergent traits are adaptive
in the field can help distinguish between local
adaptation and phenotypic plasticity, especially
in cases where funding is limited and RT and
CG experiments are not feasible. Field research,
particularly behavioral studies, need not be
invasive or time consuming, contrary to asser-
tions by some evolutionary biologists (e.g., Zink
2007). For example, Peluc et al. (2008) used a
simple experimental design to demonstrate
in one field season that the unique nest-site
selection behavior exhibited by Orange-crowned
Warblers (Oreothlypis celata) on Santa Catalina
Island reflected the birds™ ability to respond
plastically to variation in the nest-predator com-
munity, rather than a genetically based pheno-
typic differentiation. Quantifying patterns of
morphological and life history variation among
populations typically requires more intensive,
long-term study (e.g., Radar et al. 2005). For
example, selection gradient analysis of marked
individuals can help identify whether divergent
traits are under selection (Lande and Arnold
1983). Closely related species could act as
proxies for an insular population that is not
amenable to experimental studies. (Friesen et
al. 2006, Bottin et al. 2007).

Applying the Framework

Combining data on genetic and phenotypic
divergence with considerations of local adap-
tation will make it possible to set appropriate
priorities for conservation management on
islands. Such an approach may require more
effort in determining ESUs but could improve
efficiency in delineating ESUs, particularly as
population genomics become more feasible
and cost effective. We will also gain a deeper
understanding of the processes that drive
adaptive genetic differentiation by explicitly
considering and quantifying the continuum
of genetic divergence that is expected for
island populations connected by varying levels
of gene flow and exposed to varying levels of
divergent selection.

We make specific recommendations in
Table 1 for ranking populations based on the
degree of neutral, phenotypic, and adaptive
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differentiation compared to other island and
mainland populations. We define an ESU as a
population that shows both genetic divergence
at neutral loci and adaptive, genetically based
phenotypic differences. Assuming that the
demographic characteristics among populations
are equal, we place the highest conservation
priority on populations where evidence exists
for adaptive genetic differentiation, even when
tests for the genetic basis of phenotypic diver-
gence are pending. Mid-priority is assigned to
populations that are genetically isolated and
that exhibit phenotypically plastic differentia-
tion from neighboring populations. Populations
that are divergent at neutral loci but have no
phenotypic or adaptive differences are lower
priority. Populations that show no detectable
differentiation at neutral genetic loci (even with
sufficiently variable loci) but exhibit pheno-
typic differences (e.g., Ballentine and Greenberg
2010) should have some conservation value.
Populations that are indistinguishable both
genetically and phenotypically are not consid-
ered a distinct ESU and are the lowest conser-
vation priority. We suggest that this ranking
system be used to identify island populations
that are most deserving of limited economic
resources for biodiversity conservation efforts.
Nonetheless, other factors must also be consid-
ered when making decisions about conservation
prioritization, including population status, our
ability to influence population viability through
management actions, management objectives
of different land owners, and socioeconomic
factors.

Beyond prioritization, data on neutral versus
adaptive genetic differentiation can also inform
the management of populations that have
been identified as a conservation priority. For
instance, insular populations are particularly
susceptible to the demographic and genetic con-
sequences of small population sizes, especially
when anthropogenic stressors reduce numbers
below historic levels. Translocation of individuals
from neighboring populations is one manage-
ment strategy to consider in those situations.
This strategy has the potential to ameliorate
demographic stochasticity or inbreeding depres-
sion but could also lead to outbreeding de-
pression if the translocated individuals originate
from an adaptively divergent population. Out-
breeding depression is most likely when popu-
lations are adaptively divergent and least likely
when they only differ at neutral loci (Frankham
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et al. 2011). The benefit of demographic or
genetic rescue may outweigh the potential cost
of outbreeding depression for a population
undergoing severe declines, but information
on the degree of adaptive population divergence
could still be valuable for management.

We recognize that identifying conservation
units at the intraspecific level can be challeng-
ing with real-world data and pressing manage-
ment concerns. The degree of population-level
divergence can fall along a spectrum that ranges
from slight divergence at neutral loci, to adap-
tive phenotypic divergence, to incipient specia-
tion. These gradations in divergence should be
translated into priority management categories.
However, insular populations require a par-
ticularly strong emphasis on identifying and
understanding patterns of adaptive divergence,
not just neutral genetic divergence.

CASE STUDIES ON THE CALIFORNIA
CHANNEL ISLANDS

The California Channel Islands have been
the focus of intensive conservation manage-
ment over recent decades. Here, we highlight
2 case studies of species of conservation con-
cern to demonstrate how our framework for
delineating ESUs could be applied toward
their management.

Loggerhead Shrike

San Clemente Island is home to an
endemic population of Loggerhead Shrike
(Lanius ludovicianus mearnsi) that was driven
nearly extinct by habitat destruction due to
livestock grazing and other anthropogenic
land-use disturbances. This population was
listed under the U.S. Endangered Species Act
(ESA) in 1977 (USFWS 1977), and the popu-
lation size dropped to an estimated low of 14
individuals in 1998 (USFWS 2009). Since
then, an intensive and costly management
program ($25 million from 1993 to 2008;
DOD 2010) has involved invasive species
removal, management of shrike breeding
habitat, captive breeding, and the removal or
eradication of 5 species of native shrike
predators (Elliot and Popper 1999). The popu-
lation increased to nearly 200 individuals by
2009 (including juveniles and nonbreeding
adults) but remains listed under the ESA due
to small population size and other ongoing
threats (USFWS 2009).
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The management actions used to conserve
shrikes on San Clemente Island have been
controversial, in part because of their cost and
their impact on other native vertebrate species,
including the endemic island fox (Urocyon lit-
toralis, Roemer and Wayne 2003), and the
debate over the population’s genetic distinc-
tiveness. Lanius l. mearnsi was described by
Ridgeway (1903) and later Miller (1931) based
on plumage and morphological characters.
Subsequent genetic studies concluded that the
San Clemente shrikes are genetically distinct
from populations on the mainland and on the
northern Channel Islands (Mundy et al. 1997,
Eggert et al. 2004, Caballero and Ashley 2011).
However, genetic analyses of museum speci-
mens collected in the late 1800s and early 1900s
have detected a decline in genetic diversity
over time, and those specimens have a different
genetic composition than the postmanagement
birds sampled after 1990. Moreover, the post-
management population of L. [ mearnsi is
more genetically distinct from the mainland
and other islands than was the historical popu-
lation. Thus, the apparent genetic distinctive-
ness of L. . mearnsi may reflect, to a certain
extent, the effects of genetic drift during the
extreme population bottleneck of the past
century, as well as the effects of population
management since 1990—a situation that may
warrant very different management strategies
than would be the case for a population with
strong historical isolation.

Two questions arise regarding future con-
servation of shrikes on San Clemente Island:
(1) whether continued investment in intensive
management is still justified and (2) whether
the management strategy for L. L mearnsi
should involve genetic rescue via shrikes from
other populations. These 2 questions invoke
both the logistical and philosophical complica-
tions surrounding conservation management.
Our framework provides an objective template
to help with these decisions. San Clemente
Island shrikes would be recognized as “higher”
conservation priority (one level below “highest”;
Table 1) but not designated as an ESU (Table 1)
based on currently available data (evidence of
both genetic and phenotypic divergence). For
this population to be designated formally as an
ESU, further studies of adaptive differentia-
tion would be needed to show that shrikes on
San Clemente Island have evolved genetically
based local adaptations and have diverged
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from the mainland population and other islands
in the archipelago. The decision about whether
to pursue genetic rescue also relies on under-
standing whether or not the source and
receiving populations share genetically based
adaptive variation. The introduction of alleles
from another island via captive breeding or
translocation could result in maladapted off-
spring if the source population was locally
adapted to divergent environmental condi-
tions. Studies of adaptive variation in Channel
Island shrikes would provide these answers.

Island Fox

Consistent with the insular syndrome
(Lomolino 2005), the island fox has evolved
a much smaller body size compared to its
mainland ancestor, the gray fox (Urocyon
cinereoargenteus; Collins 1993). Island foxes
are found on 6 of the 8 Channel Islands. Sub-
species status was granted to foxes on each of
those islands based on interisland differences
in morphology and neutral genetic structure
(Gilbert et al. 1990, Wayne et al. 1991, Collins
1993). However, we do not know whether the
morphological differences observed between
islands (Collins 1993) are a product of local
adaptation (e.g., to different climate regimes
or different community composition), genetic
drift in small founder populations, or pheno-
typic plasticity.

In the early 2000s, these subspecific desig-
nations were central to management decisions
after catastrophic population declines of foxes
on 4 of the Channel Islands. Captive breeding
programs were established for each of the
affected subspecies on their respective
islands, and each was listed as endangered
under the ESA in 2004 (USFWS 2004). Addi-
tional intensive management actions included
a vaccination program for canine distemper,
the removal of Golden Eagles (Aquila chrysae-
tos) from the northern Channel Islands, and
the reintroduction of Bald Eagles (Haliaeetus
leucocephalus), which through agonistic inter-
actions may deter A. chrysaetos (Morrison 2008).
These management programs ultimately proved
successful. Fox populations have rebounded
on all 4 of the affected islands, although popu-
lation monitoring and vaccination efforts con-
tinue (Coonan et al. 2010).

The island fox example provides the oppor-
tunity to evaluate whether, given the same data,
the previous designations of island populations
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(based on Gilbert et al. 1990) and our frame-
work reach the same conclusions regarding the
conservation priority of island foxes. As with
the San Clemente Island shrikes, our frame-
work would not have identified each island fox
population as an ESU due to lack of evidence
of adaptive differentiation but would have
classified the islands as “higher” priority, owing
to evidence of genetic and phenotypic diver-
gence. Resource managers followed the pre-
cautionary principle, given the limited data on
local adaptation in the island fox populations.
Going forward, however, limited resources for
conservation management and new knowledge
may call for a different approach.

The island fox is likely a “conservation-
reliant” species (Scott et al. 2005) that will
require continued monitoring and active
management for long-term persistence (Coonan
et al. 2010). All 6 U littoralis populations
have low levels of genetic variation (Wayne et
al. 1991) and thus may lack the adaptive varia-
tion to survive future environmental changes
(Allendorf and Luikart 2007). Although we
currently have no evidence of inbreeding de-
pression on any of the islands, managers have
recognized that a future conservation option
may include translocations between islands,
with the goal of genetically rescuing fox popu-
lations (Coonan et al. 2010). If this is deemed
a potentially necessary strategy, then knowl-
edge of the degree of adaptive population
divergence between islands will be critical for
developing an effective translocation strategy
and for understanding the potential risks of
outbreeding depression.

CONCLUSIONS

The shrike and fox examples both involved
intensive, costly management programs that
were aimed at saving island-endemic popula-
tions. The population crashes were relatively
sudden, particularly in the case of the island fox,
and strategies were developed based on exist-
ing subspecies delineations and data on con-
servation threats. Our goal here is not to
question the management actions of the past
but to suggest that future management of these
species might be enhanced by knowledge of
the degree of adaptive population divergence
between island populations. The recent anthro-
pogenically driven population crashes have led
to a decline in already low genetic diversity in
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both the shrike and fox (e.g., Frankham 1997).
If future conservation management requires
translocation in order to maintain population
viability, managers would benefit from knowl-
edge of the degree of local adaptation to the
conditions on each island. Further, research
on adaptive divergence could be important
for prioritizing limited conservation funds. For
instance, it may or may not be worth spending
millions of dollars to save the genetic diversity
contained within a remnant population of 20
individuals if those individuals are not geneti-
cally distinct and locally adapted compared to
populations on neighboring islands. Questions
like this are difficult to answer and ultimately
require a consideration of factors ranging from
relative priority of neutral genetic diversity
versus adaptive genetic diversity to societal
values.

Island populations and species are particu-
larly vulnerable to local extirpation due to iso-
lation, small population sizes, climate change,
and the introduction of nonnative species.
The framework we have presented here could
aid in the identification and conservation of
vulnerable insular taxa. Our framework may
also be useful for delineating intraspecific
conservation units for mainland taxa that in-
habit “habitat islands” that are susceptible to
the same genetic and demographic threats as
true islands (Knowles 2001, Holycross and
Douglas 2007, Bech et al. 2009). Ultimately,
we believe that given limited conservation
funding, knowledge of adaptive differentiation
is essential for developing sound conservation
strategies, particularly for geographically iso-
lated populations.
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