

Discovery of EST-Derived Microsatellite Primers in the Legume Lens culinaris (Fabaceae)

Authors: Jain, Neelu, Dikshit, H. K., Singh, D., Singh, Akanksha, and Kumar, Harish

Source: Applications in Plant Sciences, 1(7)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1200539

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

DISCOVERY OF EST-DERIVED MICROSATELLITE PRIMERS IN THE LEGUME LENS CULINARIS (FABACEAE)¹

NEELU JAIN², H. K. DIKSHIT^{2,3}, D. SINGH², AKANKSHA SINGH², AND HARISH KUMAR²

²Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India

- *Premise of the study:* We developed microsatellite markers in the legume *Lens culinaris* from publicly available databases to enrich the limited marker resource available for the crop.
- Methods and Results: Eighty-two primer sets were identified using expressed sequence sets of L. culinaris available in the National Center for Biotechnology Information (NCBI) database and were characterized in six species of Lens. Among them, 20 simple sequence repeat (SSR) primers produced no amplification product, 43 produced monomorphic products, and 19 were polymorphic. The primers amplified mono-, di-, tri-, tetra-, penta-, and hexanucleotide repeats with one to four alleles. These SSR loci successfully amplified in five related wild species, with a total of 61 primer pairs in L. nigricans and L. odemensis (98.39%), 59 in L. tomentosus (95.1%), and 60 in L. ervoides and L. orientalis (96.7%), respectively.
- Conclusions: The microsatellite markers discovered in this study will be useful in genetic mapping, marker-assisted breeding, and characterization of germplasm.

Key words: EST-SSRs; Fabaceae; Lens culinaris; microsatellites.

Lentil (*Lens culinaris* Medik. subsp. *culinaris*) is a selfpollinated crop (2n = 2x = 14) belonging to the Vicieae tribe in the Fabaceae family. Lentil is a rich source of protein and micronutrients and is grown mainly in the Indian subcontinent, Middle East, North Africa, southern Europe, North and South America, Australia, and West Asia. Lentil has varied uses for consumption as a main dish, salads, or infant foods, and mixed with cereals to make bread and cakes. Although lentil is a highly nutritious food legume, its conservation and breeding potential is largely limited by a lack of molecular markers available for the crop.

Microsatellites are well-known genetic markers because of their codominant inheritance, polymorphism, and abundant coverage. They have become the markers of choice for many crops for studying genetic relatedness, diversity analysis, and constructing framework genetic maps. A limited number of microsatellite markers (approx. 100) have been published in L. culinaris to date. Hamwieh et al. (2005) developed 35 simple sequence repeat (SSR) markers, but these have reported no amplification or limited polymorphism, creating a major bottleneck to gene tagging and mapping studies in this crop. Kaur et al. (2011) developed 51 SSRs in L. culinaris, but these are less polymorphic and not sufficient to be used for genetic studies or for marker-assisted selection. An effective strategy for enrichment of microsatellite markers is the screening of expressed sequence tags, thereby reducing the time and cost for microsatellite development. The objective of this study was to develop

¹Manuscript received 5 October 2012; revision accepted 21 November 2012.

The work was supported by the grants received from the Department of Science and Technology (DST) (project no: SR/SO/PS-29/2009), India.

³Author for correspondence: dikshitharsh@rediffmail.com

new microsatellite markers using this strategy and characterize them in 18 *L. culinaris* accessions. The amplification success of these markers was also investigated in five wild *Lens* Mill. species (*L. nigricans* (M. Bieb.) Godron, *L. odemensis* Ladiz., *L. tomentosus* Ladiz., *L. ervoides* (Brign.) Grande, *L. orientalis* Popow) for potential genetic application or improvement of cultivated lentil (*L. culinaris*).

METHODS AND RESULTS

A total of 9513 *L. culinaris* expressed sequence tags (ESTs) were downloaded from the dbEST/GenBank database as of 15 January 2012 (http://www. ncbi.nlm.nih.gov). The ESTs were trimmed for poly(A) tails, and vector sequence contamination were removed using the SeqClean program (Masoudi-Nejad et al., 2006). The trimmed EST sequences were assembled into unigenes with the Cap3 program (Huang and Madan, 1999) to reduce redundancy. The unigenes containing 951 contigs and 3092 singletons produced a total of 251 putative SSRs using the software Troll (Martins et al., 2009). The fragments with inappropriate flanking sequences or with less than 500 bp were excluded and 82 SSRs were designed using Primer3 software (Rozen and Skaletsky, 2000).

The newly identified microsatellite markers were screened on 32 individuals representing six Lens species including 18 accessions from cultivated species and 14 wild accessions comprising five species. Voucher specimens were sourced from the International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria, and the lentil breeding program at the Indian Agricultural Research Institute (IARI), New Delhi, India (Appendix 1). The genomic DNA from each individual was isolated using the cetyltrimethylammonium bromide (CTAB) method as described by Murray and Thompson (1980). PCR mixtures of 20 µL consisted of 2.0 µL 10× buffer (100 mM Tris-HCl, 500 mM KCl, 15 mM MgCl₂, 0.01% gelatin), 200 µM each dNTP, 0.5 µM each of forward and reverse primers, 1 U Taq DNA polymerase (PCR reagents and primers procured from Sigma-Aldrich, St. Louis, Missouri, USA), and ~40 ng DNA and were performed in a Veriti Thermal Cycler (Applied Biosystems, Life Technologies, Singapore). The PCR protocol consisted of one denaturation cycle at 94°C for 4 min followed by 30 cycles of 94°C for 1 min, annealing at 59-62°C (depending upon the primer) for 30 s, extension at 72°C for 1 min, and a final extension at 72°C for 8 min. The amplification fragments were separated on 3% MetaPhor Agarose gels (Lonza, Rockland, Maine, USA) and

Applications in Plant Sciences 2013 1(7): 1200539; http://www.bioone.org/loi/apps © 2013 Botanical Society of America

doi:10.3732/apps.1200539

Applications in Plant Sciences 2013 1(7): 1200539 doi:10.3732/apps.1200539

visualized by ethidium bromide staining. The band size was obtained in comparison to a 100-bp DNA ladder (MBI, Fermentas, Vilnius, Lithuania). Among these 82 SSRs, 62 amplified successfully in most of the species, providing an amplification success rate of 75.6%, and 19 of them showed more than two clear scorable bands in the *Lens* species (Table 1). Primer sequences and related information for 43 monomorphic EST-SSR primers are available as Appendix 2. The conservation of SSRs across species has been validated by sequencing one amplicon from each species. The EST-SSR markers amplified one to four alleles among the six species. The expected heterozygosity was determined on the basis of the number of genotypes amplified per species and ranged from 0 to 0.875 (Table 2). The putative functions of SSR-associated unigenes were determined by using BLASTX (Altschul et al., 1997) against the nonredundant GenBank database.

CONCLUSIONS

The EST-SSR markers identified and characterized in this study have enriched the limited microsatellite marker resources in *Lens* species. The markers developed will be helpful

in saturating *Lens* genetic maps and for tagging and mapping of genes and quantitative trait loci associated with important traits to be further used in marker-assisted breeding for enhancing productivity and quality. These markers would also be helpful in studying genetic diversity and detecting interspecies polymorphisms for marker-based introgression of genes from related species.

LITERATURE CITED

- ALTSCHUL, S. F., T. L. MADDEN, A. SCHAFFER, J. ZHANG, Z. ZHANG, W. MILLER, AND D. J. LIPMAN. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Research* 25: 3389–3402.
- HAMWIEH, A., S. M. UDUPA, W. CHOUMANE, A. SARKER, F. DREYER, C. JUNG, AND M. BAUM. 2005. A genetic linkage map of *Lens* sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. *Theoretical and Applied Genetics* 110: 669–677.

TABLE 1. Characteristics of the 19 polymorphic EST-SSRs identified in *Lens culinaris*.

No.	EST-SSR locus	GenBank EST no. (Probe DB_id)		Primer sequences $(5'-3')$	Repeat motif	$T_{\rm a}$ (°C)	Allele size range (bp)	Putative function (organism)	BLASTX <i>E</i> -value
1	PLC5	GT626272 (16537804)	F:	CATTGCAGCTTATTCTCACAGC	(CAATGG) ₅	60	320-360	Auxin-induced protein	2E-41
2	PLC10	GT62175 (16581945)	R: F: R:	TGCAACAAAGGACACTAGAGGTT ATTTCTTTCTCCCTAACCAGCC	(AT) ₆	59	279–328	Predicted aspartic proteinase nepenthesin-1 like protein (<i>Glycine max</i>)	1E-157
3	PLC16	GT627608 (16581946)	F: R:	CGTTTGATCTTCTAAGCCCCTA AAGGGAAAGGATGTTTGACTTG	(T) ₁₀	59	255-270	(Glycine max) (Glycine max)	2E-10
4	PLC17	GT624932 (16581947)	F:	AAGCTGAAGGAAATCAAAGTGG	(TCTTT) ₃	59	315-335	Peptidyl prolyl cis-trans isomerase (Arabidopsis	1E-118
			R:	TCAACACACTCCATGTTTAGAGC				thaliana)	
5	PLC21	GT626993 (16581949)	F: R:	AACTCGCATCCTCTTCACAACT GGACCTTTCCCTTGTAGTCACC	(TTC) ₆	60	264–286	Glutathione peroxidase (Medicago truncatula)	5E-112
6	PLC22	GT626865 (16581950)	F: R:	TACACTGAAGGAGATGCACTGG TAACAACAAAACACAGCTTCGC	(T) ₁₁	60	279–290	DNA-directed RNA polymerase I, II, and III subunits (<i>Medicago truncatula</i>)	1E-43
7	PLC30	GT625366 (16581951)	F: R:	TTGGTCAGGTTCTCAATCCTCT ACGGATGAACGCTTGTAAAGAA	(T) ₁₀	61	243–257	Uncharacterized protein (<i>Glycine max</i>)	3E-39
8	PLC35	GT619232 (16581952)	F: R:	TTGCTTCCTCCTCTTCTCACTC AGCCTCAGTACCCTCCTCTTT	(T) ₁₀	60	260-277	GDP-L-galactose phosphorylase-1 like (<i>Glycine max</i>)	7E-141
9	PLC38	GT626497 (16581953)	F: R:	CCTGGAGAAGTCTGTGGAAGAT AGCTCTAGCATTTTGCATGTGA	(TTTGT) ₃	59	309-334	LEA protein (<i>Medicago</i> truncatula)	4E-65
10	PLC39	GT624018 (16581954)	F: R:	CAGAGAAATCCCCTGCTGAG CATGATTCCCATAGCCTTGC	(AAG) ₅	62	158–178	5'-adenylylsulfate reductase 3 (<i>Glycine max</i>)	1E-177
11	PLC42	GT626865 (16581955)	F: R:	AACCAATCATGGCTTCTGCT TTTCACCGTCTTTATGAACCA	(GA) ₈	60	183–210	BZIP transcription factor ATB2 (<i>Medicago truncatula</i>)	6E-78
12	PLC46	GT624901 (16581956)	F: R:	CAAACTGGAAGATGCTGCTG TGACCCATCCTCATCCTTAAA	(CAATGG) ₃	61	192–220	Auxin-induced protein 5NG4-like (<i>Medicago</i> truncatula)	2E-71
13	PLC51	GT624642 (16581957)	F: R:	CCATGATGAGCCTTGAATGA TCTTCAATCTCCAGGAACACTTT	(GAA) ₁₀	62	125–143	Peroxidase (<i>Medicago</i> truncatula)	0.0
14	PLC60	GT624076 (16581958)	F:	TGCTTGGACCCTAAATTTGC	$(TA)_6$	60	130–145	Cysteine proteinase inhibitor (<i>Medicago truncatula</i>)	4E-131
15	PLC63	GT619353 (16581959)	F:	TTGATGGCTATGGGAGTGGT	$(TTA)_8$	60	175–189	(<i>Medicago truncatula</i>) Early nodulin-like protein (<i>Medicago truncatula</i>)	1E-51
16	PLC70	GT618700 (16581960)	F:	CATCTCTTCGTGGCGTAAT	(GTT) ₉	60	179–195	Albumin-2 (<i>Pisum sativum</i>)	6E-159
17	PLC74	GT624794 (16581961)	F:	GATTTACCGATGGATCTTCA	$(TTA)_6$	61	168–191	Xylose isomerase (Medicago truncatula)	5E-68
18	PLC81	GT621832 (16581962)	F: R:	GGGTAGAGTATTATTGAAGGTGG AGAATCGCTAGTTTAGAGCAAG	(TA) ₆	61	182–209	Chromo-domain–containing protein LHP1 (<i>Medicago</i> <i>truncatula</i>)	8E-34
19	PLC82	GT621329 (16581963)	F: R:	CACCAATCTTCACTTCACTTTC CAAGTACAAGGACTGACTAGGG	$(GAA)_4$	60	178–200	Legumin protein (garden pea)	5E-121

Note: T_a = annealing temperature.

Table 2.	Total number of alleles	(A) and	l expected	heterozygosity	$(H_{\rm e})$) of ES	ST-SSRs	in six	Lens	species.
----------	-------------------------	---------	------------	----------------	---------------	---------	---------	--------	------	----------

	L. culi	<i>naris</i> Medik. n = 18)	L. nigr Go	<i>icans</i> (M. Bieb.) dron $(n = 3)$	<i>L. od</i> Ladi	demensis z. $(n = 3)$	L. te Ladiz	p_{n} ($n = 2$)	<i>L. erv</i> Gra	oides (Brign.) nde $(n = 4)$	L. o Popo	$\frac{1}{1}$ ow $(n = 2)$
EST-SSR locus	Α	H _e	Ā	H _e	A	H _e	A	H _e	A	H _e	A	$H_{\rm e}$
PLC5	3	0.494	2	0.444	1	0.000	2	0.500	2	0.688	2	0.500
PLC10	3	0.586	2	0.444	2	0.444	1	0.000	2	0.375	1	0.000
PLC16	4	0.799	2	0.444	1	0.000	2	0.500	2	0.500	1	0.000
PLC17	2	0.198	2	0.444	2	0.444	1	0.000	2	0.375	2	0.500
PLC21	4	0.722	1	0.000	2	0.444	1	0.000	2	0.375	1	0.000
PLC22	3	0.667	2	0.444	2	0.444	2	0.500	3	0.625	2	0.500
PLC30	3	0.648	2	0.444	1	0.000	1	0.000	2	0.500	1	0.000
PLC35	4	0.667	2	0.444	1	0.000	2	0.500	2	0.375	2	0.500
PLC38	4	0.722	2	0.444	2	0.444	1	0.000	2	0.375	2	0.500
PLC39	3	0.537	2	0.444	3	0.667	1	0.500	2	0.500	2	0.500
PLC42	3	0.648	2	0.444	1	0.000	1	0.000	2	0.375	2	0.500
PLC46	3	0.046	3	0.667	4	0.222	2	0.500	3	0.438	1	0.000
PLC51	3	0.278	2	0.444	3	0.667	2	0.500	2	0.375	2	0.500
PLC60	4	0.747	2	0.444	2	0.444	1	0.000	2	0.625	1	0.000
PLC63	4	0.623	3	0.667	1	0.000	2	0.500	3	0.375	1	0.000
PLC70	_		2	0.444	1	0.000		_	2	0.875	1	0.000
PLC74	4	0.747	3	0.667	1	0.000	2	0.500	3	0.625	2	0.500
PLC81	4	0.386	2	0.778	3	0.667	1	0.000	1	0.000	1	0.000
PLC82	4	0.574	2	0.444	2	0.444	1	0.000	3	0.625	1	0.000

Note: — = no amplification; n = number of accessions used for each species.

- HUANG, X., AND A. MADAN. 1999. CAP3: A DNA sequence assembly program. Genome Research 9: 868–877.
- KAUR, S., N. O. COGAN, L. W. PEMBLETON, M. SHINOZUKA, K. W. SAVIN, M. MATERNE, AND J. W. FORSTER. 2011. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. *BMC Genomics* 12: 265–276.
- MARTINS, W. S., D. C. S. LUCAS, K. F. S. NEVES, AND D. J. BERTIOLI. 2009. WebSat: A Web software for microsatellite marker development. *Bioinformation* 3: 282–283.
- MASOUDI-NEJAD, A., K. TONOMURA, S. KAWASHIMA, Y. MORIYA, M. SUZUKI, M. ITOH, M. KANEHISA, ET AL. 2006. EGassembler: Online

bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. *Nucleic Acids Research* 34(Supplement 2): W459–W462.

- MURRAY, M. G., AND W. F. THOMPSON. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 4321–4325.
- ROZEN, S., AND H. J. SKALETSKY. 2000. Primer3 on the WWW for general users and for biologist programmers. *In* S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

APPENDIX 1. Voucher information for Lens species used for the EST-SSR polymorphism study.

Species	Country of origin/source	Voucher accession no.	Specimens collected/maintained
Lens culinaris Medik.	Turkey	IG-70208, IG-70211, IG-112, IG-115, IG-12	ICARDA, Aleppo, Syria
	Ethiopia	IG-208, IG-69502, IG-69513, IG-69517, IG-69522, IG-70174	ICARDA, Aleppo, Syria
	India	L4149, PL08, L9-12, L830, L4603	NBPGR and IARI, New Delhi, India
	Syria	FLIP2004-7L, ILL4605	ICARDA, Aleppo, Syria
L. nigricans (M. Bieb.) Godron	Syria	ILWL-111, ILWL-22, ILWL-445	ICARDA, Aleppo, Syria
L. odemensis Ladiz.	Syria	ILWL-254, ILWL-35, ILWL-153	ICARDA, Aleppo, Syria
L. tomentosus Ladiz.	Syria	ILWL-91, ILWL-93	ICARDA, Aleppo, Syria
L. ervoides (Brign.) Grande	Syria	ILWL-126, ILWL-206, ILWL-139, ILWL-393	ICARDA, Aleppo, Syria
L. orientalis Popow	Syria	ILWL-7, ILWL-81	ICARDA, Aleppo, Syria

Note: IARI = Indian Agricultural Research Institute; ICARDA = International Center for Agricultural Research in Dry Areas; NBPGR = National Bureau of Plant Genetic Resources.

Applications in Plant Sciences 2013 1(7): 1200539 doi:10.3732/apps.1200539

APPENDIX 2. Primer seq	uences and characteristics	s of the 43 monomor	phic EST-SSR markers in I	Lens. ^a

No.	EST-SSR locus		Primer sequences $(5'-3')$	Repeat motif	$T_{\rm a}$ (°C)	Allele size (bp)	Putative function (organism)	BLASTX <i>E</i> -value
1	PLC2	F:	TTGACTGTTCTGGCGTTTTCTA	(T) ₁₉	56	330	Peptidyl-prolyl cis-trans isomerase	5E-101
		R:	TGCACCATCTTTTGCCTACATA				(Medicago truncatula)	
2	PLC4	F:	CCTATCGGGAAACTACATGGAA	(GGCAGC) ₃	58	359	Calnexin-like protein (Zea mays)	1E-157
		R:	TCTGCATTGGTCTTCTTCTCAA					
3	PLC6	F:	ATCAAGTTAGGGACGATTGGAA	(GTA) ₆	56	185	Hypothetical protein MTR_5g092090	2E-65
		R:	TGGTTGTAGTCTTTTAGGGTTTGC				(Medicago truncatula)	
4	PLC7	F:	GCTTTTATGATCTTCTCGTGGT	(GAAT) ₄	56	184	Chitinase domain-containing protein	6E-17
		R:	CGAGGATTACTTTTCAATGGTC				1-like (<i>Glycine max</i>)	
5	PLC8	F:	CTCCTTCCATTTCTCTTTTCTGC	(TTC) ₆	58	158	Uncharacterized protein (Glycine max)	1E-108
		R:	TCCTGAACGACACCAACACTAC					
6	PLC9	F:	ATGTGGATACGTCAGAAACCCT	(TATCTA) ₄	56	348	Glycinin subunit G7 (Glycine max)	8E-56
		R:	TCGAGAACTGGGAGAGTCAAAT					
7	PLC11	F:	GTTTGTTTGGTTTGACTGGGAT	(TTA) ₆	58	185	Histone H1 (Pisum sativum)	1E-35
		R:	TTAGGAACGGTGTCGAGTACAA					
8	PLC12	F:	GGAAGCAAGATGGAAGAAGTTG	(T) ₁₁	60	146	Heat-shock protein	2E-49
		R:	GCGCCATTAGTGCAGAGTAAAT				(Medicago truncatula)	
9	PLC13	F:	TCACCATTTTGGGTTATCTTCC	(T) ₁₃	56	211	Hydrophobic protein LTI6B-like	1E-17
		R:	AGCTTCACACTATCAATTCCACAC				(Cicer arietinum)	
10	PLC14	F:	TCTGGAAGAGGGTTTGTACCAT	(T) ₁₂	56	210	Uncharacterized protein	1E-66
		R:	GCAGTTAGATCACAGCTACCAAAA				(Cicer arietinum)	
11	PLC15	F:	CCAGTAAAAGAGCTTGCATTCC	(A) ₁₀	58	345	Vicilin precursor (Vicia faba)	1E-179
		R:	AGAAAAGAGTTGCAGAGAAGCG					
12	PLC18	F:	GGACCATCAACTAGCACATGAC	$(GAA)_6$	56	382	Peroxidase (Medicago truncatula)	1E-91
		R:	TCACATCATCAACATGCTCAAC					
13	PLC25	F:	GTTGCAGAAAATGTAACTGCGT	(A) ₁₂	56	396	Uncharacterized mRNA	8E-44
		R:	ACAATGAGAGGCCAGTGCTTA				(Glycine max)	
14	PLC28	F:	CAAGGTTGGAAAAGACAAGAGG	(A) ₁₈	60	398	60S ribosomal protein L36	2E-68
		R:	TTTGGAGCTAGACTTCGCATTT				(Medicago truncatula)	
15	PLC40	F:	CAACTCGCATCCTCTTCACA	(TTC) ₆	60	163	Glutathione peroxidase	2E-108
		R:	CAAAGGGGTTGGAGTCGTAA				(Medicago truncatula)	
16	PLC41	F:	TTTGTTGATGTTGTTGGCGT	(T) ₁₂	60	164	Arabinogalactan peptide 16-like	1E-12
		R:	CTCCTCCGCGTTCTACAAAC				(Cicer arietinum)	
17	PLC48	F:	TGTGGTACATGCACACCAAAT	$(ACC)_5$	58	168	Proline-rich protein	1E-27
		R:	GGTGGTAGCAGTGGTGGAGT				(Medicago truncatula)	
18	PLC49	F:	TTGTTTTGAGAACCTTCCCC	(T) ₂₈	58	200	Hypothetical protein	3E-35
		R:	TTTTGCAAGGGTATTTCTTTTG				PROPE_ppa010183mg (Prunus persica)	
19	PLC50	F:	CGATTGGTCTTATATGGTTCTG	$(ATGTA)_4$	60	172	Peptide transporter PTR3-A	9E-41
		R:	AAGCTACCTGCATACTTGGTC				(Medicago truncatula)	
20	PLC52	F:	CGTTTGATCTTCTAAGCCCC	(T) ₁₀	58	198	Uncharacterized protein (Glycine max)	3E-10
		R:	TCGGCACATTGTTGAAAAGA					
21	PLC53	F:	TCGTGATAAAAACGGGGAAG	$(GAA)_5$	56	200	BRI1-KD interacting protein	2E-94
		R:	TATCTTTGCCACTGCCTCCT				(Medicago truncatula)	
22	PLC54	F:	GTAAACGAAGCTCAGAGCCG	$(GGA)_5$	56	200	Glycine-rich RNA-binding protein	3E-48
		R:	CATATCCACGATCCCTGCTT				(Medicago truncatula)	

APPENDIX 2. Continued.

No.	EST-SSR locus		Primer sequences $(5'-3')$	Repeat motif	$T_{\rm a}$ (°C)	Allele size (bp)	Putative function (organism)	BLASTX <i>E</i> -value
23	PLC55	F:	AGACACCGGCATCAAATCAT	(A) ₁₀	60	173	Acylamino-acid-releasing enzyme	3E-111
		R:	CATATTCAAATATTCAGTGTCATGT	TC			(Medicago truncatula)	
24	PLC57	F:	GGAAGTGATTGTGGTTTTTAATCA	(A) ₁₇	60	182	WD repeat-containing protein 26-like	8E-45
		R:	ATTGCTCATTCCCACCAAAG				(Glycine max)	
25	PLC58	F:	TGGAAGAAAGAGAAGGGCAA	(T) ₁₂	60	138	Putative zinc finger protein	1E-102
		R:	CACAGCTACCAAAAATCAGTTCC				(Arabidopsis thaliana)	
26	PLC59	F:	TTGTTTAGCTGGTGTGGTTTTC	(A) ₁₈	56	180	F-box protein SKP2B-like	1E-46
		R:	CTACAGCACGTTTGCAAGGA				(Glycine max)	
27	PLC61	F:	ACTAGGAAAGGAAAACGGCG	(TC) ₂₆	56	145	No significant similarity	—
		R:	GAGTGACACGTGAATGGTGG					
28	PLC62	F:	GCAAAGAACAAGAATAACGTGG	(AAAC) ₄	56	126	Beta-1,3-galactosyltransferase 2-like	1E-91
		R:	CAAACCGAAGAATAAGAGAGGG				isoform 1 (<i>Glycine max</i>)	
29	PLC64	F:	CAAACTCTTCACCGACACGC	(TCTTC) ₅	60	181	Bcr-associated protein (BAP) putative	4E-83
		R:	AACGAGGGTTAGGATGAGAAGC				(Ricinus communis)	
30	PLC65	F:	TGTTGCAATGCTTTTAGCCT	(A) ₁₁	56	165	40S ribosomal protein SA	3E-110
		R:	CAGAAGCTTTTCGGTGTTCC				(Medicago truncatula)	
31	PLC66	F:	ATTTGGAGCAAAGATGCAGG	(A) ₁₀	56	200	D-tyrosyl-tRNA ^{Tyr} deacylase-like	1E-69
		R:	GGATCGACCTCCAATCAAGA				(Glycine max)	
32	PLC67	F:	GCATAATCAGTTTGTTTTTGCG	(A) ₂₃	58	190	Cyclin-dependent kinases regulatory	3E-45
		R:	TTCTGCAAAAGCTTCTGGGT				subunit 1-like (<i>Cicer arietinum</i>)	
33	PLC68	F:	AAAAAGAGGCCATCATGTTCA	(A) ₁₈	56	156	Ferritin (Pisum sativum)	1E-48
		R:	CAGCAGTGACGGCAATTTTA					
34	PLC69	F:	CGCTCTACCAACAGCATAA	(CT) ₁₉	56	195	No significant similarity	_
		R:	GAGGTCTCTTTTGTTCTTCACT					
34	PLC71	F:	AGTGAGCAAGGAATAAAACG	(AG) ₃₈	58	276	Legumin J acidic chain	0.0
		R:	GAGTAGCAAGGAAAGTGAAAAC				(Pisum sativum)	
36	PLC72	F:	TATGATGAAAGCCAGGACA	$(TAT)_8$	58	142	Aminocyclopropane-1-carboxylate	9E-180
		R:	GACTGCACAATCTTAAACACC				oxidase (<i>Pisum sativum</i>)	
37	PLC73	F:	GAAAGGAAAGGTTTTAGCTG	(AG) ₁₃	60	198	40S ribosomal protein S18	8E-91
		R:	CTTTGATTGAGGTAAGAGCA				(Medicago truncatula)	
38	PLC75	F:	TCGTTCCATATCTGTGTTCA	(AATC) ₃	56	195	Xylose isomerase	5E-68
		R:	GTAGCGAGATTCATACCTATCC				(Medicago truncatula)	
39	PLC76	F:	AGGAAGGTGGAGTTACGG	(CT) ₅₂	56	160	Cyclin-like F-box	6E-164
		R:	AAACCTAGAAGTAAAGGGGAAG				(Medicago truncatula)	
40	PLC77	F:	GGAAAGAGCCAAGAAGTTG	(CAATGG)5	56	230	Auxin-induced protein 5NG4-like	8E-70
		R:	ACCCATCCTCATCCTTAAAT				(Glycine max)	
41	PLC78	F:	CTATGACTGCTCAAACTCAAGA	$(GAT)_6$	56	150	Nascent polypeptide-associated complex	1E-115
		R:	CCTTCTACATCATCATCTTCCT				subunit alpha-like (Medicago truncatula)	
42	PLC79	F:	AATTTCTGGTGTTTCTGGTG	$(GAT)_7$	58	165	Translational elongation factor 1 subunit	2E-94
		R:	TCTTCTCTTCCTCAGTCTCTTC				beta (Pisum sativum)	
43	PLC80	F:	GCTAACAAACAACACCATGA	(GAA) ₁₀	58	150	Peroxidase (Arabidopsis thaliana)	3E-176
		R:	GCATCTAAGTTCTTCAATCTCC					

Note: T_a = annealing temperature. ^a Only polymorphic primers were submitted to GenBank, therefore GenBank IDs for monomorphic markers are not available.