

Development of Novel, Exon-Primed Intron-Crossing (EPIC) Markers from EST Databases and Evaluation of their Phylogenetic Utility in Commiphora (Burseraceae)

Authors: Gostel, Morgan R., and Weeks, Andrea

Source: Applications in Plant Sciences, 2(4)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1300098

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

PRIMER NOTE

DEVELOPMENT OF NOVEL, EXON-PRIMED INTRON-CROSSING (EPIC) MARKERS FROM EST DATABASES AND EVALUATION OF THEIR PHYLOGENETIC UTILITY IN COMMIPHORA (BURSERACEAE)¹

MORGAN R. GOSTEL^{2,3} AND ANDREA WEEKS²

²George Mason University, 4400 University Drive, MSN 5F2, Fairfax, Virginia 22030-4444 USA

- *Premise of the study:* Novel nuclear exon-primed intron-crossing (EPIC) markers were developed to increase phylogenetic resolution among recently diverged lineages in the frankincense and myrrh family, Burseraceae, using *Citrus, Arabidopsis*, and *Oryza* genome resources.
- Methods and Results: Primer pairs for 48 nuclear introns were developed using the genome resource IntrEST and were screened using species of Commiphora and other Burseraceae taxa. Four putative intron regions (RPT6A, BXL2, mtATP Synthase D, and Rab6) sequenced successfully for multiple taxa and recovered phylogenies consistent with those of existing studies. In some cases, these regions yielded informative sequence variation on par with that of the nuclear ribosomal DNA internal transcribed spacer.
- Conclusions: The combination of freely available genome resources and our design criteria have uncovered four single-copy nuclear intron regions that are useful for phylogenetic reconstruction of Burseraceae taxa. Because our EPIC primers also amplify Arabidopsis, we recommend their trial in other rosid and eudicot lineages.

Key words: Burseraceae; Commiphora; EPIC markers; shallow-scale phylogenetics.

Resolving phylogenetic relationships among closely related angiosperm species is frequently hindered due to limited variation in currently available markers (Li et al., 2008; Zimmer and Wen, 2012). This challenge is no less problematic in the myrrh genus, Commiphora Jacq. (Burseraceae), where complete, species-level resolution has not been achieved despite the use of multiple gene regions (Weeks and Simpson, 2007). We describe the development and evaluation of four novel, exon-primed intron-crossing (EPIC) markers for Burseraceae (Sapindales) using a repository of putative, intron-flanking nuclear unigenes from 43 plant taxa and two complete reference genomes (IntrEST; Ilut and Doyle, 2012). Markers were evaluated for their phylogenetic utility at the species level using a recently radiated lineage of Commiphora and a genericlevel sampling in Burseraceae. Sequence variation from these novel markers was compared to existing nuclear markers and shows promise for resolving relationships at both shallow and deeper phylogenetic scales.

¹Manuscript received 19 December 2013; revision accepted 22 January 2014.

This material is based in part upon work supported by a dissertation research fellowship to M.R.G. from the Department of Environmental Science and Policy at George Mason University and by the National Science Foundation under grant number 0919179 to A.W. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Publication of this article was funded in part by the George Mason University Libraries Open Access Publishing Fund.

³Author for correspondence: mgostel2@gmu.edu

doi:10.3732/apps.1300098

METHODS AND RESULTS

Marker development-Development of EPIC markers for Burseraceae involved unigene data sets of *Citrus clementina* hort, ex Tanaka and *C. sinensis* (L.) Osbeck (Rutaceae; Sapindales) and two reference genomes available in IntrEST, Oryza sativa L. and Arabidopsis thaliana (L.) Heynh. We developed 12 primer pairs for putative introns from each of four predicted amplicon size categories (200-bp increments between 400-1200 bp), resulting in 48 total primer pairs. For each size category, six primer pairs were developed from a percent-identity criterion of either 80-89.9% or 90-100% between the unigene and the corresponding reference. We predicted that the lower percent-identity criterion (80-89.9%) might yield more informative variation among closely related species. Half of the primer pairs were generated using C. clementina and the other half from C. sinensis unigenes. Primer sequences were a consensus between unigene and the corresponding reference genome. Primers were preferentially designed using A. thaliana. Primers were designed between 18-30 bp, within 50 bp of putative intron splice regions in the reference genome, having a melting temperature (T_m) between 51–74°C, without predicted dimers, and a 35-60% G-C content. Primer characteristics were evaluated using Oligo-Evaluator (Sigma-Aldrich, St. Louis, Missouri, USA). Exceptions for T_m and %GC were made for 18 primers where it was not possible to meet all necessary criteria (Appendix 1). Each primer pair was tested by its ability to amplify a single PCR product from two species of Madagascan Commiphora (C. lamii H. Perrier and C. ankaranensis (J.-F. Leroy) Cheek & Rakot.) and a positive control (A. thaliana) and to sequence cleanly.

Taxonomic sampling and molecular methods—Markers that passed all of the above criteria were evaluated using 14 species of Burseraceae (Appendix 2), including eight *Commiphora* ingroup species and six outgroup species from closely (*Bursera* Jacq. ex L., *Aucoumea* Pierre) and distantly (*Boswellia* Roxb. ex Colebr., *Protium* Burm. f., and *Beiselia* Forman) related genera, respectively (Weeks et al., 2005; Thulin et al., 2008). All ingroup taxa are Madagascan, and seven correspond to one of two species-rich clades in Madagascar. We sampled densely from one clade to test phylogenetic utility at shallow scales. Whole genomic DNA was extracted from specimens using the FastPrep FastDNA Spin Kit (Bio101 Systems, La Jolla, California, USA). All markers were amplified in

Applications in Plant Sciences 2014 2(4): 1300098; http://www.bioone.org/loi/apps © 2014 Gostel and Weeks. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA). 25-μL PCR reactions including: 0.5 μL forward and reverse primers (5 μM), 0.5 μL spermidine (4 mM), 2 μL total DNA, and 5 μL GoTaq Green Master Mix (Promega Corporation, Madison, Wisconsin, USA). A ramp-up PCR thermocycler protocol followed a 4-min presoak at 94°C with 35 cycles of 30 s at 94°C (denaturation), 1 min at 48–56°C (annealing), and 50 s at 72°C (extension), followed by a 4-min postsoak at 72°C. PCR products were purified prior to sequencing reactions using ExoSAP (USB Corporation, Cleveland, Ohio, USA) and sequenced by Macrogen (Rockville, Maryland, USA) using an ABI 3730XL Analyzer with BigDye Terminator version 3.1 (Applied Biosystems, Foster City, California, USA). Sequencing reactions (10 μL) for both directions included 40 ng/μL template. Products were assembled and edited using Sequencher 4.7 (Gene Codes Corporation, Ann Arbor, Michigan, USA).

Phylogenetic analyses—Multiple sequence alignment (MSA) was performed using MUSCLE version 3.7 (Edgar, 2004). Gap regions in the MSA were treated as missing data. Markers were evaluated using maximum parsimony (MP) and Bayesian inference (BI). MP analyses were conducted using PAUP* 4.0b10 (Swofford, 2002) with a two-step protocol modified from Plunkett et al. (2005). Branch support for internal nodes was inferred by bootstrapping 1000 replicates in PAUP*. BI analyses were performed using MrBayes version 3.1.2 (Ronquist and Huelsenbeck, 2003). Two runs were performed for each data set using the best-fitting model as determined by jModelTest (Posada, 2008) consisting of four chains each for 10 million generations sampled every 1000 generations; 10% sampling was discarded as burn-in for each run. MSA and BI analyses were performed in the CIPRES Science Gateway (Miller et al., 2010).

Marker evaluation-Fifteen of the 48 EPIC primer pairs (31%) amplified at least one species, and four pairs (8%; 10F-10R, 16F-16R, 39F-39R, and 43F-43R) produced amplicons that sequenced cleanly for multiple taxa. Provisional marker names are provided based on gene ontology categories from reference taxa (Table 1). When searched in BLAST, sequences of putative intron regions for RPT6A, BXL2, and Rab6 (Appendix 2) matched gene ontology categories predicted for the Arabidopsis and Oryza references in IntrEST. Sequence products for mtATP Synthase D (Appendix 2) did not BLAST to predicted gene ontology categories. Sequences produced by this study have been deposited into GenBank (Appendix 2). Sequence alignment files are deposited in the Dryad Digital Repository (http://doi.org/10.5061/dryad.382p0; Gostel and Weeks, 2014). Phylogenetic statistics of new EPIC markers are presented in comparison (Table 1) with those from nuclear markers developed for previous phylogenetic studies of Burseraceae (ETS: Weeks and Simpson, 2007; ITS: Gostel and Weeks, unpublished). Phylogenetic analysis of EPIC markers developed in this study recovered well-resolved phylogenies consistent with those from previous studies (Fig. 1). The concatenated set of all four EPIC markers resulted in improved phylogenetic resolution compared to previously developed markers (Fig. 1).

Critical assessment of primer design criteria—Each of the 15 primer pairs that amplified at least one species spanned the range of melting temperatures (51–74°C), differed from their pair by less than 10°C in T_m , and were developed from both *Citrus* unigene data sets and both reference genomes. More than half (9/15) of these markers were designed using 80–89.9% identity criteria, yet only two (16F-16R and 43F-43R) sequenced cleanly for multiple taxa. Two of the six primer pairs developed from the 90–100% identity criterion (10F-10R and 39F-39R) sequenced cleanly for multiple taxa and yielded the most informative variation among *Commiphora* species. These results do not support predictions that lower percent identity would provide better shallow-scale phylogenetic resolution, which suggests mutation rates between exon and intron regions are independent.

CONCLUSIONS

The EPIC markers developed in this study may also be useful for phylogenetic reconstruction in other angiosperm taxa. Most primer pairs amplified *A. thaliana* (Brassicales), and they may work in other rosid or eudicot taxa. Of the four markers, *RPT6A* is most promising for further evaluation. This ca. 400-bp region sequenced cleanly for all Burseraceae taxa and yielded a percentage of phylogenetically informative characters on par with ITS. Our study demonstrates how genomic resources from

Provisional marker name ^a	Locus	Primer sequence $(5'-3')$	Ingroup statistics ^b	Family-wide statistics ^b	% Missing data
RPT6A Intron	10F	CTCCARCACATYCAYGARCTCCAGC	(454, 1.1, 0.95, 0.6, 0.569)	(454, 11.8, 0.91, 0.84, 0.764)	4.6
BXL2 Intron	10K	AGCIGIAALICICITIKAGCALCC CTTGTGGGAAKCCATCGGAC	(1,049, 0.6, 0.96, 0.625, 0.601)	(1,049, 9.4, 0.916, 0.8, 0.761)	17.9
mtATP Synthase D Intron	39F	UGITIGIACATKGCICITKGCITCA TCCTYCCYTACROMICIGAGC	(1,600, 0.2, 0.991, 0.8, 0.792)	(1,600, 5.4, 0.976, 0.864, 0.844)	46.7
Rab6 Intron	39K 43F	GTTGCKGGAAYKATRACCA CCTTCAACAGATACAACAACATGCA	(984, 2.4, 0.974, 0.939, 0.915)	(984, 8.4, 0.979, 0.936, 0.916)	32.6
ETS	ETS1F	TUCATGICUCUCACATATGUA TTGGGTATCCTGTGTTGC TTCGTATCCTGTGTTAC	(389, 4.4, 0.85, 0.4, 0.34)	(389, 13.9, 0.723, 0.6, 0.435)	2.6
STI	1852K ITSny183 ITSny109Com	GAGACAAGCATATGAUTAUTGUCGGGGGGGGG CCTTATCATTAGGGGGGGGGG GWGACACCCAGGCAGGAG	(850, 1.9, 0.878, 0.52, 0.456)	(850, 11, 0.809, 0.639, 0.517)	12.2
^a Provisional marker nai identified in IntrEST.	nes correspond to th	he predicted gene ontology category for the reference gen	nome (Arabidopsis thaliana or Oryz	ca sativa) that most closely matches u	unigene sequence

characters, consistency index, retention index, and corrected retention index, respectively

Fig. 1. Phylogeny of 14 representative taxa in the Burseraceae sampled in this study. Values above branches correspond to maximum parsimony bootstrap support values, followed by Bayesian posterior probabilities. "Concatenated new markers" refers to a concatenated data set of all four new markers. Refer to Table 1 for individual marker statistics.

http://www.bioone.org/loi/apps

Applications in Plant Sciences 2014 2(4): 1300098 doi:10.3732/apps.1300098

model organisms can be leveraged to advance the phylogenetic systematics of nonmodel organisms.

LITERATURE CITED

- EDGAR, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32: 1792–1797.
- GOSTEL, M. R., AND A. WEEKS. 2014. Data from: Development of novel, exon-primed intron-crossing (EPIC) markers from EST databases and evaluation of their phylogenetic utility in *Commiphora* (Burseraceae). Dryad Digital Repository. http://doi.org/10.5061/dryad.382p0.
- ILUT, D. C., AND J. J. DOYLE. 2012. Selecting nuclear sequences for fine detail molecular phylogenetic studies in plants: A computation approach and sequence repository. *Systematic Botany* 37: 7–14.
- LI, M., J. WUNDER, G. BISSOLI, E. SCARPONI, S. GAZZANI, E. BARBARO, H. SAEDLER, AND C. VAROTTO. 2008. Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. *Cladistics* 24: 727–745.
- MILLER, M. A., W. PFEIFFER, AND T. SCHWARTZ. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. *In* Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, 1–8.
- PLUNKETT, G. M., P. P. LOWRY II, D. G. FRODIN, AND J. WEN. 2005. Phylogeny and geography of *Schefflera*: Pervasive polyphyly in the

largest genus of Araliaceae. Annals of the Missouri Botanical Garden 92: 202–224.

- POSADA, D. 2008. jModeltest: Phylogenetic model averaging. *Molecular Biology and Evolution* 25: 1253–1256.
- RONQUIST, F., AND J. P. HUELSENBECK. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics (Oxford, England)* 19: 1572–1574.
- SWOFFORD, D. L. 2002: PAUP* 4.0b10. Phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland, Massachusetts, USA.
- THULIN, M., B.-A. BEIER, S. G. RAZAFIMANDIMBISON, AND H. I. BANKS. 2008. Ambilobea, a new genus from Madagascar, the position of Aucoumea, and comments on the tribal classification of the frankincense and myrrh family (Burseraceae). Nordic Journal of Botany 26: 218–229.
- WEEKS, A., D. C. DALY, AND B. B. SIMPSON. 2005. The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. *Molecular Phylo*genetics and Evolution 35: 85–101.
- WEEKS, A., AND B. B. SIMPSON. 2007. Molecular phylogenetic analysis of *Commiphora* (Burseraceae) yields insight on the evolution and historical biogeography of an "impossible" genus. *Molecular Phylogenetics and Evolution* 42: 62–79.
- ZIMMER, E. A., AND J. WEN. 2012. Using nuclear gene data for plant phylogenetics: Progress and prospects. *Molecular Phylogenetics and Evolution* 65: 774–785.

APPENDIX 1. List of all 48	primer pairs	developed in this stu	dy and their characteristics.
----------------------------	--------------	-----------------------	-------------------------------

Locus ^a	Primer sequence $(5'-3')$	$T_{\rm m}$	%GC	Nbases	Reference taxon ^b	EST ^c	%ID ^d	Citrus sp.e
$1F^{\dagger}$	GATCWGARATCGCMGARGAAGTYCGC	60.7	46.2	26	Arabidopsis	AT3G12290.1	85	sinensis
$1R^{\dagger}$	TCAGCRCAMGCYTTYCTCTTCRTRYTC	74	37.1	27	Arabidopsis	AT3G12290.1	85	sinensis
$2F^{\dagger}$	TGCAARTCTCTYKTTGCYGG	65.3	40	20	Arabidopsis	AT4G01100.1	83	sinensis
$2R^{\dagger}$	TCCARWGGWGCAACAGCA	61.1	50	18	Arabidopsis	AT4G01100.1	83	sinensis
3F	TACACRTATGCWAGRTGCAC	63.6	40	20	Arabidopsis	AT1G48410.2	87	sinensis
3R	GCTGCWAGRTGKGCATARTATGC	65.9	43.5	23	Arabidopsis	AT1G48410.2	87	sinensis
4F ^T	ATTCTYGTCYTGTCCGSWAGAGA	61	39.2	23	Arabidopsis	AT4G21960.1	83	clementina
4R'	CCATCTCTTCTTCCTGTCTT	51.2	45	20	Arabidopsis	AT4G21960.1	83	clementina
5P	GUTGGAYTMAUSSTYGAYCATCU	04.3 67.7	39.2 40	23	Arabidopsis	AT1G22410.1	84 84	clementina
6F		74	43 5	20	Arabidopsis	AT1022410.1 AT5G27150.1	82	clementina
6R	GAACTGWRTWACACCTAGWGATATGA	573	34.7	26	Arabidopsis	AT5G27150.1	82	clementina
7F	GCAKCACCRAAGATGYTGAAC	62.4	42.9	21	Arabidopsis	AT1G34130.1	91	sinensis
7R	CAGCTCWCCRAAYCKRTARTAKSATA	60	27	26	Arabidopsis	AT1G34130.1	91	sinensis
8F	GCTGTTGCSYTGAARCAGGC	64.8	50	20	Arabidopsis	AT4G13930.1	92	sinensis
8R	CTTGTTTYGCRTAGRCCTTGAA	60	36.4	22	Arabidopsis	AT4G13930.1	92	sinensis
9F [†]	ATATCARGGTGCYTACAAGA	57.1	35	20	Arabidopsis	AT5G50850.1	90	sinensis
9R†	CTCAGGRCCATATTTCTCCAA	58.1	42.9	21	Arabidopsis	AT5G50850.1	90	sinensis
10F [†]	CTCCARCACATYCAYGARCTCCAGC	55.6	48	25	Arabidopsis	AT5G19990.1	93	clementina
10R ¹	AGCTGTAAYTCTTCTYTRAGCATCC	61./	36	25	Arabidopsis	AI5G19990.1	93	clementina
11F 11D*	AUGMUTYGAYATGGATTAUGTYGA	54.8 77	37.3 52.2	24	Arabidopsis	AT1H04690.1	90	clementina
12F [†]		577	30.5	23	Arabidopsis	AT1G04690.1	90	clementina
12R [†]	TCATCGCCCTCACMGTCTC	67.1	57.9	19	Arabidopsis	AT1G04690.1	90	clementina
13F [†]	ACAAGCCWCCTGAAGATGC	62	52.7	19	Arabidopsis	AT4G37510.1	87	sinensis
13R [†]	GTCCAAGTTCRATRTTYCTWGCTTC	54.5	36	25	Arabidopsis	AT4G37510.1	87	sinensis
$14F^{\dagger}$	TTAYTCAATGTTCAACAGA	57.6	26.4	19	Arabidopsis	AT4G02580.1	86	sinensis
$14R^{\dagger}$	CACGKAYCATRCAAGGTGTTGTGCC	62.7	48	25	Arabidopsis	AT4G02580.1	86	sinensis
15F	GCTYTWCCTTCRGAKACTGGTC	57.3	45.5	22	Arabidopsis	AT5G37850.2	88	sinensis
15R	GTACWGARTKGATTGGATCCAC	58.5	41	22	Arabidopsis	AT5G37850.2	88	sinensis
16F [†]	CTTGTGGGAAKCCATCGGAC	66.3	55	20	Arabidopsis	AT1G02640.1	84	clementina
16R ⁺	CGTTGTACATKGCYCTKGCYTCA	64.9	43.5	23	Arabidopsis	AT1G02640.1	84	clementina
17P†	CAAGARGCKKTTTTGTCGCC	65.8 57.6	47.4	19	Arabidopsis	AT1G62050.1	83	clementina
1/K 19E		57.0	36.0	19	Arabidopsis	AT1G02050.1 AT3G07160.1	83 87	clementina
18R	CORTCOLTRICICSWGAAGC	55.5	42.2	19	Arabidopsis	AT3G07160.1	87	clementina
19F	TGAYCTYCTTGATGCRTTGGAC	62.8	41	22	Arabidopsis	AT5G11170.2	95	sinensis
19R	GCATATWGARGGRAAATTGCATTC	55	33.4	24	Arabidopsis	AT5G11170.2	95	sinensis
20F	AGTTTRCTCTCTGTTGATCCRAC	51.9	39.2	23	Arabidopsis	AT2G25660.1	93	sinensis
20R	GCTGMACTTCAACTTCYGTWCCA	56.8	43.5	23	Arabidopsis	AT2G25660.1	93	sinensis
21F	GGAAYTWAGGGAAGAATGC	57.6	42.2	19	Arabidopsis	AT4G32180.3	90	sinensis
21R	GCATCAASAAAYTGGAAYTC	67.8	30	20	Arabidopsis	AT4G32180.3	90	sinensis
22F	GATGGCTCGTGAAAGTGCTC	65	55	20	Arabidopsis	AT2G27600.1	91	clementina
22K 22E		50.0	39.2	23	Arabidopsis	AI2G2/600.1	91	clementina
23F 23D	GATGURTTGGAUTTIAATUAA	57.7	55.4 41	21	Arabidopsis	AT5G11170.2	95	clementina
23K 24F	ACAINCCAGANIGGAIGCAIA	59.8	42.2	19	Arabidopsis	AT5G26680.2	90	clementina
24R	GTAAATGCTCATGCTAGCATCAA	62.9	39.2	23	Arabidopsis	AT5G26680.2	90	clementina
25F	GACAAGGTTCTCATGGARAGC	54.4	47.7	21	Arabidopsis	AT5G54160.1	80	sinensis
25R	CCACCWTCAAGMAYTGCATC	69.9	45	20	Arabidopsis	AT5G54160.1	80	sinensis
26F	TGGACACTTCGAGGRCTTTG	60.4	50	20	Arabidopsis	AT1G67060.1	86	sinensis
26R	ACCCATATKACRGCGAGGA	56.1	47.4	19	Arabidopsis	AT1G67060.1	86	sinensis
27F	CTGTAAYCARGACAACCGCGTYAC	57.8	45.9	24	Arabidopsis	AT5G21090.1	87	sinensis
27R	AGRTTTGAATTWCCCAAATC	54.8	30	20	Arabidopsis	AT5G21090.1	87	sinensis
28F		54.8	41	22	Arabidopsis	AT5G11480.1	86	clementina
28K 20F	CATCWAYTTGTCGCATTTKGTGAA	00.7 56.3	55.4 47.1	24	Arabidopsis	AT3G11480.1 AT3G54300.2	80 88	clementina
291 20R		50.5	50	18	Arabidopsis	AT3G5//300.2	88	clementing
30F	TCGTYATWGCCTCCCTCGACGTTC	64.7	54.2	24	Arabidonsis	AT4G16600.1	83	clementing
30R	CACYACYTTWGCTCCATCTTCYTSTTC	71.8	37.1	27	Arabidopsis	AT4G16600.1	83	clementina
31F	GATGCTTTTGAATTCATTGTA	56.8	28.6	21	Arabidopsis	ATMG00285.1	94	sinensis
31R	CATGGCAATTAAATCATRAGCCGA	62.4	37.5	24	Arabidopsis	ATMG00285.1	94	sinensis
32F	GATCAGGTYCGTGGTGTMATGGA	55.9	47.9	23	Oryza	13101.m04144	94	sinensis
32R	CATTTGGCTYTCYCCATA	56.1	38.9	18	Oryza	13101.m04144	94	sinensis
33F [†]	GTCGGCAAYCTCGAYCCCCA	71.1	60	20	Oryza	13110.m02788	93	sinensis
33R [†]	TCCCAWAGTARCTCCTCMGWAA	51.4	41	22	Oryza	13110.m02788	93	sinensis
34F* 24P	TCTCCAGAATACCGCAGGCAGCAAC	74.5	56	25	Arabidopsis	AT1G03150.1	97	clementina
34K 25E		55.4 68 5	30 40	20	Arabidopsis	AI IGU3150.1	9/ 01	ciementina
JJF	GIIGGSTGGTAICAITCACA	08.5	40	20	Oryza	15104.005825	91	ciementina

http://www.bioone.org/loi/apps

APPENDIX 1. Continued.

Locus ^a	Primer sequence $(5'-3')$	$T_{\rm m}$	%GC	Nbases	Reference taxon ^b	EST ^c	$\% ID^d$	Citrus sp.e
35R	CAATRCCYGAWARCCAGCATC	51.5	42.9	21	Oryza	13104.m05825	91	clementina
36F	ACCGGTGTCAAGAGRYTSTA	62.4	40	20	Oryza	13111.m02571	93	clementina
36R	GTGACAGAGTCATTGACATTGA	60.2	41	22	Oryza	13111.m02571	93	clementina
37F	TACAAGCTTWYKGGCATCAAG	58.3	38.1	21	Arabidopsis	AT2G38110.1	85	sinensis
37R	ACCACAGGRTCKARAACRGTGC	60.1	45.5	22	Arabidopsis	AT2G38110.1	85	sinensis
38F	AGGGTYAAGAATCCAGAATGG	55.4	42.9	21	Arabidopsis	AT5G13430.1	82	sinensis
38R	GCATTWGGYAARGGRATGCACC	54.4	45.5	22	Arabidopsis	AT5G13430.1	82	sinensis
39F†	TCCTYCCYTACRCMTCTGAGC	65.3	47.7	21	Arabidopsis	AT5G47030.1	81	sinensis
39R†	GTTGATGCKGGAAYKATRACCA	57.1	36.4	22	Arabidopsis	AT5G47030.1	81	sinensis
40F	GAATTYGTGATCTCYAARKTSGATG	53.6	28	25	Arabidopsis	AT5G11770.1	88	clementina
40R	CATRGGCCAGATSGAKCCGSKACGA	64.9	48	25	Arabidopsis	AT5G11770.1	88	clementina
41F	GAAGAYTCKGTYAGGGTYAAGAA	54.2	34.8	23	Arabidopsis	AT5G13430.1	82	clementina
41R	CAGCATTWGGYAARGGRATGCACC	58	45.9	24	Arabidopsis	AT5G13430.1	82	clementina
42F	GCTGAAATYGCTKCTGGAAGTGA	57.7	43.5	23	Arabidopsis	AT5G47840.1	81	clementina
42R	TCAGGKACCAAYTGTCCTTTCTCCA	71.5	44	25	Arabidopsis	AT5G47840.1	81	clementina
$43F^{\dagger}$	GAACAAAACTGATCTTGTKGACAA	58.5	33.4	24	Oryza	13107.m03172	93	sinensis
$43R^{\dagger}$	CCAGCYTTRGCACTRGTYTCAA	64.9	41	22	Oryza	13107.m03172	93	sinensis
$44F^{\dagger}$	CCTTCAACAGATACAACAACATGCA	66.7	40	25	Arabidopsis	AT3G57670.1	96	sinensis
$44R^{\dagger}$	TCCATGYCCCCACATATGCA	64.7	50	20	Arabidopsis	AT3G57670.1	96	sinensis
45F	GCGAGARAARTCAGCTGAYCCA	59.5	45.5	22	Oryza	13102.m04682	95	sinensis
45R	GCAGTCCAYTTRAATATGTTKGAATC	59.4	30.8	26	Oryza	13102.m04682	95	sinensis
46F	AGGCAAGTMTCMATAGAGGA	55	40	20	Oryza	13107.m03172	92	clementina
46R	CCAGCYTTRGCACTRGTYTCAA	64.9	41	22	Oryza	13107.m03172	92	clementina
47F	TGAGACAGGGTGTWCTTGGYATYAA	52.7	40	25	Oryza	13103.m04131	92	clementina
47R	GGATKGTTACRAGATCMGGYAGAG	53.9	41.7	24	Oryza	13103.m04131	92	clementina
48F	CAGCTGAYCCAGAYATYCARTTA	54	34.8	23	Oryza	13102.m04682	95	clementina
48R	GCAGTCCAYTTRAATATGTTKGAATC	59.4	30.8	26	Oryza	13102.m04682	95	clementina

Note: %GC = percent G-C content; Nbases = number of nucleotides that comprise the primer; T_m = melting temperature.

^a Primer names with asterisks (*) indicate primers that did not meet the necessary melting temperature criteria; † indicates primer pairs that were able to successfully amplify in at least one specimen.

^bThe model organism reference in IntrEST from which the primer was developed.

^cThe expressed sequence tag record number that was used to develop the marker.

^dPercent shared identity between the reference taxon and *Citrus* species.

^e Species of Citrus (C. sinensis or C. clementina) that was used to develop the primer.

APPENDIX 2. List of species, vouchers, and geographic origin with GenBank accession numbers for all putative gene regions. GPS coordinates were not included with some of the herbarium vouchers, which is reflected when no coordinate is given.

- Beiselia mexicana Forman; Pell s.n. (TEX). Mexico. ETS: FJ233929, ITS: JF919030, RPT6A Intron: KF906106, BXL2 Intron: KF906094, mtATP Synthase D Intron: KF906084.
- Protium copal (Schltdl. & Cham.) Engl.; Killeen 3136 (MO). Mexico. 15°15'S, 067°00'W. ETS: AY964612, ITS: KF906073, *RPT6A* Intron: KF906108, *BXL2* Intron: KF906095, *mtATP Synthase D* Intron: KF906085, *Rab6* Intron: KF906120.
- Aucoumea klaineana Pierre; Walters 466 (MO). Gabon. 00°07'12"S, 011°42'57"E. ETS: KF906082, RPT6A Intron: KF906105, BXL2 Intron: KF906093.
- Boswellia sacra Flueck.; Weeks 01-X-08-03 (TEX). N.E. Africa. ETS: AF445957, ITS: AF455880, RPT6A Intron: KF906107, Rab6 Intron: KF906119.
- Bursera sarukhanii Guevara & Rzed.; Weeks 00-VIII-18-06 (TEX). Mexico. ETS: AY315051, ITS: AF445820, RPT6A Intron: KF906109.
- B. simaruba (L.) Sarg.; Goldman s.n. (TEX). Florida, U.S.A. ETS: GQ378038, ITS: GQ378104, RPT6A Intron: KF906110, BXL2 Intron: KF906097, mtATP Synthase D Intron: KF906086.
- Commiphora ankaranensis (J.-F. Leroy) Cheek & Rakot.; Weeks 10-I-11-02 (GMUF). Ankarana, Madagascar. 12°18′53″S, 49°20′18″E. ETS: KF035010, ITS: KF906081, RPT6A Intron: KF906118, BXL2 Intron: KF906104, mtATP Synthase D Intron: KF906092, Rab6 Intron: KF906128.
- Commiphora aprevalii (Baill.) Guillaumin; Weeks 10-I-20-04 (GMUF). Toliara, Madagascar. 22°57′16″S, 44°20′39″E. ETS: KF034992, ITS: KF906075,

RPT6A Intron: KF906112, *mtATP Synthase D* Intron: KF906088, *Rab6* Intron: KF906122.

- Commiphora falcata Capuron; Weeks 10-I-26-03 (GMUF). Toliara, Madagascar. 23°01′29″S, 43°36′60″E. ETS: KF034994, ITS: KF906076, *RPT6A* Intron: KF906113, *BXL2* Intron: KF906099, *mtATP Synthase D* Intron: KF906089, *Rab6* Intron: KF906123.
- Commiphora grandifolia Engl.; Weeks 10-I-13-01 (GMUF). Ankarana, Madagascar. 12°34′49″S, 49°27′31″E. ETS: KF034996, ITS: KF906077, *RPT6A* Intron: KF906114, *BXL2* Intron: KF906100, *mtATP Synthase D* Intron: KF906090, *Rab6* Intron: KF906124.
- Commiphora lamii H. Perrier; Weeks 10-I-26-02 (GMUF). Toliara, Madagascar. 23°01′29″S, 43°36′60″E. ETS: KF034998, ITS: KF906078, RPT6A Intron: KF906115, BXL2 Intron: KF906101, mtATP Synthase D Intron: KF906091, Rab6 Intron: KF906125.
- Commiphora pervilleana Engl.; Weeks 10-I-11-01 (GMUF). Ankarana, Madagascar. 12°18′53″S, 49°20′18″E. ETS: KF035005, ITS: KF906079, *RPT6A* Intron: KF906116, *BXL2* Intron: KF906102, P43: KF906126.
- Commiphora sp. A. Weeks 10-I-09-01 (GMUF). Ankarana, Madagascar. 12°14′11″S, 49°21′18″E. ETS: KF035009, ITS: KF906080, RPT6A Intron: KF906117, BXL2 Intron: KF906103, Rab6 Intron: KF906127.
- Commiphora sp. B. Weeks 10-I-15-04 (GMUF). Ankarana, Madagascar. 12°34′49″S, 49°27′31″E. ETS: KF0906087, ITS: KF906074, RPT6A Intron: KF906111, BXL2 Intron: KF906098, mtATP Synthase D Intron: KF906087, Rab6 Intron: KF906121.