Primers for Castilleja and their Utility Across Orobanchaceae: I. Chloroplast Primers

Authors: Latvis, Maribeth, Mortimer, Sebastian M. E., Morales-Briones, Diego F., Torpey, Samuel, Uribe-Convers, Simon, et al.
Source: Applications in Plant Sciences, 5(9)
Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps. 1700020

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Primers for Castilleja and their utility across Orobanchaceae: I. Chloroplast primers ${ }^{1}$

Maribeth Latvis ${ }^{2,8}$, Sebastian M. E. Mortimer ${ }^{3,4}$, Diego F. Morales-Briones ${ }^{3,4,5}$, Samuel Torpey ${ }^{3 \dagger}$, Simon Uribe-Convers ${ }^{6}$, Sarah J. Jacobs ${ }^{3,4,5}$, Sarah Mathews ${ }^{7}$, and David C. Tank ${ }^{3,4,5}$
${ }^{2}$ Department of Natural Resource Management, South Dakota State University, 1390 College Avenue, Brookings, South Dakota 57007 USA; ${ }^{3}$ Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA; ${ }^{4}$ Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, Idaho 83844-1133 USA; ${ }^{5}$ Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA; ${ }^{6}$ Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, Michigan 48109 USA; and ${ }^{7}$ Australian National Herbarium, CSIRO National Research Collections, Canberra, Australia

- Premise of the study: Chloroplast primers were developed from genomic data for the taxonomically challenging genus Castilleja. We further tested the broader utility of these primers across Orobanchaceae, identifying a core set of chloroplast primers amplifying across the clade.
- Methods and Results: Using a combination of three low-coverage Castilleja genomes and sequence data from 12 Castilleja plastomes, 76 primer combinations were specifically designed and tested for Castilleja. The primers targeted the most variable portions of the plastome and were validated for their applicability across the clade. Of these, 38 primer combinations were subsequently evaluated in silico and then validated across other major clades in Orobanchaceae.
- Conclusions: These results demonstrate the utility of these primers, not only across Castilleja, but for other clades in Orobanchaceaeparticularly hemiparasitic lineages-and will contribute to future phylogenetic studies of this important clade of parasitic plants.

Key words: Castilleja; chloroplast; hemiparasite; high-throughput sequencing; microfluidic PCR; Orobanchaceae.

The plastome is heavily relied upon in plant systematics, owing to its conserved nature and orthology, particularly for the study of deeper evolutionary divergences. Moreover, discordance between the uniparentally inherited plastome and the biparentally inherited nuclear genome may provide insights into introgression events and their direction (Twyford and Ennos, 2012). However, the low rate of molecular evolution in the plastome can become a hindrance when reconstructing relationships between closely related taxa, requiring large amounts of data to resolve these relationships (Uribe-Convers et al., 2016). In an attempt to alleviate this problem, several recent studies have leveraged available high-throughput sequencing data for the development of variable taxon-specific plastid (and nuclear) regions (e.g., Uribe-Convers et al., 2016).

[^0]doi:10.3732/apps. 1700020

Castilleja L. (Orobanchaceae; "the paintbrushes") is a taxonomically challenging clade that includes ~ 200 hemiparasitic species, many of which have a complicated history of polyploidy and/or hybridization (Heckard and Chuang, 1977). Microsatellite markers have been developed in Castilleja for population genetic studies (Fant et al., 2013), and broader, genus-wide phylogenetic reconstructions within Castilleja used two chloroplast regions (trnL-F and the rps16 intron), nuclear ribosomal spacers (ITS and ETS), and a low-copy nuclear gene (waxy) (Tank and Olmstead, 2008, 2009). However, species-level relationships lacked resolution in Tank and Olmstead $(2008,2009)$, limiting conclusions regarding diversification and hybridization. Here, we follow Uribe-Convers et al. (2016) for primer design and validation of the most highly variable chloroplast regions in Castilleja. Because these primers were designed for the Fluidigm Access Array microfluidic PCR system (Fluidigm, South San Francisco, California, USA), annealing temperature specifications are consistent across all primer combinations; this allows for parallelization of PCR and is ideal for high-throughput sequencing platforms (see UribeConvers et al., 2016 for application of this approach). Although our initial focus was the development of Castilleja-specific primers, we evaluated their utility in silico in three other lineages of Orobanchaceae to obtain a subset of "core" chloroplast primers with the potential to amplify across the clade. Once identified, we surveyed this set of core primers to assess their

Table 1. Continued.
Table 1. Continued.

Locus (Region)	Primer sequences $\left(5^{\prime}-33^{\prime}\right)^{\text {a }}$	Amplicon length $(b p)^{b}$	Clade I: Lindenbergia sp. ${ }^{\text {c }}$	Clade II: Schwalbea americana ${ }^{\text {c }}$	Clade III: Orobanche californica ${ }^{c}$	Clade IV: Castilleja lineariloba, C. pumila, C. lemmonii ${ }^{\text {d }}$	Clade IV: Lamourouxia virgata ${ }^{\text {e }}$	Clade IV: Pedicularis sp. ${ }^{\text {c }}$	Clade V: Neobartsia filiformise	Clade V: Rhinanthus alectorolophus ${ }^{\text {c }}$	Clade VI: Harveya purpurea ${ }^{\text {c }}$	Clade VI: Physocalyx majore ${ }^{\text {e }}$	Paulowniaceae: Paulownia elongatac (outgroup)
$\underset{\text { Cas_13394_F_-_-14062_R }}{\substack{\text { (atpA-atpF) }}}$	F: CGAGCAATACCATCGCCTAC R: TTGGTTCGGGAAGGGATTAT	668	X	X		X	X	X		X	X	X	X
$\underset{(\text { Cas_C2 })}{\text { Cas_19198_F_R_R }}$	F: TCCTGGAGTGGCCAAATAAG R: ССТTTGTTGAAATAAGGGCAAA	778	X	X		X	X		X	X			X
$\begin{aligned} & \text { Cas_124082_F_- } \\ & \text { Cas_124968_R } \\ & (n d h H) \end{aligned}$	F: CGTCATAATATCAGCCAATTTCA R: ATGGACCCGAACGACTAGG	886				X							
$\begin{aligned} & \text { Cas_52327_F-_ } \\ & \text { Cas_52920_R } \\ & \text { (ndhC-trnV) } \end{aligned}$	F: TCGATAAATACAGATACACCCAATACA R: GCAAGAATCCTAGGCGAAGA	593				X	X						
$\begin{gathered} \text { Cas_50548_F- } \\ \text { Cas_51414_R } \\ (\operatorname{trnF}-n d h J) \end{gathered}$	F: TCGGTTCAGATACAAATAAATCCA R: AGGGTCATTTGTCTGCTTGG	866				X			X				
$\begin{aligned} & \text { Cas_27800_F-_ } \\ & \begin{array}{l} \text { Cas_28512_R } \\ (r p o B) \end{array} \end{aligned}$	F: CCGCTACAGAACGAATACGC R: GTATCCGCGGGATTAATTTG	712				X						X	
$\underset{(\text { rpoc2 })}{\text { Cas_20009_F_-_ }}$	F: TTGTCTTGGTCCCAATTCAATAC R: TCATCATTCCACTCCAATCG	804		X		X	X			X	X	X	X
$\begin{aligned} & \text { Cas_14705_F_-_ } \\ & \text { Cas_15624_R } \\ & (\text { atpH }) \end{aligned}$	F: TCACACACACTCCCTTTCCA R: GATATCGAAGTAGTTCGGATTAGTCA	919	X	X			X					X	
$\begin{aligned} & \text { Cas_25017_F-_ } \\ & \text { Cas_25720_R } \\ & (\text { rpoC1-rpoB }) \end{aligned}$	F: TTGGATTGACTGGGATGACA R: TATTAGAGCGCGCCAAGAAG	703	X	X				X	X	X	X	X	X
	F: TCCTGCGATATATTGGTGATGA R: CAATTGGTTTTACGCACTAATGAA	763		X				X		X	X	X	X
$\begin{aligned} & \text { Cas_44810_F_- } \\ & \begin{array}{l} \text { Cas_45699_R } \\ (y c f 3) \end{array} \end{aligned}$	F: ACACCGCTGCTCAAGACTTT R: CCATCGAAGGTTGTTGAAGTG	889	X	X			X		X	X	X	X	X
$\begin{gathered} \text { Cas_121734_F_-_ } \\ \text { Cas_122486_R } \\ \text { (ndhA-ndhI) } \end{gathered}$	F: CCTGGCAGCTCGTATTGTTT R: TGAGGAGCCGTATGAGGTAAA	752	X				X					X	X
$\begin{aligned} & \text { Cas_93851_F_- } \\ & \text { Cas_94660_R } \\ & (y c f 2) \end{aligned}$	F: CGGAGCTGGAACTGCTAACT R: GTCCGGGTAGAGACCAAAGA	749	X		X		X		X	X	X	X	X
$\begin{gathered} \text { Cas_54595_F_-_ } \\ { }_{(\text {(trnM-atp } B)} \end{gathered}$	F: GGGAGTCATTGGTTCAAATCC R: GCGTTTCTTATCACAACCCTTT	862	X	X	X		X		X	X	X	X	X
$\xrightarrow{\text { Cas_94709_- } \mathbf{F}_{-}} \underset{(y c f 2)}{\text { Cas_9530_R }}$	F: CGGATCTAGTTCATGGCCTATT R: TCTGCAAATAATTCTCGATGTGA	591	X	X	X		X	X	X	X	X	X	X
$\begin{aligned} & \text { Cas_70574_F_- } \\ & \text { Cas_71412_R } \\ & (\text { rps } 18-r p l 20) \end{aligned}$	F: GGATCGAATTGATTATAGAAACATGA R: AGCTCGGAGACGTAGAACAAA	838	X			X			X	X	X	X	
$\underset{(\text { eas_B-petD) }}{\text { Cas_78484_F_- }}$	F: ССTTACCTCGGGACCAAATC R: CAATGCAGAGGAAATGAATGC	769	X			X			X	X	X	X	
$\underset{\substack{\text { Cas_80388_F_-_ } \\(\text { rpoA })}}{\text { Cas_R }}$	F: TTTCTAGACTGCCCAATATCTGTTT R: AAGCCGACACAATAGGCATT	854							X		X	X	X
$\underset{(\text { Cas_82887_R }}{\text { Cas_rps } 8 \text {) }}$	F: CCGCTACAGAACGAATACGC R: GTATCCGCGGGATTAATTTG	892	X						X	X	X	X	X
$\underset{\text { Cas_85791_R }}{\text { Cas }}$ (rps3-rpl22)	F: TCCGAACTGTATAGGAACAATAATCA R: GGCAACTATGGTATATCCTGATGTG	645		X	X		X			X	X	X	X

Table 1. Continued.

Locus (Region)	Primer sequences ($\left.5^{\prime}-3^{\prime}\right)^{\text {a }}$	Amplicon length (bp) ${ }^{\text {b }}$	Clade I: Lindenbergia sp. ${ }^{\text {c }}$	Clade II: Schwalbea americana $^{\text {c }}$	Clade III: Orobanche californica ${ }^{\text {c }}$	Clade IV: Castilleja lineariloba, C. pumila, C. lemmonii $^{\text {d }}$	Clade IV: Lamourouxia virgata $^{\text {e }}$	Clade IV: Pedicularis sp. ${ }^{\text {c }}$	Clade V: Neobartsia filiformise	Clade V: Rhinanthus alectorolophus ${ }^{\text {c }}$	Clade VI: Harveya purpurea ${ }^{\text {c }}$	Clade VI: Physocalyx major ${ }^{\text {e }}$	Paulowniaceae: Paulownia elongata ${ }^{\text {c }}$ (outgroup)
Cas_96241_F Cas_97030_R (ycf1-ndhB)	F: TCCGAGATCTCTTATTGAATTGC R: TTCCATCGAATTGAGTATGATTGT	789	X	X		X	X	X		X	X	X	X
Cas 38180 F Cas 38949 R (trnG-rps14)	F: CCGCCCAAGATCAAGATAAA R: ACCTGAACCATTATGGCAAGA	769				X			X		X	X	
$\begin{gathered} \text { Cas_21932_F_-_- } \\ \text { Cas_22735_R } \\ \text { (rpoC2-rpoCl } \end{gathered}$	F: CGCGTGAGATATCCAGCAT R: TCTCAGGCCTGTTCATATGGT	803	X	X		X	X	X	X	X	X	X	X
$\underset{\text { Cas_12567_F_-_ }}{\substack{\text { Cas_13399_R } \\ \text { (atpA }}}$	F: AGGCGGTCATACTTCCTTCA R: TGCTCGTATTCACGGTCTTG	832	X	X	X	X	X	X	X	X	X	X	X
$\underset{\substack{\text { Cas_26657_R } \\(\text { rpoB })}}{\text { Cas_2585_F_- }}$	F: GCATAATGTCCACTGGAACG R: AAGGCCCTGAAAGGATCACTA	802	X	X		X	X	X	X	X	X	X	X
Cas 64793_F Cas_65732_R (petA-psbJ)	F: TAAGCCCGTGGATATTGAGG R: AAATGCGGTACAAGGGATTTC	939				X							
	F: TTCCTGAAGTATTTCCCATACAATC R: CGATACATTTCGCAATCGAG	778	X	X		X	X	X	X	X	X	X	X
$\underset{\substack{\text { Cas_66623_F_-_67525_R } \\ \text { (psbJJ-petL) }}}{\text { Cas. }}$	F: ACCTAATCCGGAATATGAACCA R: TCTAAAGATGCCCTCGGTACA	902				X							
Cas_90084_F Cas_90885_R (ycf2)	F: AGAATCAGACCTATTCCCGAAA R: TGCCTCCATTATGTTGTTGC	801	X	X		X	X		X	X	X	X	X
$\underset{\substack{\text { Cas_19186_R } \\ \text { (rpoC2) }}}{\text { Cas_1839_F_ }}$	F: TTGTTCTGGTCTATCGTGGAAA R: TGGCCATTATGGAGAAATCC	792	X	X		X	X		X	X	X	X	X
	F: GGGCTAAAGCGTGGGTATTT R: TCAGGTGCATGTATCTTTACCG	835	X	X		X	X	X	X	X	X	X	X
$\underset{\substack{\text { Cas_92935_R_R } \\ \text { (ycf2) } \\ \text { Cas_9205_F_ }}}{\text { and }}$	F: CCAAGTCGATACGATCCATTC R: TCGGTGCAGATGTAGGATACC	840	X	X	X	X	X	X	X	X	X	X	X
$\underset{(r p l 2-r p l 23)}{\text { Cas_87589_F_-_R_R }}$	F: TTGCTGCCGTTACTCTTCAG R: ACGAATCGGTGTGGTATATTCA	923	X		X	X	X	X	X	X	X		X
$\underset{(\text { CpoB })}{\text { Cas_26951_F_- }}$	F: СТССАTTCCCTGAGACAAGG R: CCGACTCCTCAGAATTTGGT	757	X		X	X	X		X	X	X	X	
$\underset{\substack{\text { Cas_918_- } \\ \text { Cas })}}{\text { Cas_R_R }}$	F: AATGAAATATACGATCAACCAACATT R: TCATAATTATTGATACGGGCCTTT	839	X	X		X	X	X	X	X	X	X	X
Cas_104111_F Cas_104945_R (trnL-rrn16)	F: TTGGTTTGACACTGCTTCACA R: АТтTCACGСтСТтССтTTCG	834	X	X	X	X	X	X	X	X	X	X	X
$\begin{gathered} \text { Cas_34914_F-F} \\ \text { Cas_35729_R } \\ \text { (psbD-psbC) } \end{gathered}$	F: GAGCTTGCTCGATCTGTTCA R: ATTGCTCCAGCCCAGAATAC	815	X	X	X	X	X	X	X	X	X	X	X

${ }^{\text {a }}$ Primer sequence for the "Castilleja-specific primer." To make the target-specific primer for subsequent microfluidic PCR, conserved sequence tags CS1 (5'-ACACTGACGACATGGTTCTACA) and CS2 (5^{\prime}-TACGGTAGCAGAGACTTGGTCT) were added to each forward and reverse primer, respectively. ${ }^{\mathrm{b}}$ Amplicon length (bp) estimated from Castilleja plastome alignments.
${ }^{\mathrm{d}} \mathrm{PCR}$ validations were considered successful for Castilleja when amplification occurred for all three taxa, representing one annual lineage (C. lineariloba) and two perennial lineages (C. pumila and C. lemmonii).
${ }^{\text {e }}$ Taxa that both were PCR validated and had primer combinations evaluated in silico against their respective plastome assemblies (raw read files available in the NCBI Sequence Read Archive submission SRP100222).
performance using additional sampling across Orobanchaceae. Orobanchaceae represents the largest parasitic clade of angiosperms and has well-documented modifications to the plastome, such as reduction and accelerated rates of molecular evolution; however, the most comprehensive phylogenetic investigation to date was based on only five gene regions (McNeal et al., 2013). Thus, an expanded molecular toolkit will be of great benefit for future investigations in the clade.

METHODS AND RESULTS

Three species of Castilleja were selected for genome skimming (C. cusickii Greenm., C. foliolosa Hook. \& Arn., C. tenuis (A. Heller) T. I. Chuang \& Heckard; Appendix 1), with taxa chosen to include both annual and perennial lineages (National Center for Biotechnology Information [NCBI] Sequence Read Archive [SRA] accession SRP100222). DNA extraction, purification, Illumina library construction, and subsequent cleaning of reads followed Uribe-Convers et al. (2016). Samples were sequenced as 100-bp single-end reads on an Illumina HiSeq 2000 (Illumina, San Diego, California, USA) at the University of Oregon, and cleaned reads were assembled against a reference genome (Sesamum indiсиm L. JN637766) using the Alignreads pipeline version 2.25 (Straub et al., 2011). In addition to these three low-coverage genomes, we also used existing data for 12 Castilleja plastomes generated by Uribe-Convers et al. (2014) using a long-PCR approach. Fifteen plastomes in total were aligned using MAFFT version 7.017b under the default settings (Katoh and Standley, 2013).

We used a custom R script (Uribe-Convers et al., 2016) to identify the most variable regions of the alignment spanning 400-1000 bp that were flanked by conserved regions, enabling prioritization based on predicted amplicon size and variability. Regions containing ambiguous bases were discarded, and those missing from one or more taxa in the alignment, particularly in the plastomes generated through the long-PCR method, were given lesser priority. We used Primer3 (Untergasser et al., 2012) to design primer pairs for the selected regions with an annealing temperature of $60^{\circ} \mathrm{C}\left(\pm 1^{\circ} \mathrm{C}\right)$, and allowing no more than three continuous nucleotides of the same base, following the specifications of the Fluidigm Access Array System protocol.

We validated each primer combination using PCR with three high-quality Castilleja DNA isolations chosen to represent major lineages, sensu Tank and Olmstead (2008) (C. lineariloba (Benth.) T. I. Chuang \& Heckard, C. lemmonii A. Gray, and C. pumila Wedd.; Appendix 1), but different than those selected for genome skimming and primer design, and a negative control. Because we followed the approach of Uribe-Convers et al. (2016), it was necessary for our validation conditions to simulate the four-primer reaction of the Fluidigm microfluidic PCR using a standard thermocycler. Therefore, our target-specific primers include a 5^{\prime} conserved sequence (CS) tag, obtained from the Fluidigm Access Array System protocol, which provides an annealing site for Illumina sequencing adapters and sample-specific barcodes. PCR amplification followed Uribe-Convers et al. (2016), and amplicons were visualized on a standard agarose gel. In total, 76 primer combinations were successfully designed and validated (Table 1).

To test the broader utility of our Castilleja-specific primers, we searched for matches in two published plastome assemblies for Lamourouxia virgata Kunth (Pedicularideae, Clade IV; Fig. 1) and Neobartsia stricta (Kunth) UribeConvers \& Tank (Rhinantheae, Clade V) (NCBI SRA accessions SRR1023133 and SRR1023130, respectively; Uribe-Convers et al., 2014). We assembled the plastome for a third taxon, Physocalyx major Mart. (Buchnereae, Clade VI; NCBI SRA accession SRP100222), to include in our comparison. Physocalyx major was sequenced on an Illumina HiSeq 2000 at the University of Oregon as $100-$ bp paired-end reads. Cleaned reads for P. major were mapped to three reference plastomes with one copy of the inverted repeat region removed (Sesamum indicum JN637766, Neobartsia inaequalis (Benth.) Uribe-Convers \& Tank KF922718, Castilleja paramensis F. González \& Pabón-Mora KT959111) using Bowtie2 (Langmead and Salzberg, 2012). Consensus sequences of the resultant contigs were obtained and used as final references. Contigs were then imported into Geneious R7 version 7.0.6 (Kearse et al., 2012), and a consensus sequence was obtained by calling regions with less than $5 \times$ coverage as " N " and using the "Highest Quality" as a threshold.

Separate BLAST databases were created for Lamourouxia Kunth, Neobartsia Uribe-Convers \& Tank, and Physocalyx Pohl assemblies (-makeblastdb), and blastn_short was used to search for matching hits with the list of Castilleja chloroplast primers. Hits were further considered if both primer pairs (1) occurred on the same contig and (2) had predicted amplicon sizes between $350-1000 \mathrm{bp}$. Once we obtained a set of primer hits for the three taxa, they were validated with

Fig. 1. Relationships among major clades within Orobanchaceae modified from McNeal et al. (2013), with taxa used for primer validation indicated (see text). Bootstrap support values for clades are indicated along the branches and follow McNeal et al. (2013).

PCR using L. virgata, P. major, and Neobartsia filiformis (Wedd.) UribeConvers \& Tank (Appendix 1), as described above. Primer pairs with amplification in at least two out of three taxa above were chosen for another round of PCR validation with expanded taxon sampling that represented all major lineages of Orobanchaceae (sensu McNeal et al., 2013; Appendix 1): Lindenbergia sp. Lehm. (Clade I), Schwalbea americana L. (Cymbarieae, Clade II), Orobanche californica Cham. \& Schltdl. (Orobancheae, Clade III), Pedicularis sp. L. (Pedicularideae, Clade IV), Rhinanthus alectorolophus (Scop.) Pollich (Rhinantheae, Clade V), Harveya purpurea Harv. (Buchnereae, Clade VI), and Paulownia Siebold \& Zucc. (Paulowniaceae; outgroup). As a positive control, we included CS-tagged "universal" primers for the $\operatorname{trnL} L-F$ region ("trn-c" and "trn-f" of Taberlet et al., 1991, in Tank and Olmstead, 2008).

Out of the 76 primer pairs designed and validated for Castilleja, we identified 36 pairs with applicability across Orobanchaceae (referred to as core Orobanchaceae primers; these are boldfaced in Table 1). These were chosen based on amplification across a large phylogenetic breadth of the clade, but allowing for some failures. For example, Orobanche, a holoparasite, failed for most primer combinations, a result that is likely due to the reduction and modification of the plastome in this lineage (see Bennett and Mathews, 2006). Higher success rates were noted for hemiparasites.

CONCLUSIONS

We report 76 primer pairs designed to target the most variable regions of the chloroplast genome in Castilleja. We further demonstrate their utility across other major clades in Orobanchaceae, particularly with hemiparasitic taxa, and present a subset of 38 core Orobanchaceae primers. Although these primer combinations target similar highly variable plastid regions as in other angiospermwide studies (e.g., Ebert and Peakall, 2009), few of the primers reported here overlap directly with them. Two exceptions are Cas_11589 F (trnG) and Cas_61880 F (psaI) (Table 1), which were also developed by Ebert and Peakall (2009). Notably, our primer combinations were designed with the same annealing temperature to take advantage of the Fluidigm microfluidic PCR system and high-throughput sequencing platforms, but will also be useful for traditional PCR and Sanger sequencing.

LITERATURE CITED

Bennett, J. R., and S. Mathews. 2006. Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. American Journal of Botany 93: 1039-1051.
Ebert, D., and R. Peakall. 2009. A new set of universal de novo sequencing primers for extensive coverage of noncoding chloroplast DNA: New opportunities for phylogenetic studies and cpSSR discovery. Molecular Ecology Resources 9: 777-783.
Fant, J. B., H. Wolf-Weinberg, D. C. Tank, and K. A. Skogen. 2013. Characterization of microsatellite loci in Castilleja sessiliflora and transferability to 24 Castilleja species (Orobanchaceae). Applications in Plant Sciences 1: 1200564.
Heckard, L. H., and T.-I. Chuang. 1977. Chromosome numbers, polyploidy, and hybridization in Castilleja (Scrophulariaceae) of the Great Basin and Rocky Mountains. Brittonia 29: 159-172.

Katoh, K., and D. M. Standley. 2013. MaFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28: 1647-1649.
Langmead, B., and S. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357-359.
McNeal, J. R., J. R. Bennett, A. D. Wolfe, and S. Mathews. 2013. Phylogeny and origins of holoparasitism in Orobanchaceae. American Journal of Botany 100: 971-983.
Straub, S. C. K., M. Fishbein, T. Livshultz, Z. Foster, M. Parks, K. Weitemier, R. C. Cronn, and A. Liston. 2011. Building a model: Developing genomic resources for common milkweed (Asclepias syriaca) with low-coverage genome sequencing. BMC Genomics 12: 211.
Tank, D. C., and R. G. Olmstead. 2008. From annuals to perennials: Phylogeny of subtribe Castillejinae (Orobanchaceae). American Journal of Botany 95: 608-625.
Tank, D. C., and R. G. Olmstead. 2009. The evolutionary origin of a second radiation of annual Castilleja (Orobanchaceae) species in South America: The role of long distance dispersal and allopolyploidy. American Journal of Botany 96: 1907-1921.
Twyford, A. D., and R. A. Ennos. 2012. Next-generation hybridization and introgression. Heredity 108: 179-189.
Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and S. G. Rozen. 2012. Primer3-New capabilities and interfaces. Nucleic Acids Research 40: e115.
Uribe-Convers, S., J. R. Duke, M. J. Moore, and D. C. Tank. 2014. A long-PCR based method for chloroplast genome enrichment and phylogenomics in angiosperms. Applications in Plant Sciences 2: 1300063.
Uribe-Convers, S., M. L. Settles, and D. C. Tank. 2016. A phylogenomic approach based on PCR target enrichment and high throughput sequencing: Resolving the diversity within the South American species of Bartsia L. (Orobanchaceae). PLoS ONE 11: e0148203.

Appendix 1. Voucher information for species used in this study.

Species	Voucher accession no. (Herbarium) ${ }^{\text {a }}$	Collection locality	Geographic coordinates
Castilleja cusickii Greenm.	Tank 2009-01 (ID)	Idaho, USA	$45.884241^{\circ} \mathrm{N}, 116.230195^{\circ} \mathrm{W}$
Castilleja foliolosa Hook. \& Arn.	A. Colwell 03-09 (YM)	California, USA	$35.3926^{\circ} \mathrm{N}, 120.3522^{\circ} \mathrm{W}$
Castilleja lemmonii A. Gray	Jacobs 2015-088 (ID)	California, USA	$37.907982^{\circ} \mathrm{N}, 119.258583{ }^{\circ} \mathrm{W}$
Castilleja lineariloba (Benth.) T. I. Chuang \& Heckard	Tank 2002-04 (WTU)	California, USA	$37.41387^{\circ} \mathrm{N}, 120.10833^{\circ} \mathrm{W}$
Castilleja pumila Wedd.	Uribe-Convers 2011-120 (ID)	La Libertad, Peru	$7.99506^{\circ} \mathrm{S}, 78.44197^{\circ} \mathrm{W}$
Castilleja tenuis (A. Heller) T. I. Chuang \& Heckard	Tank 2001-13 (WTU)	Washington, USA	$46.118133^{\circ} \mathrm{N}, 121.5158^{\circ} \mathrm{W}$
Harveya purpurea Harv.	Randle 79 (OS)	NA	NA
Lamourouxia virgata Kunth	Mejia 581 (CAS)	Chiapas, Mexico	$16.713611^{\circ} \mathrm{N}, 92.614722^{\circ} \mathrm{W}$
Lindenbergia sp. Kunth	Armstrong 1163 (ISU)	NA	NA
Neobartsia filiformis (Wedd.) Uribe-Convers \& Tank	Uribe-Convers 13-027 (ID)	La Paz, Bolivia	$16.32796{ }^{\circ} \mathrm{S}, 67.9457^{\circ} \mathrm{W}$
Orobanche californica Cham. \& Schltdl.	Bennett 72 (A)	Cultivated	Cultivated
Paulownia elongata Siebold \& Zucc.	s.n. (A)	Cultivated	Cultivated (https://sheffields.com)
Pedicularis sp. L.	Krajsek and Bennett s.n. (A)	NA	NA
Physocalyx major Mart.	G. O. Romão 2528 (ESA)	Minas Gerais, Brazil	$19.2635^{\circ} \mathrm{S}, 43.5508^{\circ} \mathrm{W}$
Rhinanthus alectorolophus (Scop.) Pollich	Bennett 85 (A)	NA	NA
Schwalbea americana L.	Kirkman s.n. (PAC)	NA	NA

[^1]${ }^{\text {a }}$ Herbarium acronyms are per Index Herbariorum (http://sweetgum.nybg.org/science/ih/).

[^0]: ${ }^{1}$ Manuscript received 27 February 2017; revision accepted 10 April 2017 This research was supported by resources at the Institute for Bioinformatics and Evolutionary Studies (IBEST; NIH/NCRR P20RR16448 and P20RR016454) and by the following awards from the National Science Foundation: DEB-1253463 (awarded to D.C.T.), DEB-1502061 (awarded to D.C.T. for S.J.J.), and DEB-1210895 (awarded to D.C.T. for S.U.C.).
 ${ }^{8}$ Author for correspondence: Maribeth.Latvis@sdstate.edu
 †Deceased 21 May 2017.

[^1]: Note: NA = not available.

