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Commensalism in the fossil record: Eunicid polychaete
bioerosion on Pliocene solitary corals

JORDI MARTINELL and ROSA DOMÈNECH

Martinell, J. and Domènech, R. 2009. Commensalism in the fossil record: Eunicid polychaete bioerosion on Pliocene sol−

itary corals. Acta Palaeontologica Polonica 54 (1): 143–154.

Some solitary caryophylliid (Caryophyllia, Trochocyathus, and Ceratotrochus) and flabellid (Flabellum) scleractinian

corals from Pliocene of Western Mediterranean exhibit long groove−shaped bioersional structures running along the sur−

face of the thecae. They are epigenic structures produced by an episkeletozoan and therefore, they are described as

Fixichnia. Here we propose Sulcichnus as a new ichnogenus, with three new ichnospecies (Sulcichnus maeandriformis,

S. helicoidalis, and S. sigillum) to name this traces. Sulcichnus is attributed to the activity of polychaetes. Similar struc−

tures are recently produced by Lumbrineris flabellicola, a symbiotic eunicid which maintains a commensalistic relation−

ship with solitary corals. In the fossil record, Sulcichnus occurs associated to shallow marine environments whereas their

Recent counterparts are described on deep−marine corals. We interpret this as a consequence of a change in the environ−

mental requirements of the coral/worm pair.
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Introduction

The study of bioerosion is a valuable tool to understand the

biodiversity and ecological complexity of a given area at any

point in Earth’s history. As bioerosive organisms often lack a

fossilizable hard skeleton, it is the trace they leave on the host

what enables their existence to be determined and the biotic

interaction established with the host to be interpreted.

The palaeontological marine record contains numerous ex−
amples of interspecific relationship. Many of them correspond
to cases of exploitation (predation and parasitism) between in−
vertebrates, in which one of the members of the pair benefits at
the expense of the other. Kowalewski et al. (1998), Kowa−
lewski and Kelley (2002), Leighton (2002), Kelley et al.
(2003), Santos et al. (2003), and Zuschin et al. (2003) are ex−
amples of different approaches to the study of marine inverte−
brate predation in the fossil record among the most recent pub−
lications.

Although not so easy to identify as predation (except per−
haps in the insects world), researchers have also published on
parasitism evidences in fossil invertebrates. Mention should
be made to the studies by Harries and Ozanne (1998), Marti−
nell et al. (1999), Bates and Loydell (2000), Poinar (2001,
2003), Baumiller and Gahn (2002), Hoffmeister et al. (2003),
Neumann and Wisshak (2006), and Zapalski (2007), among
others.

Other types of biotic interactions, such as symbiosis
(mutualism, commensalism) or competition, leave few traces
on the host and so are more difficult to detect. Therefore, their

identification in the fossil record always represents a signifi−
cant contribution to our knowledge about how processes of bi−
otic interaction and co−evolution have developed over time
(Martinell 1989; Boucot 1990; Zapalski 2005). Taylor and
Wilson (2003) reviewed the fossil record of hard substrate
communities and provide examples of different types of ex−
ploitation and symbiosis. In the practice, symbioses can only
be identified when the invader affected the host skeleton and
some kind of structure was produced. Skeletal hosts belong to
a great spectrum of groups (corals, molluscs, brachiopods,
echinoderms, and others). Symbiotic fossil traces are repre−
sented by borings or by bioclaustrations (embedment struc−
tures) (Palmer and Wilson 1988; Taylor 1990; Tapanila 2005,
2006) in the host skeleton. In the Recent, symbionts frequently
inhabit the host soft parts and no traces are evident.

Some examples of bioerosion evidences of commensalism
in the geological past are described by Bałuk and Radwański
(1997), Vermeij (1998), Nielsen (1999), García−Bellido Cap−
devila (2003), Tapanila (2004), and Wisshak and Neumann
(2006), who generally attributed the role of symbionts to
worm−like organisms. Oliver (1983) and Elias (1986) exposed
some examples of symbiosis between rugose corals and
worms in the North America Palaeozoic, some of them being
attributed to a commensal behaviour but these symbiotic
traces are better interpreted as bioclaustrations (embedments)
rather than as bioerosion. Similarly, Tapanila (2002) described
the relationship between soft−bodied organisms and tabulate
corals in the Canadian Late Ordovician as a case of com−
mensalism, although Zapalski (2007) interprets it mostly as a
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parasitic behaviour. Finally, Stolarski et al. (2001) described
several bioclaustration structures as a result of symbiotic inter−
action between sipunculids and scleractinians from the Early
Cretaceous to the present. Although the relationship among
soft−bodied organisms and corals is known since the early
Palaeozoic, few clear data exist on their taxonomy. Because
that, some authors just use the term endosymbionts to refer to
them (Tapanila 2002, 2005).

The present paper focuses on the identification, nomina−
tion, description, and interpretation of some characteristic
bioerosion epigenic traces observed on several specimens of
solitary ahermatypic corals collected in different Western
Mediterranean Pliocene basins. These traces have already
been mentioned both in the fossil record and in Recent speci−
mens by other authors (see, i.e., Zibrowius 1977, 1987), but
they have yet to be considered from the ichnosystematic
point of view.

Institutional abbreviations.—JMC−UB, J. Martinell Neogene
invertebrate collection at the Universitat de Barcelona,
Barcelona, Spain; MGSC, Museu Geològic del Seminari
Conciliar, Barcelona, Spain; MHNUT, Museo d’Historia
Naturale de l’Università di Torino, Turin, Italy; MMPE,
Museo Municipal Paleontológico de Estepona, Málaga, Spain;
PCUG, Universidad de Granada, Granada, Spain, palaeonto−
logical collection.

Geographical and geological
setting

The Pliocene sediments from the Western Mediterranean ap−
pear in numerous basins along the coastline, from north−west
Italy and south−east France to the south of the Iberian Penin−
sula. In descending order of latitude the main examples are
those in Liguria (Italy); Rhône, Alpes−Maritimes, Orb and
Roussillon (France), and Alt Empordà, Baix Llobregat, Baix
Ebre, Murcia, Almería−Níjar, Vélez−Málaga, and Estepona
(Spain) (Fig. 1). Their marine sedimentary filling is dated as
Zanclean (Early Pliocene), only the Estepona Basin reaching
to the early Piacenzian (Middle Pliocene) (Aguirre et al.
2005). All of them represent proximal shallow marine envi−
ronments, except for the Liguria and Alpes−Maritimes bas−
ins, which also contain sediments deposited in deeper envi−
ronments. Detailed descriptions of these basins can be found
in Bernasconi and Robba (1994), Agustí et al. (1990), Clauzon
et al. (1990), and Aguirre et al. (2002, 2005).

The coral fauna

Scleractinians in the Mediterranean Neogene basins.—
The traces under study are identified on scleractinian corals,
which are rather scarce in the Mediterranean Pliocene, but
very important constituents of its Miocene basins. In fact,

the particular climatic conditions of a good part of the Mio−
cene favoured the development of significant coral reefs
in the main Mediterranean basins. Well−known examples in
the Western Mediterranean include the bioconstructions of
Majorca (Balearic Islands), the Penedès region of Catalonia
(NE Spain), Almería (SE Spain) and the Moroccan corridor.
Studies such as those of Reuss (1872), Zuffardi−Comerci
(1932), Chevalier (1961), Esteban (1979), Permanyer (1990),
and Stolarski (1991) are examples of different approaches
to these build−ups. Although these favourable conditions
ceased as a result of the Messinian crisis, and coral reefs are
no longer found in Pliocene series (Aguirre and Jiménez
1998), coral fauna was maintained, albeit to a much lesser
extent.

As a consequence, neither hermatypic nor ahermatypic
corals are characteristic elements of the Mediterranean ma−
rine Pliocene, although they can be locally significant. Due
to their scarcity, bibliographic citations are also limited, but
the presence of fossil scleractinian corals in these sediments
has been well known since the end of the nineteenth century
(Angelis 1894 a, b).

No doubt as a result of their scarcity, a detailed taxonomic
review of this group has yet to be conducted. Indeed, al−
though Montanaro (1931) published a detailed monograph
on the Pliocene scleractinians there is a need for an up−to−
date review of the members of this group in the Mediterra−
nean. Other more concrete taxonomic studies of sclerac−
tinians from European basins include those of Simonelli
(1895, 1896) for the Italian Neogene; Angelis (1894b),
Osasco (1895), Cuif (1968), and Zibrowius and Placella
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Fig. 1. Palaeogeographical map of the Western Mediterranean during the

Piacenzian (Early Pliocene) showing the location of the basins that have

provided the study material: 1, Liguria (NW Italy); 2, Alpes−Maritimes (SE

France); 3, Roussillon (SE France); 4, Alt Empordà (Catalonia, NE Spain);

5, Baix Llobregat (Catalonia, NE Spain); 6, Baix Ebre (Catalonia, NE

Spain); 7, Níjar−Almería (Andalusia, SE Spain); 8, Vélez−Málaga (Anda−

lusia, SE Spain); 9, Estepona (Andalusia, SE Spain).
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(1981) for the Northern Italy Pliocene; Almera (1894) and
Angelis (1894a) for the northeast Spain Pliocene; Marco−
poulou−Diacantoni (2000) for the family Flabellidae from the
Upper Pliocene of Crete (Greece), and Zibrowius (1977,
1987) for Mediterranean bathyal scleractinians from the
Pliocene to the present day.

Coral taxa identified.—The study is based on material col−
lected from the basins of Liguria (Italy); Roussillon (France),
and Alt Empordà, Baix Llobregat, Vélez−Málaga and Este−
pona (Spain). We also reviewed the collections housed in the
MMPE and the MGSC (Spain), and in the MHNUT (Italy).
In the latter we also consulted material from Miocene depos−
its from the area around Turin. Finally, palaeontological in−
formation about the Almería−Níjar basin was also provided
by Julio Aguirre and Antonio Jiménez (personal communi−
cation 2008).

Many of the distinguishing features of coral species are
difficult to observe in fossil material, and thus we limited our
taxonomy to the generic level, in the hope that other special−
ists will undertake a more detailed review.

Twelve scleractinian genera belonging to seven families
were identified in the Pliocene basins of the Western Mediter−
ranean. Of these, six are solitary and six colonial (hermatypic
or not) (Table 1). The greatest taxonomic diversity was found
in the Baix Llobregat basin, where all these genera, both colo−
nial and solitary, are present. Cladangia and Madracis (both
colonial) show the most limited geographical distribution, as
they were identified only in the Baix Llobregat basin. The

most cosmopolitan genus is Flabellum, which was identified
in all the basins except the Baix Ebre. In the Alt Empordà and
Baix Llobregatbasins, two species (minimum) of Flabellum
are present, although they are scarce. Finally, the Estepona
Basin yielded the greatest number of specimens, with nearly
200 corallites available for study.

Material analysed

Traces of bioerosion on the solitary corals considered here
were studied using both material gathered in the field and
specimens housed in museums. The use of museistic material
could entail a degree of bias favouring undamaged speci−
mens. However, Hoffmeister et al. (2004), among others,
show that observations can be equally valid in such cases.
However, the quantification of bioerosion is here presented
merely for the purpose of illustration.

In general, the studied skeletons are small (1–3 cm high
and up to 1 cm wide). Only some corallites of Flabellum col−
lected at the Alt Empordà and Liguria basins are larger than 4
cm high and 5 cm wide when complete.

The morphology of these corallites can be grouped into
four categories, which we have named according to the clas−
sical nomenclature of Wells (1956): (i) flabellate form (fan
shaped), here represented by Flabellum; (ii) trochoid form
(with a basal angle of about 40�), represented by Cerato−
trochus; (iii) conical or turbinate form (with a basal angle of
60� to 80�), represented by Caryophyllia; and d) turbinate to
ceratoid form (with a basal angle only about 20�), repre−
sented by Trochocyathus.

Ichnological study

Entobia isp. and Trypanites isp. are the most usual bio−
erosion traces identified in the collected specimens, together
with small Oichnus isp. found in the base of a few Trocho−
cyathus corallites, and some Maeandropolydora isp. and
Pinaceocladichnus isp. In general, these traces of bioerosion
are scarce, as regards both the percentage of affected skele−
tons (around 2%) and the boring intensity. However, there is
also a sixth meandroid epigenic trace that is not attributable
to any previously described ichnotaxa, which constitutes the
objective of this research.

This trace is present on the theca of four of the six solitary
scleractinians identified: Caryophyllia, Trochocyathus, and
Ceratotrochus (family Caryophyllidae), and Flabellum (fam−
ily Flabellidae). It consists of a superficial meandroid groove,
with a maximum width of 2–3 mm and a depth of 1–2 mm,
which runs along the external side of the corallite theca and
takes different forms. It should be noted that there is only one
groove per single skeleton. The boring is well developed in the
majority of bored specimens in all the basins, especially on
Caryophyllia and on some Flabellum. The trace surrounds the
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Table 1. Check−list of the coral taxa identified in the Western Mediterra−

nean Pliocene and their distribution in the different basins (see Fig. 1 for

localities identification). Grey shading indicates solitary genera, the re−

maining ones being colonial forms.

Localities  1 2 3 4 5 6 7 8 9

Family Rhizongiidae

Cladangia         *        

Family Caryophylliidae

Caryophyllia       * * * * * *

Coenocyathus *

Trochocyathus     * * *     * *

Ceratotrochus *       *     * *

Aplocyathus         *       *

Family Flabellidae

Flabellum * * * * *   * * *

Family Dendrophylliidae

Dendrophyllia * *

Balanophyllia       * *        

Family Astrocoeniidae

Astrocoenia         * *      

Family Pocilloporidae

Madracis         *        

Family Faviidae

Cladocora       * *   *    
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skeleton from the base to the calyx. It is noticeable that the
trace cuts cleanly through the coral skeleton although there is
no evidence of reaction from the host; no deformation, defen−
sive structures (i.e., overgrowths) or repairs (scars) were iden−
tified.

Ichnological study

Entobia isp. and Trypanites isp. are the most frequent bio−
erosion traces identified in the specimens, together with
small Oichnus isp. found in the base of a few Trochocyathus
corallites, and some Maeandropolydora isp. and Pinaceo−
cladichnus isp. In general, these traces of bioerosion are
scarce, as regards both the percentage of skeletons affected
(around 2%) and the boring extent. However, there is also a
sixth meandroid epigenic trace not attributable to any previ−
ously described ichnotaxon. This is the main object of the
study.

This trace is present on the theca of four of the six solitary
scleractinians identified: Caryophyllia, Trochocyathus, and
Ceratotrochus (family Caryophyllidae), and Flabellum (fam−
ily Flabellidae). It consists of a superficial meandroid groove,
with a maximum width of 2–3 mm and a depth of 1–2 mm,
which runs along the external side of the corallite theca and
takes different forms. It has to be noted that there isis only one
groove per single skeleton. The boring is well developed in
most of bored specimens in all the basins, especially Caryo−
phyllia and some Flabellum. The trace surrounds the skeleton
from the base to the calyx. The trace cuts cleanly through the
coral skeleton although there is no evidence of host reaction:
no deformation, defensive structures (for example, over−
growths) or repairs (scars) were identified.

The incidence of the trace in the various basins is highly
variable and it has been quantified only when a minimum
number of specimens were available. In the Estepona Basin,

10.7% of corallites (15 of 140 individuals) of Caryophyllia
(from field samples) and 16% (19 of 119 individuals) of
Flabellum (from MMPE) show the trace. In the Empordà ba−
sin, its presence rises to 50% in Flabellum (9 specimens out of
18) (from field samples). Finally, in the Liguria basin, 11 out
of 29 individuals (39.3%) of the corallites of Ceratotrochus
(MHNUT) were affected, while the groove does not appear in
any of the 14 Flabellum specimens of this collection.

Detailed observation of the grooves led us to identify
three patterns of growth (Fig. 2). These provided the basis for
the systematic descriptions proposed in the next section: (i)
meandering pattern, present in Ceratotrochus, Flabellum,
Caryophyllia, and Trochocyathus; (ii) corkscrew pattern,
present in Caryophyllia, Ceratotrochus, and Flabellum; and
(iii) branding−iron pattern, present in Caryophyllia and Tro−
chocyathus.

Examination of publications figuring Recent coral speci−
mens bearing this groove revealed the presence of two of
these growth patterns: meandering and branding iron.

Repository.—The types of the proposed ichnospecies are
deposited in MMPE. The remaining material (paratypes in−
cluded) is also housed there, as well as in MGSC, MHNUT,
PCUG, and in JMC−UB.

Systematic ichnology

Ichnogenus Sulcichnus ichnogen. nov.
Etymology: After the Latin word sulcus, groove.

Ichnospecies type: Sulcichnus maeandriformis ichnosp. nov.

Diagnosis.—Long grooves, sometimes branched, running
along the surface substrate sinuously or in a contorted fash−
ion. Grooves never run in parallel, and loose or tight loops
may occur.
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Fig. 3. Polychaete trace fossil Sulcichnus maeandriformis on Flabellum sp. from different Lower Pliocene sites. Pairs of pictures correspond to both

sides of a single corallite and show the specular symmetry of the boring. A. Paratype, MMPE/Ic001.003.001, Bizcornil, Estepona. B. Paratype,

MMPE/Ic001. 002.001, Velerín, Estepona. C. Holotype, MMPE/Ic001.001.001, Velerín, Estepona. D. Paratype, MMPE/Ic001.004.001, Velerín,

Estepona. E. Paratype, MMPE/Ic001.005.001, Velerín, Estepona. F. Paratype, JMC−UB/I−0087, Vila−robau, Alt Empordà. G. JMC−UB/I−0130, Rio

Torsero, Liguria. H. JMC−UB/I−0089, Vila−robau, Alt Empordà. I. UG−N−P−0117, Almería−Níjar. Scale bars 10 mm.
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Remarks.—Sulcichnus have some similarities with the ichno−
genera Maeandropolydora and Caulostrepsis. Bromley and
D’Alessandro (1983: 293) amended the former description
by Voigt (1965) and re−described Maeandropolydora as
“Long cylindrical galleries having two or more apertures,
running through the substrate sinuously or in irregular con−
tortions. Galleries may run parallel in contact with each other
in pairs, with or without fusion. Loose or tight loops may oc−
cur; the limbs of these may be connected by a vane or form a
pouch”.

Diagnosis of Caulostrepsis refers to U−shaped borings that
have a vane connecting the limbs of the U−boring (Bromley
2004), with more or less complex designs (Bromley and
D’Alessandro 1983).

Both traces correspond to complete endogenic tunnels
made by endobionts, whereas Sulcichnus is an epigenic
groove—never a tunnel—excavated on the solid substrate by
an epibiont. Maeandropolydora often appears in the fossil
record as a sinuous groove in the substrate due to breakage or
weathering of the gallery roof. In such cases, misidentifica−
tion may have occurred, and further revision is needed.

Sulcichnus maeandriformis ichnosp. nov.
Figs. 3, 4I–L.

Etymology: After the Latin words maeander, meander and formis, form.

Type material: Holotype, MMPE/Ic001.001.001 (Velerín, Estepona)
(Fig. 3C). Paratypes, MMPE/Ic001.003.001 (Bizcornil, Estepona) (Fig.
3A), MMPE/Ic001.002.001 (Velerín, Estepona) (Fig. 3B), MMPE/
Ic001.004.001 (Velerín, Estepona) (Fig. 3D), MMPE/Ic001.005.001
(Velerín, Estepona) (Fig. 3E), JMC−UB/I−0087 (Vila−robau, Alt Em−
pordà) (Fig. 3F).

Type locality: Velerín, Estepona Basin, E Andalusia, Spain.

Type horizon: Upper Zanclean (Pliocene) silts, Estepona Basin, Málaga
(SE Spain) (Aguirre et al. 2005).

Material.—Number of specimens: 9 from Rio Torsero,
Liguria; 2 from Alpes−Maritimes; 5 from Vila−robau, Alt
Empordà; 4 from Baix Llobregat; 1 from Níjar−Almería; 1
from Bizcornil, Estepona; 1 from Padrón, Estepona; 4 from
Parque Antena, Estepona; up to 30 from Velerín, Estepona
(Table 2).

Diagnosis.—Deep groove of relatively constant width that
takes various sinuous forms.

Description.—Deep grooves (2 mm maximum) of relatively
constant width in every specimen (between 1–2 mm) that de−
scribe various gentle undulations to tighter loops, although in
the latter the opposite parts of the figure never parallel. The
grooves normally begin and end at the edge of the calyx and
sometimes show one or two short branches. The trace is often
very symmetrical from one side of the corallite to the other in
flabellate forms. In them, the central, lower part of the figure
surrounds the corallite and the two extremes run more or less
vertically to the calyx (Fig. 2).

Remarks.—This trace appears in specimens of all four coral
morphologies considered: flabellate, trochoid, conical to tur−
binate, and turbinate to ceratoid (Table 3). It also appears on

specimes of Trochocyathus coming from the Miocene of Tu−
rin (Italy) (MHNUT). Some Recent specimens sawn in the
literature are also according with this pattern (Zibrowius et
al. 1975).

Stratigraphic and geographic range.—Tortonian (Late Mio−
cene) to Recent; worldwide.

Sulcichnus helicoidalis ichnosp. nov.
Fig. 4D–H.

Etymology: After the Greek word meaning helicoid.

Type material: Holotype, MMPE/Ic002.001.001 (Velerín, Estepona)
(Fig. 4E). Paratypes, MMPE/Ic002.002.001 (La Lobilla, Estepona)
(Fig. 4D), JMC−UB/I−0086 (Vila−robau, Alt Empordà) (Fig. 4F).

Type locality: Velerín, Estepona Basin, E Andalusia, Spain.

Type horizon: Upper Zanclean (Pliocene) silts, Estepona Basin, Málaga
(SE Spain) (Aguirre et al. 2005).

Material.—Number of specimens: 1 from Rio Torsero, Ligu−
ria; 2 from Baix Llobregat; 1 from Padrón, Estepona; 2 from
Velerín, Estepona (Table 2).

Diagnosis.—Helicoidal groove running around the corallite.

Description.—The trace consists of a groove that begins
close to the base of the corallite and ends at the edge of the
calyx, following an helicoidal, clockwise, sometimes irregu−
lar, pattern around the skeleton. Between one and two com−
plete turns are made and it may present one or two short
branches. Usually, the deepest part of the groove corre−
sponds with the nearest to the coral calyx, and it is never
deeper than 2 mm.

Remarks.—S. helicoidalis has been found in three of the four
coral morphologies: flabellate, trochoid, and conical to turbi−
nate (Table 3). It is also present on specimens of Trocho−
cyathus from the Miocene of Turin (Italy) (MHNUT).
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Table 2. Distribution of Sulcichnus ichnospecies in the different basins.

Abbreviations: 1, Liguria (NW Italy); 2, Alpes−Maritimes (SE France);

3, Roussillon (SE France); 4, Alt Empordà (Catalonia, NE Spain);

5, Baix Llobregat (Catalonia, NE Spain); 6, Baix Ebre (Catalonia, NE

Spain); 7, Níjar−Almería (Andalusia, SE Spain); 8, Vélez−Málaga

(Andalusia, SE Spain); 9, Estepona (Andalusia, SE Spain).

Localities 1 2 3 4 5 6 7 8 9

Sulcichnus helicoidalis *       *       *

Sulcichnus maeandriformis * *   * *    *   *

Sulcichnus sigillum               *

Table 3. Presence of Sulcichnus ichnospecies on the solitary aherma−

typic coral taxa: Sulcichnus helicoidalis (1), Sulcichnus maeandri−

formis (2), and Sulcichnus sigillum (3).

Ichnospecies 1 2 3

Family Caryophylliidae

Caryophyllia * * *

Trochocyathus   * *

Ceratotrochus * *  

Family Flabellidae

Flabellum * *  

Downloaded From: https://bioone.org/journals/Acta-Palaeontologica-Polonica on 28 Mar 2024
Terms of Use: https://bioone.org/terms-of-use



http://app.pan.pl/acta54/app54−143.pdf

MARTINELL AND DOMÈNECH—EUNICID−CORAL COMMENSALISM 149

Fig. 4. Examples of the three Sulcichnus ichnospecies. Sulcichnus sigillum on Trochocyathus sp. Pairs of pictures correspond to both sides of a single coral−

lite, showing the specular symmetry of the groove. A. Paratype, MMPE/Ic003.002.001, Arroyo Vaquero, Estepona. B. Paratype, MMPE/Ic003.003.001,

Velerín, Estepona. C. Holotype, MMPE/Ic003.001.001, Parque Antena, Estepona. S. helicoidalis on Trochocyathus sp. D. Paratype, MMPE/Ic002.002.001,

La Lobilla, Estepona. S. helicoidalis on Flabellum sp. E. Holotype, MMPE/Ic002.001.001, Velerín, Estepona. F. Paratype, JMC−UB/I−0086, Vila−robau,

Alt Empordà. G. MGSC−3523, Baix Llobregat. H. MGSC−3524, Baix Llobregat. S. maeandriformis on Ceratotrochus sp., Rio Torsero, Liguria.

I. MGPUT−I−001. J. MGPUT−I−002. K. MGPUT−I−003. L. MGPUT−I−004. Scale bars 10 mm.
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Stratigraphic and geographic range.—Tortonian (Late Mio−
cene) to early Piacenzian (Middle Pliocene); Mediterranean
area.

Sulcichnus sigillum ichnosp. nov.
Fig. 4A–C.

Etymology: After the Latin word sigillum, mark, brand, referring to the
branding iron morphology of the groove.

Type material: Holotype, MMPE/Ic003.001.001 (Parque Antena, Este−
pona) (Fig. 4C). Paratypes, MMPE/Ic003.002.001 (Arroyo Vaquero,
Estepona) (Fig. 4A), MMPE/Ic003.003.001(Fig. 4B).

Type locality: Parque Antena, Estepona Basin, E Andalusia, Spain.

Type horizon: Upper Zanclean (Pliocene) coarse−grained sand levels
within conglomerates, Estepona Basin, Málaga (SE Spain) (Aguirre et
al. 2005).

Material.—Number of specimens: 1 from Arroyo Vaquero,
Estepona; 1 from Padrón, Estepona; 1 from Parque Antena,
Estepona; 8 from Velerín, Estepona (Table 2).

Diagnosis.—Shallow groove parallel to the columella and
bending 90� close to the calyx, to form a deeper, ring−shaped
groove.

Description.—Shallow grooves (1 mm maximum in depth)
that run more or less in parallel to the axis of the columella
from close to the base of the corallite. They turn a sharp 90�

to the left when reaching a point a few millimetres from the
edge of the calyx, where they deepen (to some 2 mm) and run
almost the whole of the perimeter of the corallite, thus taking
on the appearance of a branding iron.

Remarks.—This trace has only been identified in the turbi−
nate coral morphologies (Caryophyllia and Trochocyathus)
(Table 3). Some Recent specimens seen in the literature also
follow this pattern.

Stratigraphic and geographic range.—Zanclean (Early Plio−
cene) to Recent; worldwide.

Reports of Sulcichnus
in the literature

There are numerous reports in the literature that show Sul−
cichnus to be common in the fossil record on solitary corals
since the Miocene, although authors do not always describe
the presence of the trace.

Reuss (1872) reported and figured different Miocene
caryophylliids with these grooves, collected in the central
Europe Miocene basins.

Angelis (1894b) illustrated a specimen of Flabellum from
the Ligurian Pliocene (Italy) which appears to show a groove.
Two authors reported corals from various Pliocene locations
in the north of Italy and also figured specimens with grooves:
Osasco (1895) (Ceratotrochus) and Simonelli (1895) (Flabel−
lum and Ceratotrochus). Roger (1943, 1944) figures several
species of Flabellum from the Lower Pliocene of Dar Bel
Hamri (Atlantic coast of Morocco) that show Sulcichnus. Pos−

teriorly, Chavan (1952) re−described one of the forms identi−
fied as F. avicula by Roger (1944), and also pointed out the
presence of the groove. This author also refers to the same type
of groove shown by specimens of Ceratotrochus found in this
Moroccan location, as well as in Flabellum from the Mala−
citan Mediterranean Pliocene.

Cuif (1968) studied caryophylliids from Liguria and
Djebel Hammamet (Tunisia), two areas a considerable dis−
tance apart, and in both found specimens with the grooves.

Chevalier (1961) studied European Miocene corals but
none of his plates show specimens with Sulcichnus. How−
ever, Zibrowius et al. (1975) pointed out that in Chevalier’s
collection, which is housed in the Natural History Museum
of Paris, they saw several Pliocene solitary scleractinians
from the Atlantic Morocco and from Liguria (Italy), all of
them showing the excavation. They also detected the groove
in Miocene and Pliocene specimens from the British Mu−
seum collections: for example, in some Flabellum from Los
Tejares (Málaga, Andalusia), Pisa and Bussana (Liguria, It−
aly), in many specimens of Ceratotrochus from Tunisia, the
north of Italy and the Alpes−Maritimes (France), and in
Trochocyatus from the Miocene of Tortona (Italy).

The majority of traces seen in the literature (Recent and
fossil forms) resemble S. maeandriformis, and a few seem to
better fit with S. sigillum pattern. Nevertheless, a clear identi−
fication is not always feasible from the pictures, as previ−
ously noted.

Sulcichnus tracemaker

Generally speaking, traces of bioerosion offer palaeonto−
logists a first−hand source of ecological information. Despite
of this, information about such traces is not commonly re−
ported in studies of modern biota. However, in the specific
case of Sulcichnus neontologists have shown particular inter−
est in identifying the trace and attributing it to examples from
the fossil record (Zibrowius et al. 1975).

Fage (1936) was the first to describe these grooves on Re−
cent Flabellidae, and he attributed them to the activity of
the worm Lumbrineris flabellicola (Fage 1936) (Polychaeta:
Eunicida: Lumbrineridae). Zibrowius et al. (1975) undertook
the study of biotic relationships between L. flabellicola and
various contemporary species of deep−water ahermatypic
corals. However, they went a step further and attributed to
this same annelid similar traces observed in numerous Neo−
gene specimens, both via the literature and museum collec−
tions (see previous section). Given the small number of
changes undergone by Polychaeta over time, Zibrowius et al.
(1975) concluded that the same association currently ob−
served between Lumbrineris and certain ahermatypic corals
could be extended as far back as the Miocene.

In contemporary seas this association has been mainly,
although not exclusively, observed on solitary skeletons of
deep−water ahermatypic corals (azooxanthellates) (Fig. 5).
Zibrowius et al. (1975) described this association on the basis
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of samples from the NE Atlantic, the SW Indian Ocean
(South Africa), Madagascar, the China Sea and Japan. Sam−
ples were dredged at depths between 125 and up to 1,100 m.
As observed by these authors, the eroding polychaete L.
flabellicola inhabits a self−secreted membranous tube exteri−
orly attached to the host and causes a superficial to deep
groove on the coral skeleton, a Recent equivalent of Sul−
cichnus being described here. Following the terminology of
Taylor and Wilson (2002), Lumbrineris can be considered an
episkeletozoan.

The worm seems to be almost eurytopic, following the
distribution of its potential hosts. Thus, it has been detected
as far afield as the Philippines, Japan, and the NE Atlantic.
Zibrowius et al. (1975) report several Recent species that act
as hosts for the worm, belonging to the genera Caryophyllia,
Flabellum, Rhizotrochus, and Balanophyllia (all of which
are solitary), as well as ahermatypic colonial species of the
family Dendrophylliidae.

At present, the relationship established between L. fla−
bellicola and the coral host is clearly obligatory and perma−
nent for the worm (Zibrowius et al. 1975; Cairns and Zibro−
wius 1997; Martin and Britayev 1998). It may correspond to
a case of parasitism (− +), commensalism (0 +), mutualism
(+ +) or amensalism (00). In the former the relationship
would be negative for the host, while the others would not.
Studies on Recent material (Martin and Britayev 1998)
strongly suggest a relationship based on commensalism. In
the current specimens the anterior part of the worm is always
found close to the calyx of the coral, and may even stretch be−
yond it. This would enable the eunicid to place its proboscis
inside or around the mouth of the cnidarian and obtain food.
It would then return to its tube (Miura and Shirayama 1992,
Martin and Britayev 1998) with no detriment to the host.
However, much remains to be known about symbiotic rela−
tionships between worms and other groups, and commensa−
lism may have received undue emphasis.

Martin and Britayev (1998) described 292 species of
commensal polychaetes belonging to 28 families. Therefore,

commensals would be found in 31% of the known families of
polychaetes. In addition, these authors state that majority of
commensal polychaetes (67%) are obligatory symbionts, and
among these, 59% are found exclusively on a single type of
host. This figure rises to 87% when considering those which
appear on two or three hosts. These data fit well with our ob−
servations in the fossil record.

Maeandropolydora and Caulostrepsis are mainly attrib−
uted to the activity of spionids (Polychaeta: Spionida: Spio−
nidae), which infest a variety of skeletal and non−skeletal
substrates. Among the most recent papers, Wielgus et al.
(2002, 2006) report numerous genera of colonial corals in−
fested and bored by spionid polychaetes in the Red Sea.
Worms activity modify the colonial morphology in polluted
water, thus acting as parasites. Rodrigues (2007) and Rodri−
gues et al. (2008) discuss the ecological significance of
spionid traces from an example of infestation in Recent
brachiopod shells. They conclude that these traces may rep−
resent either comensalism or parasitism, so further studies
are needed to determine the dominant symbiotic interaction.

Discussion and concluding
remarks

Although there are descriptions of symbiosis between Re−
cent L. flabellicola and colonial corals, Sulcichnus has only
been observed on solitary forms in the fossil record. To
date, it has not been identified in colonial forms from the
Mediterranean Neogene (ahermatypic or not), and no ex−
amples have been observed in the bibliography or in mu−
seum collections.

One notable aspect is that the skeletons of Neogene corals
infested by what were probably eunicid polychaetes show no
signs of the host having rejected or protected itself against
the symbiont, as no overgrowths or deformation structures
indicating a biological response from the host have been ob−
served. This lack of skeletal response provides support to the
actualistic hypothesis of a symbiotic relationship based on
commensalism (Martin and Britayev 1998). In this case, the
host would be neutral and the worm would be benefited: it
would gain a substrate to live on, protection against possible
predators (the coral’s cnidoblasts would serve as a good de−
fence), and a reliable place to obtain food.

It should also be noted that the Recent record of this
worm−coral symbiosis is mostly found on deep−sea forms.
However, the fossil specimens studied generally come from
sediments considered as being of shallow water (the excep−
tion being those from the most northerly basins: Liguria and
Alpes−Maritimes) origin. This suggests a possible shift on
the environmental preferences of the ecological pair. Further
actualistic and palaeontological studies are required to clar−
ify this issue.

If we consider Sulcichnus within the field of the ethologi−
cal classification of trace fossils, it should be included in the
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Fig. 5. Recent polychaete Lumbrineris flabellicola (Fage, 1936) infesting

alive caryophyllids. Pictures by Alan and Eve Southward, from the Marine

Biological Association, UK; reproduced with permission.
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Fixichnia class (Gibert et al. 2004) as it represents an anchor−
ing structure where the supposed membranous tube of the
producer was fixed. It cannot be considered as a Domichnia,
because traces of this class are cavities produced by endo−
bionts, and Sulcichnus is actually an epigenic structure pro−
duced by an epieskeletozoan.

Seven scleractinian families and twelve genera have been
identified in the main Pliocene basins of Western Mediterra−
nean. From them, only four solitary genera (Caryophyllia,
Ceratotrochus, Trochocyathus, and Flabellum) belonging to
two families (Caryophyllidae and Flabellidae) exhibit these
bioerosive grooves.

Sulcichnus has a quite variable morphology but three
main models can be distinguished. Thus, three ichnoespecies
have been described and nominated. Only S. maeandriformis
appears in the four affected genera; S. helicoidalis is only
present in three of them (all except Trochocyathus), and S.
sigillum is restricted to two caryophyllids (Caryophyllia and
Trochocyathus). In other words, the meandering model does
not seems to be conditioned by the corallite morphology as it
is present in the four basic skeleton morphologies, whereas
the branding iron model was only developed in the mor−
phologies with a clear circular section (conical and turbinate
ones).

Finally, regarding the geographical distribution of Sulcich−
nus in the Western Mediterranean (Table 3), S. maeandri−
formis appears to be the most common and it is present in al−
most all the basins from Liguria (NE) to Estepona (SE).
S. helicoidalis is not so constant, but it also occurs in both the
northern and southernmost basins. S. sigillum has been only
identified in Estepona.
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