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Faunal dynamics across the Silurian–Devonian positive
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O) in Podolia, Ukraine:

Comparative analysis of the Ireviken and Klonk events

GRZEGORZ RACKI, ANDRZEJ BALIŃSKI, RYSZARD WRONA, KRZYSZTOF MAŁKOWSKI,

DANIEL DRYGANT, and HUBERT SZANIAWSKI

Racki, G., Baliński, A., Wrona, R., Małkowski, K., Drygant, D., and Szaniawski, H. 2012. Faunal dynamics across the

Silurian–Devonian positive isotope excursions (�13C, �18O) in Podolia, Ukraine: Comparative analysis of the Ireviken

and Klonk events. Acta Palaeontologica Polonica 57 (4): 795–832.

Two global isotopic events, the early Sheinwoodian (early Wenlock) and that at the Silurian–Devonian transition, have

been comprehensively studied in representative carbonate successions at Kytayhorod and Dnistrove, respectively, in

Podolia, Ukraine, to compare geochemistry and biotic changes related correspondingly to the Ireviken and Klonk events.

These two large−scale isotope excursions reveal different regional ecosystem tendencies. The well−defined increasing

trend across the Llandovery–Wenlock boundary in siliciclastic input, redox states and, supposedly, bioproductivity, was

without strict correlative relations to the major 13C enrichment event. The environmental and biotic evolution was forced

by eustatic sea−level fluctuations and two−step climate change toward a glaciation episode, but strongly modified by re−

gional epeirogeny movements due to location near the mobile Teisseyre−Törnquist Fault Zone. Thus, the global early

Sheinwoodian biogeochemical perturbation was of minor depositional significance in this epeiric sea, as in many other

Laurussian domains. Conversely, the Podolian sedimentary record of the Klonk Event exhibits temporal links to the

abrupt �13C anomaly, overprinted by a tectonically driven deepening pulse in the crucial S–D boundary interval. This car−

bon cycling turnover was reflected in the regional carbonate crisis and cooling episodes, paired with a tendency towards

eutrophication and recurrent oxygen deficiency, but also with major storms and possible upwelling. Faunal responses in

both Podolian sections follow some characters of the Silurian pattern worldwide, as manifested by conodont changeover

prior to the major early Sheinwoodian isotopic/climatic anomaly. This contrasts with the relative brachiopod and

chitinozoan resistances in the course of the Ireviken Event. Also, during the Klonk Event, a moderate faunal turnover,

both in benthic and pelagic groups, occurred only near the very beginning of the prolonged 13C−enriched timespan across

the system boundary, possibly due to progressive dysoxia and temperature drop. The characters point to a peculiarity of

the Klonk Event by comparison with the Silurian global events, and some similarity already to the succeeding Devonian

transgressive/anoxic episodes.
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Ireviken Event, Klonk Event, Silurian, Podolia.
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Introduction

In contrast to previous views, the Silurian Period has recently
been shown as a short mid−Palaeozoic time slice character−
ized by recurring changes of the global ecosystem following

recovery from the end−Ordovician extinction (Calner 2008).

Surprisingly large−amplitude positive carbon and oxygen sta−

ble isotope anomalies (up to 10‰ in the late Ludlow; Fig. 1)

were episodes of profound environmental change (“oceanic

events”; Jeppsson 1990, 1998) manifested by distinctive fa−
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cies variation and associated stepwise extinctions both pre−
ceding plus coincident with the isotopic excursions (see sum−
mary in Munnecke et al. 2003, 2010; Calner 2008; and
Melchin et al. 2012). Regular occurrences of teratological
acritarchs record these high stress conditions (Munnecke
et al. 2012). In general, pelagic communities were more
strongly affected than shallow−water biota in the repeatedly
pronounced oceanographic and climatic changes (see over−
views in Kaljo et al. 1996; Jeppsson 1998; and Calner 2008;
also e.g., Boucot 1990; Brett and Baird 1995; Porębska et al.
2004; Johnson 2006; Stricanne et al. 2006; Lehnert et al.
2007b, 2010; Loydell 2007; Eriksson et al. 2009; Nardin et al.
2011; Molloy and Simpson 2012; Manda et al. 2012; Noble et
al. 2012). In fact, Silurian graptolites exhibit a very dynamic
evolutionary history (Urbanek 1993; Štorch 1995; Sadler et
al. 2011), contrary to the relatively stable Silurian reef biotas
(Copper 2002b), and crinoid and brachiopod faunas (Talent et
al. 1993; Kaljo et al. 1996; Ruban 2011). On the other hand,
synchroneity of mass mortalities in graptolites, conodonts
and, especially, the poorly known benthos is uncertain (e.g.,
Copper 2002b; Loydell 2007; Manda et al. 2012; Noble et al.
2012), and also separate terms have been proposed for the
graptolite− and conodont−based crises (see Jeppsson 1990;
1998; Urbanek 1993; Štorch 1995; Kaljo et al. 1996). Con−
versely, some authors used terms coupling both biotic and
geochemical aspects of global events (e.g., the Ireviken isoto−
pic excursion; Cramer et al. 2011a; see also Buggisch and
Joachimski 2006), even though the anomalously heavy �13C
values are roughly correlated with these medium−order bio−
sphere perturbations (see Melchin et al. 2012: fig. 21.11).

Five distinct �13C excursions have been identified in the
“classical” Silurian to Lower Devonian low−latitude car−

bonate successions of Podolia, Ukraine (Azmy et al. 1998;
Kaljo et al. 2007, 2012; Małkowski et al. 2009; Fig. 1). Bi−
otic responses and ecological interactions are as yet poorly
known from these key stratigraphical levels. Two of these
biogeochemical perturbations, the early Sheinwoodian
excursion (early Wenlock; ESCIE, cf. Lehnert et al. 2010)
and the Silurian–Devonian passage excursion (SIDECIE =
SIDE of Kaljo et al. 2012), approximately correlative with
the major Ireviken (2nd order) and subordinate Klonk (5th

order) biotic crises, respectively (see Kaljo et al. 1996;
Jeppsson 1998), have been comprehensively studied by us
in representative Podolian localities to compare geochemi−
cal and faunal trends in the epeiric domain. The goal is to
present distributional and frequency patterns of benthic
(brachiopods) and presumably pelagic (conodonts, chitino−
zoans) biota across these two �13C anomalies, which are
separated by a ca. 14 my interval (Melchin et al. 2012). The
integrated event−stratigraphical analysis of biotic signals
from very different ecologic groups, against stable isotope
and inorganic geochemical proxies, provides an improved
insight into concomitant ecosystem relationships in the rap−
idly evolving Silurian marine realm.

The responsibility of authors is as follows: GR and KM
for geochemical data and interpretation; AB and RW for
brachiopod and chitinozoan results, respectively; and DD
and HS for regional and conodont aspects; the final discus−
sion and conclusions are joint.

Institutional abbreviations.—ZPAL, Institute of Palaeobiol−
ogy, Polish Academy of Sciences, Warszawa, Poland.

Other abbreviations.—ESCIE, early Sheinwoodian carbon
isotope excursion; FAD, first appearance datum; GC–MS,
Gas Chromatography–Mass Spectrometry; ICP, Inductively
Coupled Plasma; S–D, Silurian–Devonian; SIDECIE, Silu−
rian–Devonian carbon isotope excursion; SOIE, Shein−
woodian oxygen isotope excursion; TC, total carbon; TESZ,
Trans−European Suture Zone; TIC, total inorganic carbon;
TOC, total organic carbon; USGS, U.S. Geological Survey ;
V−PDB, Vienna−Pee Dee Belemnite Standard.

Geological setting

The extended middle Silurian to Lower Devonian marine suc−
cession of the Dniester Basin (Fig. 2) is considered as one of
the most continuous successions of this age in the world, and
have a long history of geological and palaeontological investi−
gations (see Kozłowski 1929; Nikiforova et al. 1972; Tsegel−
nyuk et al. 1983; Koren et al. 1989; Uchman et al. 2004; Kaljo
et al. 2007; Skompski et al. 2008; Małkowski et al. 2009;
Krzemiński et al. 2010). The mostly carbonate deposits are
well exposed in the escarpments of the Dniester valley and its
tributaries, and form an internally conformable regressive unit
with a total thickness of more than 900 m. The essentially
undeformed Podolian sequence is strongly controlled by its lo−
cation in the marginal belt of the East European Platform, near
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to the mobile Trans−European Suture Zone—the TESZ or

Teisseyre−Törnquist Fault Zone (Fig. 2B; see Drygant 2000;

Sliaupa et al. 2006; Krawczyk et al. 2008). The succession

thickens toward the suture zone where the sedimentation rate

was controlled by platform−margin faults and subsidence.

In the Silurian succession, which is more than 400 m thick,
two depositional phases can be distinguished (Drygant 2003).
The Wenlock and Ludlow phase of carbonate shelf sedimenta−
tion is characterized by numerous bioherms and biostromes
(see Koren et al. 1989; Skompski et al. 2008; Łuczyński et al.
2009), and the Pridoli phase is characterized by rapid and dif−
ferentiated sedimentation rates, especially in the vicinity of the
platform margin. The Lower Devonian (Lochkovian) marine
deposits, about 530 m thick, can be assigned to a third phase of
continuous sedimentation (see Małkowski et al. 2009). The

phase is characterized by the flysch−like interbeds of limestone
and shale with gradually increasing amounts of terrigenous
material resulting for gradual regression and a simultaneous
uniform but comparatively strong, subsidence regime (e.g.,
Uchman et al. 2004).

Facies evolution and analysed
sections

The lower sampled interval (Fig. 3) includes open−shelf car−
bonate facies, very well naturally exposed in the Dniester
River valley (Tarnava tributary) near the village of Kytay−
horod (section no. 96 of Nikiforova et al. 1972; see Małkow−
ski et al. 2009: fig. 3A; N48�32'16.9”, E26�14'21.4”). The
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late Llandovery to earliest Wenlock Restiv Beds (rhythmi−
cally alternating grey platy limestone and clayey shale beds)
are succeeded in the section by Wenlock (Homerian) nodular
limestone, with subordinate platy calcareous and clayey sets
(Demshyn Beds). These fossiliferous strata pass upward into
the more monotonous calcareous−nodular Maryanivka Beds.
This succession has been studied in terms of its graptolite
(Tsegelnyuk 1976; Tsegelnyuk et al. 1983) and conodont
(Drygant 1984) zonation. Koren et al. (1989) claimed that the
Llandovery–Wenlock boundary is located 2.2 m above the
base of Restiv Beds, and is based on the first and only occur−
rence of Cyrtograptus murchisoni within the Pterospathodus
amorphognathoides Conodont Zone (see Fig. 3 and below;
compare the updated biostratigraphy in Cramer et al. 2010,
2011a; Kleffner and Barrick 2010; and Melchin et al. 2012).

The second succession studied is the partly trenched
Dnistrove (former Volkovtsy, [64]; N48�38'19.1”, E26�47'
18.6”) section, which is a regional reference succession across
the Silurian–Devonian (S–D) boundary, described in Mał−
kowski et al. (2009; compare the Dnistrove−West locality in
Kaljo et al. 2012). The Silurian sequence terminates with
the Trubchyn (upper part of the former Rashkiv Beds) and
Dzvenyhorod Beds of the upper part of the Skala Horizon (see
Skompski et al. 2008: fig. 3). The strata are mostly calcareous,
with dark, fossiliferous, nodular limestone predominating in
the topmost interval. The S–D boundary is tentatively placed
3.2 m above this interval, in a succession of interbedded
greenish−grey argillaceous shale and marl containing dark−
grey limestone nodules. This unique, laterally differentiated
and clay−enriched part of the lowermost Khudykivtsi Beds
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(= units 3 to 6 of Nikiforova and Predtechenski 1968: fig. 23)
is informally distinguished herein as “Dnistrove Level” (2.2 to
3.1 m thick; Fig. 4).

The boundary is based on the first and only occurrence of
the index graptolite species Monograptus uniformis angusti−
dens (Nikiforova et al. 1972; Nikiforova 1977), but some of
the conodont species are also important. Ozarkodina typica
and Wurmiella excavata curvata do not occur higher than
1.4 m below the boundary while Parazieglerodina eostein−
hornensis disappears just below the boundary (Drygant and
Szaniawski 2009). Forty cm below the S–D boundary
Zieglerodina remsheidensis appears and 60 cm above the
boundary is the first representative of the icriodonts, Caudi−
criodus hesperius. Mashkova (1971) reported first occurence
of the icriodonts 1.5 m below the boundary but we can not
confirm that. In the recently revised conodont zonation
scheme, the Devonian system base is defined by first occur−
rence of Caudicriodus hesperius (= the bottom of “hesperius
Zone” of Corradini and Corriga 2012 and “hesperius–optima
Zone” of Slavík et al. 2012; see below). This system bound−
ary can also be fixed by the first appearance of the chitino−
zoan index species Eisenackitina bohemica, and the last ap−
pearance datum of Eisenackitina barrandei and Cingulo−
chitina klonkensis. These chitinozoan faunas provide poten−
tial for accurate correlation with the international stratotype
at Klonk, Barrandian area, Czech Republic (Chlupač and
Hladil 2000; Fatka et al. 2003; see also Wrona 1980; Nestor
1994; Paris et al. 2000).

The lower part of the Lochkovian Stage, the Khudykivtsi
Beds of the Borshchiv Horizon (57 m thick), is developed in
the form of marly limestone interbedded with shale. The
higher fossil−rich, open−marine Lochkovian limestone and
shale suite represents an uninterrupted continuation of the Si−
lurian–Devonian deposition (Małkowski et al. 2009).

Material and methods

As stressed above, the two intervals selected for quantitative
study are characterized by profound carbon and oxygen iso−
tope anomalies (Fig. 1), against well constrained biostrati−
graphical and facies background information (see also Niki−
forova et al. 1972; Kaljo et al. 2007, 2012). The present study
utilized a variety of geochemical and quantitative ecological
approaches.

Isotope geochemistry.—We comprehensively sampled the
Kytayhorod succession (38.7 m thick) in 2008 and 2009,
whereas the Dnistrove section had already been studied for
stable isotopes, based on 28 samples from a 22.35 m thick in−
terval by Małkowski et al. (2009). The samples were col−
lected from fresh surfaces of marly and micritic limestone
layers (see microfacies types in Fig. 5, based on 15 thin sec−
tions; for generalized mineralogy and petrography see Niki−
forova et al. 1972 and Kaljo et al. 2007), with a stratigraphi−
cal spacing of decimetres to metres.

A total of 44 bulk−rock samples from Kytayhorod was ana−
lysed for carbon and oxygen stable isotopes in the Light Stable
Isotopes Laboratory of the Institute of Geological Sciences
and Institute of Palaeobiology, Polish Academy of Sciences,
Warsaw (see SOM 1 in Supplementary Online Material avail−
able at http://app.pan.pl/SOM/app57−Racki_etal_SOM.pdf;
and Małkowski et al. 2009). The carbonate powder for analy−
sis was extracted with a microdrill and decomposed under
vacuum in 100% H3PO4 (ortho−phosphoric acid) for 24 h at
25�C. Released CO2, after freezing it out from the separation
line, was analyzed on a Finnigan Mat delta plus gas mass−
spectrometer. Every gas sample was introduced into the spec−
trometer in dual inlet mode and the measurement was repeated
eight times, with the mean values treated as results. The stan−
dard error of the spectrometer measurements was 0.02‰. All
carbon isotope values are reported in permil relative to
V−PDB. The precision (reproducibility of replicate analyses)
of both carbon and oxygen isotope analysis was usually better
than ±0.1‰. Data are normalized to the V−PDB scale using
National Bureau of Standards NBS−19 (�18O = −2.20‰ and
�13C = 1.95‰).

In addition, 11 samples from Kytayhorod and 13 from
Dnistrove (SOM 1 and 3) were studied for carbon isotopes in
organic carbon in GeoZentrum Nordbayern, Erlangen, Ger−
many. This analysis of organic matter was performed with an
elemental analyser (Carlo−Erba 1110) connected online to a
ThermoFinnigan Delta Plus mass−spectrometer. Accuracy
and reproducibility of the analyses was checked by replicate
analyses of international standards (USGS 40). Reproduci−
bility was better than ±0.07‰.

Organic geochemistry.—Twelve samples from Kytayho−
rod and 16 from Dnistrove were measured for total carbon
(TC) and total inorganic carbon (TIC) abundances at the Fac−
ulty of Earth Sciences, University of Silesia (SOM 1 and 3).
TC and TIC contents were determined using an Eltra CS−500
IR−analyser with a TIC module. Total organic carbon (TOC)
was calculated as the difference between total carbon and to−
tal inorganic carbon. Analytical precision and accuracy were
better than ±2% for TC and ±3% for TIC. Four (from six) pi−
lot samples from both sites (SOM 5) were sufficiently rich
in extracted organic matter to be analysed by gas chromatog−
raphy coupled with mass spectrometry (GC–MS) for bio−
marker characteristics at the Faculty of Earth Sciences, Uni−
versity of Silesia (for method details see Racka et al. 2010).

Inorganic bulk geochemistry.—Sixteen rock pulp samples
from the Kytayhorod section and 27 samples from the Dni−
strove outcrop (SOM 2 and 4); supplemented by extra 7 sam−
ples from Zalishchyky (upper Lochkovian Ivanie Beds; Mał−
kowski et al. 2009; SOM 4), were analysed at the Acme Ana−
lytical Laboratories (Vancouver) Ltd, Canada. Total abun−
dances of the major oxides and several minor elements were
reported from a 0.2 g sample analysed by ICP−emission spec−
trometry following lithium metaborate/tetraborate fusion
and dilute nitric digestion. Rare earth and refractory elements
(e.g., Ba, Co, Sr, Th, U, V, Zr) were determined by ICP mass
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spectrometry following the same decomposition method. A
separate 0.5 g split was digested with 3 ml 2:2:2 HCl−HNO3−
H2O and also analysed by ICP mass spectrometry for the pre−
cious and base metals (e.g., Mo, Cu, Pb, Zn, Ni, As, Cd). In
addition, total carbon and sulphur analyses by Leco were
supplied. The reliability of the results was examined by anal−
yses of some international standard reference materials. Pre−
cision and accuracy of the results were better than ±0.9%
(mostly ±0.4%) for the 11 major elements, and better than
±15% for the 45 trace elements, considered only in part in
this study. When the concentrations of trace metals (espe−
cially Mo and Cr) were lower than the detection limits, the
highest value below the suitable detection limit value was
used in averaged abundance and proxy calculations (Table 1;
SOM 2 and 4; see Racka et al. 2010 for further method de−
tails).

Palaeontological data.—Although various macrofossil
groups are present, only the most abundant shelly compo−
nent, brachiopods, has been quantitatively analyzed in fre−
quency terms (ca. 1800 specimens). Nevertheless, occur−
rences of other groups were noted as well, and the distribu−
tion data have been compared with the faunal lists in Niki−
forova and Predtechensky (1968), Nikiforova et al. (1972),
and Koren et al. (1989).

Absolute and relative abundances have been estimated

for two common acid−resistant microfossil groups in the

both sections studied (SOM 6 and 7), derived from 33 sam−

ples for conodonts (17 from Kytayhorod and 16 from Dni−

strove,) and 47 samples for chitinozoans (18 from Kytay−

horod and 29 from Dnistrove; SOM 5). Conodonts were ex−

tracted by acetic acid digestion from mostly ca. 500–1000

grams of limestone, whilst about 100–150 grams of each

sample were processed for chitinozoans. The samples for

chitinozoans were processed using a standard palynological

HCl−HF acids technique (see Miller 1996). The residues

were sieved using 50 μm screens, but the relatively large

amount of resistant residues obtained from the clay− and

silt−rich marly samples was reduced about ten times for ex−

amination of chitinozoans.

Diversity indices were calculated utilizing a software
package for paleontological data analysis PAST Version
1.94b (Hammer et al. 2001). The following statistics are pre−
sented (see also Hints et al. 2006):

� Frequency (absolute abundance): the number of speci−
mens (n) per gram or kilogram of rock.

� Taxic diversity (S): the number of species or genera in a
sample.

� Margalef's richness index: (S−1)/ln(n), where S is the total
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Table 1. Averaged, minimal and maximal Al/normalized concentrations of key elements in the Podolian sections under study against the average

limestone and average shale Al/normalized abundance levels (based on Wedepohl 1971, 1991; Taylor and McLennan 1985), and averaged Al abun−

dances (shaded).

Element (Average
limestone/Al) ×104

(Average
shale/Al) ×104

(Average sample from Kytayhorod/Al) ×104

[minimal value–maximal value]
(Average sample from Dnistrove/Al) ×104

[minimal value–maximal value]

Ba 92.3 65 90 [45–303] 50 [33–165]

P 230.8 70 310 [20–790] 160 [59–413]

Mn 538.5 90 610 [160–50] 198 [47–469]

Zn 17.7 8.5 25.9 [5.8–170] 7.5* [4.6–19.4]

Pb 6.9 2 5.1 [1.8–13.4] 3.3 [0.6–30.8]

V 15.4 15 12.1 [7.7–17] 15.4** [10.6–23.3]

Cu 3.1 5 2.9 [0.5–10.1] 6.3 [2.4–15.6]

Co 1.5 2.3 2 [1.4–2.7] 2 [1.1–2.9]

Ni 11.5 5.5 5.2 [4.1–9.1] 5.2 [2.7–6.9]

Mo 0.3 0.1 0.26** [�0.03–1.79] 0.1**[�0.02–0.6]

U 1.6 0.3 0.8 [0.3–2.1] 0.8 [0.4–3.3]

Zr 14.6 21 29 [23.6–36.9] 26 [16.4–82.2]

Al (%) 1.3 10 2.2 [1.0–6.8] 2.6 [0.7–6.6]

* Excluding the abnormally enriched sample SD−27 (6543 ppm). **Approximated values based on maximal concentrations in the samples below
the detection level.

Fig. 5. Variety of microfacies from the Silurian to Lowermost Devonian of Podolia: bioturbated skeletal packstone to grainstone (A), bioturbated skeletal

packstone (B, C), bioturbated skeletal wackestone to packstone (D), burrowed (E) to slightly bioturbated mudstone (F), and partly amalgamated crinoid

packstone in three bioclastic, allegedly storm−generated intercalations (S1–S3), graded into non−fossiliferous shale (G; see also Małkowski et al. 2009: fig. 6).

Demshyn (SD−36, D) and Maryanivka Beds at Kytayhorod (SD−50, A; SD−45, B); Dzvenyhorod Beds (SD−21, C), and lower (Vg−15, Dnistrove Level, G; see

also Fig. 4) and upper (SD−20, E; SD−3, F) Khudykivtsi Beds at Dnistrove. Differently disarticulated and fragmented skeletal constituents dominated by shelly

faunas (brachiopods; molluscs, see bivalve valve on A2) and echinoderms (crinoids; rare echinoids), associated with frequent ostracods (A1), dasycladacean al−

gae (B1; close−up in B2) and trilobites. Note stylo−nodular fabric (C, lower left part), differently preserved burrows (Bu), partly with pellets (E), dispersed fine

euhedral pyrite in micrite matrix (C–F), as well as Scyphocrinites lobolith arrowed in G1 (close−up in G2). Scale bars 5 mm except A1, B1 and G1 1 mm.

�
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number of taxa, and ln(n) is the natural logarithm of the to−
tal number of the individuals n.

� Equitability: −sum((ni/n)ln(ni/n))/lnS, where ni is number
of individuals of taxon i, and n is the total number of the in−
dividuals.

� Dominance: sum ((ni/n)2), where ni is number of individu−
als of taxon i, and n is the total number of the individuals.

Geochemical evaluation of
environmental factors

As reviewed by Cramer and Saltzman (2005, 2007b), Brand et
al. (2006), Loydell (2007), Calner (2008), Vecoli et al. (2009),
Munnecke et al. (2003, 2010), Kaljo et al. (2012) and Koz−
łowski and Sobień (2012), different scenarios have been postu−
lated to explain the Silurian worldwide �13C and �18O positive
anomalies. Saltzman (2005) indicated that so striking �13C vol−
atility was sustained by positive feedback between oxygen de−
ficiency and bioproductivity in the usually P−limited and
cooler−water Silurian oceans. Thus, one popular explanation
invokes elevated primary productivity and/or the increased
burial rate of organic matter, visible especially in black shale
deposition. The Silurian excursions, however, are usually not
synchronous with widespread black shale levels (with excep−
tion of the Middle Silurian Mulde Event, Calner 2008; in some
regions, also of the ESCIE and SIDECIE, Lüning et al. 2000;
Buggisch and Joachimski 2006; Loydell and Frýda 2007;
Vecoli et al. 2009; Noble et al. 2012). Therefore, following
“a weathering hypothesis” of Kump et al. (1999) for the Hir−
nantian glaciation as a trigger for the large−scale ecosystem ca−
tastrophe, enhanced weathering of exposed Silurian carbonate
terrains in a regressive episode has been postulated as well
(e.g., Loydell 2007; Noble et al. 2012). Eventually these led to
a drop in atmospheric pCO2 and cooling (anti−greenhouse ef−
fect; e.g., Wenzel and Joachimski 1996; Kump and Arthur
1999; Małkowski and Racki 2009), as confirmed by reliable
oxygen isotope paleothermometry based on conodont apatite
data (Joachimski et al. 2009; Lehnert et al. 2010). In this study,
because no data in Podolian successions for substantial
changes in redox regimes, organic matter composition and
thermal overprint (see discussion in Cramer and Saltzman
2007a), the paired inorganic and organic carbon isotope curves
are used to estimate �13C (= �13Ccarb – �13Corg), to roughly track
changes in atmospheric pCO2 (Kump and Arthur 1999).

The severe drop in primary productivity and plankton star−
vation has been considered as a main cause of the trophic web
instability and subsequent biotic crises (Jeppsson 1990, 1997,
2005; see also Porębska et al. 2004; Cramer and Saltzman
2007a). During the Ireviken Event, however, phytoplankton
data reveal most of the acritarch losses at the final of the biotic
overturn, without links to conodont demise steps (Gelsthorpe
2004). This timing of primary production collapse in the
Gotland succession, however, is questionable according to
Lehnert et al. (2010) because of major facies change. On

the other hand, the phytoplankton abundances analysed by
Stricanne et al. (2006) indicate, at least for the major Lau
(= Kozlowskii) Event, decreased bio−productivities during the
isotope excursion peak (see Noble et al. 2012) or perturbations
in nutrient composition and availability (Kozłowski and So−
bień 2012). If so, the large−scale 12C sequestration may rather
be attributed to black shale deposition in restricted oceanic
and/or epeiric regions (e.g., Wenzel and Joachimski 1996;
Cramer and Saltzman 2005, 2007a, b), as exemplified by
northern Gondwanan hot shales since from Rhuddanian to
early Wenlock times (Lüning et al. 2000, Vecoli et al. 2009).
Advection of 13C−enriched near−surface waters in stratified
ocean, attributed to onset of an antiestuarine shelf circulation
in more arid climate states, is an alternative hypothesis (e.g.,
Bickert et al. 1997; Munnecke et al. 2003; Jeppson 2005). In
fact, the recurring graptolite mass mortalities are seen as trig−
gered by regressive pulses and “oxic events” paired with vig−
orous thermohaline circulation and retreat of black shale or−
ganic−rich facies (e.g., Štorch 1995; Wenzel and Joachimski
1996; Porębska 2005; Johnson 2006). The most hospitable
graptolite habitats may have been located near the boundary
zone between oxic and denitrified, anoxic waters (= anoxi−
tropic niche sensu Berry et al. 1989).

These conjectural oligotrophic vs. eutrophic photic zone
conditions may potentially be tested by combined use of
several assumed palaeoproductivity proxies: organic matter
abundance (TOC) combined with inorganic tracers (P, Ba, and
Si; e.g., Pujol et al. 2006; Tribovillard et al. 2006; Calvert and
Pedersen 2007; Jenkyns 2010). As a micronutrient proxy the
authigenic fraction of Ni, Zn and Cu is also considered here, as
it is associated mostly with organic carbon (e.g., Brumsack
2006; Tribovillard et al. 2006; Śliwiński et al. 2012). Extreme
enrichment in some elements (particularly Zn, Cu, Sr, and Ba)
requires an additional external source, such as hydrothermal
activity (see Brumsack 2006; Tribovillard et al. 2006; Pujol et
al. 2006). Limited to a single sample (one−point) overabun−
dances, exemplified by the distinctive sulphide−enriched sam−
ple SD−27 from Dnistrove (S—0.38%, Zn—6543 ppm, Cd—
20 ppm; SOM 4), may suggest an episodic hydrothermal wa−
ter influxes to the Podolian sedimentary basin, or rather indi−
cate an imprint of post−depositional diagenetic and/or mineral−
izing magmatic−hydrothermal fluid signature (see Pujol et al.
2006; Tribovillard et al. 2006; Sindern et al. 2008). However,
the studied samples display typically depleted Al−normalized
abundances, and in infrequent cases only are distinctly higher
relative to the average limestone (e.g., Zr and Cu at Dnestrove,
see Table 1).

On the other hand, bottom−water oxygenation depletion
is tracked by increased abundances of redox−sensitive (e.g.,
Mo, U, V, As, Cr,) and/or sulphide−forming trace metals
(e.g., Co, Cu, Ni, Pb, Zn; see Brumsack 2006; Tribovillard et
al. 2006; Calvert and Pedersen 2007; Schröder and Grot−
zinger 2007; Ver Straeten et al. 2011; Śliwiński et al. 2012).
However, frequently used redox indices often suggest con−
tradictory conclusions (see e.g., Racka et al. 2010). Even if
Mo and U contents are mostly low (Table 1), the combined
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use of Mo/Al and U/Th ratios appears to be the most useful to
suggest oxygen−deficient conditions in the Podolian succes−
sions. Considering other markers, the time series of V/V+Ni
ratio consistently imply far more extensive hypoxia, whereas
the Ni/Co ratio variations manifest only oxic regimes in the
both sections.

Al is well known as the key lithogenous compositional
(i.e., aluminosilicate) standard, and dilution effects by car−
bonate and quartz were reduced by use of the element/Al ra−
tios as weight−ratios (e.g., Sageman et al. 2003; Pujol et al.
2006; Calvert and Pedersen 2007; Sindern et al. 2008; Ver
Straeten et al. 2011). Furthermore, if (i) the non−normalized
element concentrations are at the best close to the average
limestone contents, and paired with (ii) a good correlation
between the element vs Al, this abundance cannot be consid−
ered as an environmental proxy; these two characters indi−
cate clearly its dominance by terrigenous provenance and
scarcity of the authigenic fraction (Tribovillard et al. 2006;
Śliwiński et al. 2012; see Table 1 and examples below). For
example, only Al−normalized phosphorus concentrations are
more commonly useful in the bioproductivity context in
Podolian samples (see below).

The total lithogenous fraction content, as an approxima−
tion of the siliciclastic input, is mirrored by Al concentration,
whilst aeolian delivery to the outer−shelf Podolian basin can
be detected using elemental indicators for sediment grain−
size, such as Si/Al, Ti/Al, and Zr/Al ratios (Calvert and
Pedersen 2007; Schröder and Grotzinger 2007; Ver Straeten
et al. 2011). The applicability of quartz to aluminosilicate
(clay) phase ratio is justified by the absence of biogenous sil−
ica in Podolian sites. For example, the larger average grain−
size is tracked by elevated Zr/Al and Si/Al ratios, recording a
proportionally increased content of zircon and quartz grains,
respectively. Ver Straeten et al. (2011) designated a Si/Al ra−
tio above 5 as a tracer for sand−dominated clastic supply.
Wind−blown dust may also be compositionally influenced by
volcanic input, reflected by high Zr abundance levels in
fine−grained volcaniclastic admixture (e.g., Pujol et al.
2006), up to 260 ppm in Silurian ash levels of Podolia (Huff
et al. 2000: table 1). Elsewhere, Kiipli et al. (2010) have in−
terpreted Silurian sea level variations in a deep−shelf Latvian
section by combined SiO2/Al2O3 and K2O/A12O3 ratios,
reflecting the contribution of quartz, and muscovite and
K−feldspar, respectively, in siliciclastic material (see also
Sageman et al. 2003; Sindern et al. 2008).

Geochemical trends across the
Ireviken Event

The Kytayhorod succession is characterized by rather mo−
notonous grey carbonate−marly lithologies evolving from
planar bedded, rhythmic to unbedded, nodular varieties (Fig.
6A; for microfacies see Figs. 5A, B, D and 11; see also
Nikiforova et al. 1972: figs. 31, 32, and 126). Calcium car−

bonate content (calculated from CaO) is mostly above 70%,
with notable exceptions in the lower part, where this abun−
dance drops to 20.8%. The Restiv Beds are distinguished by
very high SiO2 abundance in several layers, above 47% in the
basal SD−42 sample, and Al2O3 content above 12% (Fig. 7;
compare the basal transgressive sandy set of Nikiforova et al.
1972: 36, 132). In most samples, however, the quartz contri−
bution is negligible (SiO2 ranges between 9 and 17%), as also
is that of the clay minerals (Al2O3 between 2 and 4%).
Dolomitisation remains minor in the succession as MgO con−
tent is largely below 1.7%.

Carbon and oxygen isotopes.—As noted by Kaljo et al.
(2007), the distinctive �13Ccarb increase of 2.6‰ in the Kytay−
horod section begins in the Restiv Beds, and reaches its peak
value of 4.0‰ at the very base of the early Sheinwoodian
Demshyn Beds. The isotopic highstand (slice E−2; Fig. 6A) is
followed by stable but negative �13C values up to −0.9‰ in
the upper parts (see coeval brachiopod calcite results in
Azmy et al. 1998).

Our and Kaljo et al. (2007: fig. 4) �13C time series agree
with the worldwide chemostratigraphical pattern in the Llan−
dovery–Wenlock transition (e.g., Brand et al. 2006; Cramer et
al. 2010; Noble et al. 2012), especially with Estonian �13C pro−
files, marked by an obscured slice of transient value decline
(isotopic feature 2 of Cramer et al. 2010). The early Shein−
woodian excursion (ESCIE) amplitude approaches 4.5‰ if a
−0.5% regional �13Ccarb baseline is used (guided by E−4 inter−
val; Fig. 6A). In addition, the C−isotopic event is clearly cou−
pled with a positive �18Ocarb excursion, evident also in the val−
ues in table 3 of Kaljo et al. (2007), but neglected by these au−
thors as a probable diagenetic artifact in whole−rock carbonate
samples (see also e.g., Martma et al. 2005). Their overall
primary character is demonstrated, however, by comparable
brachiopod calcite values from this site in Azmy et al. (1998;
see also Wenzel and Joachimski 1996, Bickert et al. 1997,
Heath et al. 1998; Munnecke et al. 2003; Cramer and Saltzman
2005; Brand et al. 2006) and, especially by a similar reliable
chemostratigraphical �18O pattern (i.e., the SOIE excursion;
see below) recognized in conodont apatites by Lehnert et al.
(2010, see also discussion on the S–D transition signature in
Małkowski et al. 2009). The �18Ocarb shift begins with values
between −5.2 to −6.2‰, increases up to −3.9‰ in the plateau in−
terval of high �13C values, and very gradually diminishes by
ca. 2‰ in the Maryanivka Beds (background E−4 interval;
Fig. 5A).

The �13Ccarb excursion is partly reflected also in the or−
ganic carbon data (based on few samples), but marked proba−
bly by a distinctly lower amplitude. The Podolian record of
the ESCIE is associated in addition with an irregular �13C
rise by ca. 2‰; this highest value corresponds with the up−
permost sample from the crucial E−2 slice (Fig. 7A).

Inorganic bulk geochemistry.—The detrital admixture ex−
hibits two slightly fluctuating (particularly in the lowest inter−
val;), but contrasting secular tendencies: (i) decreasing clay
abundance tied with (ii) increased coarser clastic input indi−
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Fig. 6. A. Secular trends of �13C and �18O values in carbonate and organic matter, �13C and total organic carbon from section 96 near Kytayhorod village

(see SOM 1). Lithology after Nikiforova et al. (1972: fig. 82), modified. Three slices E−1 to E−3 (marked by shades of grey) denote of the early Shein−

woodian (ESCIE) carbon isotope excursion: the interval E−2 corresponds to the isotopic highstand (see a widened excursion definition in Cramer et al. 2010,

also Sadler 2012); E−1 and E−3 to the increasing and decreasing curve segments, respectively, and E−4 to the regional background. Note that the Ireviken bi−

otic event (crossed band) correlates with the initial positive �13C shift slice (E−1); the lower event boundary corresponds the last occurrence of conodont

Pseudooneotodus tricornis, and the upper boundary is questionably placed above the disappearance of chitinozoan Eisenackitina cf. dolioliformis (Figs. 15,

16; see Jeppsson 1997; Nestor et al. 2002;). Approximated �13C levels are calculated for �13Ccarb values averaged for two stratigraphically adjacent samples,

as shown also by a dotted line of the curve. The microfacies illustrated are marked as rectangles. B. General view of the natural outcrop in the Dniester River

valley (Tarnawa tributary) near Kytayhorod village; arrow indicates the main sampled site.
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cated by abruptly increasing Zr/Al and Si/Al ratios, correlated
also with the K/Al proxy trend (Fig. 7). Heightened Zr/Al lev−
els are suggestive of some volcaniclastic material in the peak
values, even though definite bentonites occur only higher in
the Silurian succession of Podolia (Huff et al. 2000).

All presumed bioproductivity tracers show in detail largely
dissimilar temporal changes, and are also somewhat question−
able because the crucial elements are usually very weakly cor−
related both with Al and TOC: r = −0.33 and −0.12 for P, re−
spectively, as well as r = 0.12 and −0.52 for Ba, r = 0.99 and
−0.24 for Ni, and r = −0.06 and 0.36 for Zn. Thus, their
authigenic character is suspected (or organic matter has been
differently degraded in the sediments). However, the proxy
data analysed collectively exhibit the congruent major in−
creasing−upward trend.

Declining bottom water oxygenation towards at least dys−
oxic conditions, after the ESCIE (see below), is clearly evi−
denced by several indices (U/Th, Ni/Co). Normalized Mo
contents reveal the most evident chemostratigraphical trend:
the long lasting stable low levels are followed by a rapid
forty−fold increase during the E−4 timespan (Fig. 7). This
tracer is the most reliable as it is unrelated to aluminosilicate
phases (r= −0.24 with Al; but r = 0.56 with TOC), by contrast
with indices based on V contents (r = 0.97 with Al; but r =
−0.41 with TOC). The very high U/Th ratio in transgressive

graptolite−bearing horizon of the Restiv Beds (see below) is
known from the one sample only, and contrasts with low
Mo/Al and most other redox proxy values. This suggests its
link rather to a post−depositional enrichment, even if a higher−
resolution sampling is requested.

Geochemical trends across
the Klonk Event
Lithofacies variation across the Klonk Event is significant in
the Dnistrove section because dark shale set with bioclastic
limestone partings (Dnistrove Level; Fig. 4) occurs in the
lowermost part of the Khudykivtsi Member, spanning the
S–D boundary (Fig. 8). Carbonate content decreased to 22%
in the Dnistrove Level (it is largely between 60% and 85%),
and this is coupled with SiO2 values above 45%, and Al2O3

concentrations above 12% (Fig. 9). Otherwise, the marly−
micritic lithologies (see Fig. 5C, E, F; Nikiforova et al. 1972:
figs. 83, 84, and 141) are enriched overall in terrigenous ma−
terial, as evidenced by irregularly fluctuating Al and Si con−
tents, varying from 1.3% to 5.4% and 6.2% to 20.7%, respec−
tively. Dolomitization is relatively unimportant at this site
even where MgO content is as high as 5.3% as this is notably
linked with aluminosilicates (r = 0.82 with Al).

http://dx.doi.org/10.4202/app.2011.0206
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Carbon and oxygen isotopes.—The abrupt and coeval in−

crease of �13Ccarb and �18Ocarb values is thoroughly described

by Małkowski et al. (2009; see also Kaljo et al. 2012). The

�13Ccarb excursion, with the highest value of 3.8‰ and 4.5‰,

is confirmed also in nearby outcrop at Dzvenyhorod and drill

core section in the Ternopil area, respectively (Kaljo et al.

2012; see Fig. 2B). The lower part of the S–D excursion

(SIDECIE) is recorded in the �13Ccarb data with an amplitude

of ca. 4‰ in in the Dnistrove succession (and above 5‰

when considering all the Podolian data).

This trend may be now roughly correlated with a parallel
shift in the �13Corg levels by 3.5‰ (Fig. 8), but this is notably
reversed higher in the succession. Thus, more high−resolu−
tion data are necessary to constrain this co−variation discrep−
ancy, as well as more irregular �13C secular changes, marked
by a distinct increase coeval with the three−point �13Corg

lowstand. The �13C curve instability notably contrasts with a
long−lasting isotopic plateau seen in the �13Ccarb values.

Inorganic bulk geochemistry.—As at Kytayhorod, the terri−
genous component reveals two somewhat opposing first−order
trends. Clay abundance is distinctly lower in the upper half of
the section, whilst the grain−size and possible volcaniclastic
admixture abruptly increases up to sand fraction in the upper−
most part, as recorded in the very high Zr/Al and Si/Al ratios
(Fig. 9).

Considering proxies of bioproductivity, similar serious
reservations can be expressed as for the Kytayhorod sam−
ples. Irregular secular variations suggest pulses of enhanced
fertilization/primary production, but recorded largely in the
lower part of the succession, including the Dnistrove Level,
and conspicuously absent in its middle part. The pattern is
certainly partly biased by the dominantly detrital provenance
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of the elements analysed, visible in the adverse relationships
between aluminosilicates and organic carbon even for the
most trustworthy tracers P (r = 0.39 and −0.10, respectively)
and Cu (r = 0.65 and −0.42).

Clearest data are again provided by collective use of re−
dox indicators, because the steady oxic regimes are evi−
denced exclusively in the middle part of section, just above
the S–D boundary, and, at most, dysoxic regimes may be
suggested for the remaining SIDECIE portions, marked by
fossil−poor, variably bioturbated muddy lithofacies (Fig. 5E,
F). Mo is once more predominantly present as an authigenic
phase, and therefore the most certain proxy in light of the in−
significant correlation with Al, and also with TOC (r = 0.31
and 0.25, respectively).

Organic geochemistry

Organic carbon abundances are invariably low in both sec−
tions, as shown by TOC values ranging from 0.06 to 0.38% at

Kytayhorod and from 0.11 to 0.46% at Dnistrove (SOM 1
and 3). The organic matter is rather erratically distributed in
the latter succession, and an exact association occurs neither
with the major �13Ccarb shift nor with black shale lithologies
around the S–D boundary (Fig. 8). However, the TOC max−
ima are notably found in the limestone set related to the
SIDECIE plateau. By contrast, organic carbon distribution
does not show any link with the ESCIE because this is char−
acterized by an upward increasing trend. What is more, the
minimal concentration (0.06%) is found in the �13Ccarb excur−
sion peak (Fig. 6A). Thus, the major secular trends of TOC
and inorganic proxies are connected each other at Kytay−
horod (Fig. 7), but this correlative link is obscured at Dni−
strove, especially in the middle SIDECIE slice (Fig. 9).

Results of the pilot GC−MS study on samples from the
Podolian localities (SOM 5) are influenced by thermal matu−
rity: biomarker data indicate at least ca 80–100�C, and of the
order of 150�C is indicated by our new observations of the
conodont colour alteration (cf. also Drygant 1993 and Huff et
al. 2000: 498–499).

http://dx.doi.org/10.4202/app.2011.0206
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Cyclic biomarkers like steranes or hopanes have not been
found or are present as traces. The most frequently encoun−
tered organic compounds are relatively stable n−alkanes and
polycyclic aromatic hydrocarbons and their alkyl deriva−
tives. Among n−alkanes, the most abundant are short−chain
varieties ([nC17 + nC18 + nC19]/[nC27 + nC28 + nC29])

suggestive of prevalent marine organic matter. However,
carbon preference indices (CPI and CPI[25–31]) are above 1
(as high as 2.01 for sample LM3 from Dnistrove) in the
long−chain n−alkane sets, characteristic for land−derived or−
ganic material due to dominating odd−numbered (over even−
numbered) carbon chains (e.g., Peters et al. 2005). Thus, a
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mixed marine−continental source of organic carbon is sup−
posed for the studied shelf successions, and is confirmed by
palynofacies at Dnistrove, also grossly obscured by thermal
overprint (see below). Furthermore, predominantly oxic sed−
imentary regimes are suggested by high pristane to phytane
ratios (Didyk et al. 1978).

Faunal dynamics across
the Ireviken Event
Quantitative distributional and diversity data on three fossil
groups, representing both benthic and most likely largely pe−
lagic biotas, are explored below. The faunal dynamics is con−
sidered in the context of environmental variables throughout

the two global isotopic events, interpreted from the above
geochemical patterns.

Brachiopods.—The stratigraphically oldest brachiopod fauna
of the Restiv Beds (samples R1 to upper part) is quite diverse
taxonomically being represented by up to 14 species (Figs. 10,
11). The most characteristic members of the fauna are species
of Skenidioides and Dicoelosia (see also Modzalevskaya
1968). Other genera represented are Scamnomena, Eoplecto−
donta, Dalejina, Resserella, Plagiorhyncha, Oglupes, Atry−
pina, Glassia, Meristina, and Cyrtia (see Figs. 12–14). These
generally well preserved brachiopods are mostly character−
ized by small shell dimensions and thin−ribbed surface sculp−
ture (see also Modzalevskaya and Nikiforova 1980). They
were either (i) fixosessile (see Bassett 1984), staying attached
to the substrate with their pedicle during all stages of growth

http://dx.doi.org/10.4202/app.2011.0206
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(e.g., Scamnomena, Skenidioides, Dicoelosia, Dolerorthis,
Atrypina, Glassia, Cyrtia), or (ii) liberosessile, becoming sec−
ondarily free−lying after whole or partial atrophy of the pedicle
(e.g., Eoplectodonta, Oglupes). Ambitopic Eoplectodonta and
Oglupes developed different adaptations for stabilisation of
the shell on soft muddy bottoms. The adult strophomenide
Eoplectodonta remained on the surface with the hinge line
down partially sunk into the sediment keeping the anterior
commissure above a muddy bottom. Dattilo (2004) showed
that strophomenid brachiopods were quite mobile and respon−
sive to environmental conditions and that they could live in a
convex valve−up position (Lescinsky 1995; Baliński 2010)
or assume a near−vertical, semi−infaunal position to escape
burial. The adult atrypide Oglupes, after atrophy of the pedi−
cle, became recumbent on the soft substrate and was stabilized
by flat ventral valve and widely extended frills (see Fig. 13E).
This atrypide, which is the largest species in the association,
possessed a highly efficient spirolophe lophophore, which en−
abled it to flourish in deeper−water settings with an impover−
ished food supply (see Fürsich and Hurst 1974). The overall
taxonomic inventory of brachiopods from the Restiv Beds
strongly implies that the fauna represents the globally distrib−
uted high diversity Dicoelosia or Dicoelosia–Skenidioides
community (see e.g., Boucot 1975, 2005; Gritsenko et al.
1999; Jin and Copper 1999; Watkins et al. 2000; Li and Allen
2008). Both communities have been interpreted as character−
istic of outer shelf to slope, deep−water environments indicat−
ing a Benthic Assemblage (BA) 4–5 of Boucot (1975). Ac−
cording to Copper (2004), the occurrences of Glassia in Brit−
ain and Gotland indicate deeper−water settings, probably equi−
valent of BA 4 or BA 5. Eoplectodonta, which is a common
brachiopod not only in the Restiv Beds but ranges to the top of
the Kytayhorod section, is one of the most characteristic mem−
bers of the deeper−water Clorinda Community (BA 5) during
most of the Britain Silurian (Cocks 1970). Johnson (1987; see
also Brett et al. 1993; Watkins et al. 2000) estimated the
bathymetry of BA 4–5 in the range of 60–120 m. Watkins et
al. (2000) demonstrated that brachiopod species diversity of
Dicoelosia communities remained unchanged from the early
Silurian to the early Devonian on a global basis.

The brachiopods of the overlying Demshyn Beds reveal
slightly greater taxonomic diversity than the underlying beds.
They are represented by 18 species in total of which 8 continue
their ranges from the Restiv beds (Fig. 10). Among them
Dicoelosia occurs to the top of the interval whereas Skeni−
dioides was found only in its lowermost part. The brachiopod
fauna is dominated by the strophomenide Eoplectodonta, atry−
pides Atrypa and Plectatrypa, and in the uppermost part of
the interval by the mass−occurrence of the rhynchonellide
Sphaerirhynchia. This genus forms clusters similar to those
described by Fürsich and Hurst (1981) for Sphaerirhynchia

wilsoni from the Silurian of England and Gotland. Kata−
strophomena, Leptaena, Streptis, Antirhynchonella, Nucleo−
spira, Eospirifer, and the above−mentioned atrypides appea−
red in the Demshyn Beds for the first time. Medium− and
large−sized forms dominate in this interval. Ambitopic forms
with whole or partial atrophy of the pedicle are represented
by Katastrophomena, Leptaena, Eoplectodonta, Antirhyncho−
nella, Sphaerirhynchia, Atrypa, and Meristina.

In general, the brachiopod fauna from the Demshyn Beds
suggests continuity of Dicoelosia communities (BA 4–5).
This is also supported by the numerous occurrences of Plect−
atrypa which occurs mostly in deeper, shaly, distal shelf facies
on Gotland (Copper 2004). Rare findings of Antirhyncho−
nella, which represents the same morphological type as
Clorinda, suggest also some relation to the Clorinda Commu−
nity of Ziegler et al. (1968) correlated with BA 5 (Boucot
1975). Fürsich and Hurst (1981) concluded that Sphaeri−
rhynchia wilsoni lived typically semi−infaunally on soft
muddy substrates in very calm, low energy settings. Some
morphological adaptations of brachiopods from the interval,
e.g., strongly sulcate anterior commissure, alate hinge margin,
and thin shell, indicate a quiet−water environment (Fürsich and
Hurst 1974: fig. 6). The brachiopod fauna from the Demshyn
Beds reveals also great similarity to the Eoplectdonta douvalii
Community described by Hurst (1975) from the Wenlock of
Wales and the Welsh Borderland. As many as 78% of the
brachiopod species from the Demshyn Beds are also listed by
Hurst (1975) in the inventory of the Eoplectdonta douvalii
Community. Although the brachiopod communities of the
Restiv and Demshyn beds indicate similar settings within BA
4–5, the appearance of generally medium− and large−sized
brachiopods in latter and dominance of smaller−sized forms in
the Restiv Beds suggest some shallowing efect in the section.
However, the general faunal changes at that time indicate that
sea−level change appears not to have been substantial.

In the Maryanivka Beds 13 brachiopod species in total
have been identified during the present investigations. Me−
dium− and large−sized forms predominate while small species
have been not found. Several forms do not continue their
range from the preceding Demshyn Beds, with the most im−
portant loss being of Dicoelosia. Anastrophia, and Howellella
are the only genera which appeared new for this interval (Fig.
10). Besides the absence of Dicoelosia, the total inventory of
brachiopod taxa from the Maryanivka Beds did not changed
much in comparison with the preceding Demshyn Beds fauna:
10 genera range through both intervals. Two species from the
interval are reported at higher levels in other sections. These
are Leptaena depressa and Eospirifer radiatus which were re−
vealed in the Muksha and Cherche beds, respectively (Niki−
forova et al. 1972). Although it seems probable that the brachi−
opod fauna of the Maryanivka Beds represents more or less
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Fig. 12. Silurian brachiopods from the Kytayhorod section. A, M, N. Eoplectodonta douvalii (Davidson, 1847). A. ZPAL Bp 71/1, almost complete shell in

dorsal (A1), ventral (A2), lateral (A3), posterior (A4), and anterior (A5) views; Maryanivka beds, sample M1. M. ZPAL Bp 71/2, exterior of ventral valve;

Demshyn beds. N. ZPAL Bp 71/3, interior of dorsal valve; Demshyn beds, sample D2. B. Dicoelosia biloba (Linnaeus, 1758), ZPAL Bp 71/4, shell in dor−

sal (B1), ventral (B2), lateral (B3), posterior (B4), and anterior (B5) views; Demshyn beds, sample D2. C. Resserella canalis (Sowerby, 1839), ZPAL Bp �
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71/5, shell in dorsal (C1), ventral (C2), lateral (C3), posterior (C4), and anterior (C5) views; upper part of the Restiv beds. D. Dalejina hybrida (Sowerby, 1839),

ZPAL Bp 71/6, shell in dorsal (D1), ventral (D2), lateral (D3), posterior (D4), and anterior (D5) views; Demshyn beds, sample D1. E. Dicoelosia paralata

Bassett, 1972, ZPAL Bp 71/7, slightly damaged shell in dorsal view; Restiv beds, 0.8 m above sample R1. F. Anastrophia deflexa (Sowerby, 1839), ZPAL Bp

71/8, complete shell in dorsal (F1), ventral (F2), lateral (F3), posterior (F4), and anterior (F5) views; lower part of the Maryanivka beds. G. Katastrophomena

antiquata (Sowerby, 1839), ZPAL Bp 71/9, shell in dorsal (G1), ventral (G2), lateral (G3), posterior (G4), and anterior (G5) views; Demshyn beds.

H, I. Leptaena depressa (Sowerby, 1824). H. ZPAL Bp 71/10, complete shell in ventral view; Demshyn beds, sample D3. I. ZPAL Bp 71/11, slightly damaged

shell in dorsal (I1), ventral (I2), lateral (I3), posterior (I4), and anterior (I5) views; lower part of the Maryanivka beds. J, K. Skenidioides lewisii (Davidson, 1848).

J. ZPAL Bp 71/12, slab with three well visible dorsal valves; Restiv beds, 0.8 m above sample R1. K. ZPAL Bp 71/13, exterior of dorsal valve; Restiv beds,

sample R1. L. Streptis grayii (Davidson, 1848), ZPAL Bp 71/14, slightly incomplete shell in ventral view; lower part of the Demshyn beds. O. Scamnomena

sp., ZPAL Bp 71/15, slab with three visible specimens; Restiv beds, slightly above sample R1. Scale bars 2 mm.
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Fig. 13. Silurian brachiopods from the Kytayhorod section. A. Plagiorhycha depressa (Sowerby, 1839), ZPAL Bp 71/16, shell in dorsal (A1), ventral (A2),

lateral (A3), posterior (A4), and anterior (A5) views; Restiv beds, sample R1. B, C. Atrypina barrandii (Davidson, 1848), ZPAL Bp 71/17 (B), ZPAL Bp

71/18 (C), two shells in dorsal (B1, C1), ventral (B2, C2), lateral (B3, C3), posterior (B4, C4), and anterior (B5, C5) views; upper part of the Restiv beds (B) and

upper part of the Demshyn beds (C). D. Plectatrypa imbricata (Sowerby, 1839), ZPAL Bp 71/19, shell in dorsal (D1), ventral (D2), lateral (D3), posterior

(D4), and anterior (D5) views; Demshyn beds, sample D1. E. Oglupes sp., ZPAL Bp 71/20, shell with partially preserved frills in ventral view; Restiv beds,

sample R2. F. Sphaerirhynchia aff. wilsoni (Sowerby, 1816), ZPAL Bp 71/21, complete shell in dorsal (F1), ventral (F2), lateral (F3), posterior (F4), and an−

terior (F5) views; Demshyn beds. G. Antirhynchonella linguifera (Sowerby, 1839), ZPAL Bp 71/22, large shell in dorsal (G1), ventral (G2), lateral (G3), pos−

terior (G4), and anterior (G5) views; lower part of the Maryanivka beds. H. Atrypa sp., ZPAL Bp 71/23, shell in dorsal (H1), ventral (H2), lateral (H3), poste−

rior (H4), and anterior (H5) views; Demshyn beds. Scale bars 2 mm.
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the same, a slightly impoverished BA 4–5, some changes are
noteworthy. Local extinction of the long−lasting Dicoelosia
combined with first appperance of Howelella may be linked to
the basin shallowing (the latter spiriferid is a nominative genus
for BA 2 in the coeval Appalachian faunas; Brett and Baird
1995; Boucot 2005).

Thus, the succession of the brachiopod fauna in the Kytay−
horod section shows rather gradual and minor temporal
changes. The most characteristic trend observable in the fauna
is a change from stressed assemblages of prevailing small−
dimensioned forms in the Restiv Beds (? a reflection of Lilli−
put effect during the Ireviken crisis; Urbanek 1993) to me−
dium− and large−sized forms in the Demshyn Beds (i.e., during
the �13C �13Ccarb highstand; Fig. 6A), and, particularly, Marya−

nivka Beds. Also important seems to be disappearance of
Skenidioides in the lower part of the Demshyn Beds and, suc−
cessively, Dicoelosia at the top of the interval. Thus, contrary
to the diversity changes and extinctions during the Ireviken
Event which have been observed among shallow−water bra−
chiopod fauna on Gotland (Kaljo et al. 1996; Erlfeldt 2006;
see also data on the Lau Event in Gustavsson et al. 2005), Aus−
tralia (lingulids only; Valentine et al. 2003) and North Amer−
ica (Boucot 1990; Boucot in Kaljo et al. 1996), the brachio−
pods from the Kytayhorod section do not reveal any substan−
tial perturbation. This is in agreement with observation of
Watkins et al. (2000) that deep−water Dicoelosia communities
showed long−term stability and were apparently unaffected by
Silurian global oceanic events.
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Fig. 14. Silurian brachiopods from the Kytayhorod section. A. Meristina bilobata Modzalevskaya, 1980, ZPAL Bp 71/24, shell in dorsal (A1), ventral (A2),

lateral (A3), posterior (A4), and anterior (A5) views; Demshyn beds, sample D2. B. Meristina incrassata Modzalevskaya, 1980, ZPAL Bp 71/25, shell in

dorsal (B1), ventral (B2), lateral (B3), posterior (B4), and anterior (B5) views; Maryanivka beds, sample M1. C. Meristina podolica (Nikiforova, 1954),

ZPAL Bp 71/26, shell in dorsal (C1), ventral (C2), lateral (C3), posterior (C4), and anterior (C5) views; upper part of the Restiv beds. D. Glassia elongata

Davidson, 1881, ZPAL Bp 71/27, shell in dorsal (D1), ventral (D2), lateral (D3), posterior (D4), and anterior (D5) views; Restiv beds, 0.8 m above sample

R−1. E. Howellella globosa Tsegelnyuk, 1976, ZPAL Bp 71/28, in dorsal (E1), ventral (E2), lateral (E3), posterior (E4), and anterior (E5) views; lower part of

the Maryanivka beds. F. Eospirifer radiatus (Sowerby, 1834), ZPAL Bp 71/29, slightly incomplete shell in dorsal (F1), ventral (F2), lateral (F3), posterior

(F4), and anterior (F5) views; Demshyn beds. Scale bars 2 mm.
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Conodonts.—The conodont assemblages exhibit a two−step

distributional pattern, characterized by a low−frequency but

relatively high diversity assemblage (up to 9 species) quickly

replaced in the succession by a stabilized, but typically spe−

cies poor (mostly 1–4 species) Panderodus−dominated biota

of overall increasing abundance (Fig. 15). A similar pattern

of abundance was noted for the far richer Estonian assem−

blages by Hints et al. (2006).

The diverse fauna is limited to two basal samples from the

Restiv Beds. The occurrences characterize an initial upper−

most Telychian phase of ESCIE, and this regional turnover of

the Ireviken Event in the pelagic biota is partly coincident with

the oldest “Datum Points” of Jeppsson (1997: fig. 17.2; see

also updated data in Cramer et al. 2010). Even if influenced by

scarcity of the fauna (mostly single specimens), the First

Telychian Datum is clearly suggested by last occurrence of

Pseudooneotodus tricornis in the second sample (12 speci−

mens), whilst Panderodus langkawiensis disappeared in the

third sample (13 specimens), ca. 1 m higher; this species is

considered by Jeppsson (1997, 1998) and Jeppson et al. (2005)

to have become extinct at the Sheinwoodian Datum 3.3. Thus,

a condensed nature of the lowermost sampled layers in the

Ireviken Event may be assumed, especially that coeval con−

densed sections are known commonly worldwide (Hints et al.

2006; Haq and Schutter 2008: fig. 2; Kleffner and Barrick

2010; Ray and Butcher 2010). A replacement of the series

boundary, downward to a ca. 1 m lower level than accepted by

Koren et al. (1989), may be therefore considered.

Moreover, even a cryptic hiatus possibly occurs higher in
the Ireviken interval (David Loydell, personal communica−
tion 2012; see also Kaljo et al. 2007: 216), if the graptolite
species Monoclimacis crenulata would be confirmed in the
Restiv Beds just below entry of the guide Wenlock species,
Cyrtograptus murchisoni (Fig. 15); M. crenulata is unknown
worldwide above the middle Telychian Oktavites spiralis
Biozone (Fig. 2 in Cramer et al. 2010). So, these taxonomic
data of Tsegelnyuk et al. (1983) need revision to confirm the
implied biostratigraphical or biogeographic peculiarity.

The more widespread faunas from the Demshyn Beds
(i.e., in the E−2 highstand) and lower Maryanivka Beds in−
clude well−known species that survive the Ireviken Event,
such as Decoriconus fragilis and Pseudooneotodus bicornis.
In addition, the most common species Panderodus unico−
status also belongs to the survivors, and this ubiquitous spe−
cies may have had a wide environmental tolerance, as shown
by Zhang and Barnes (2002) for the Llandovery of Anticosti
Island, Québec. Single occurrences of the index species for
the upper, but not uppermost Sheinwoodian Kockelella wal−
liseri Zonal Group, K. walliseri, and K. patula (see Cramer et
al. 2010: fig. 3; Sh2 time slice of Cramer et al. 2011a), were
found in the Maryanivka Beds. As inferred by Cramer et al.
(2010, 211a), this conodont dating, even though under cur−
rent revision due to a proved biogeographic differentiation in
the first occurrence of the both species, coincides with world−
wide end of the ESCIE.
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Fig. 15. Conodont and graptolite distribution in the Kytayhorod section.

Numbers near the ovals are numbers of specimens in the sample. Shades of

gray denote three slices of the ESCIE.
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Chitinozoans.—Chitinozoans are organic−walled micro−
fossils of uncertain biological affinity; it is likely that they rep−
resent the egg−capsules of soft−bodied marine animals. Their
ecological distribution is rather diverse, however, the wide
geographical and facies distribution indicate that the chitino−
zoan biota (chitinozoophorans) may have been either mostly
planktic/nekto−pelagic or much more rarely benthic (Miller
1996; Grahn and Paris 2011). The species with thick−walled
and poorly ornamented vesicles have been usually interpreted
as possibly benthic, high hydrodynamic energy environment
occupants, while thin−walled highly ornamented with long

processes vesicles have been suggested as pelagic, similar to
graptolites in their mode of distribution in the outer shelf envi−
ronment (Miller 1996; Grahn and Paris 2011).

Chitinozoans in the Kytayhorod section are characterized
by a moderately diverse (up to 13 taxa) Margachitina−domi−
nated assemblage (SOM 5; Figs. 16, 17). Although their
abundance is partly controlled by the facies, with more abun−
dant assemblages from clay−rich rocks, an impoverishment,
in frequency and richness terms, has been observed in the
basal and upper parts of the succession. This is not a very
strong secular differentiation, however, without any obvious
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link with the �13C trends. Two acmes of species representing
the genus Conochitina were found in the lowermost and top−
most samples which were highly−dominated by C. probosci−
fera and C. pachycephala, respectively. The chitinozoans
suggest a position for the Sheinwoodian–Homerian bound−
ary at ca. 30 m level. This would be above the occurrences of

Cingulochitina cingulata and below the FAD of Conochitina
pachycephala.

This fairly stabilized dynamics pattern differs from the
abrupt changes in chitinozoan faunas at the Llandovery–Wen−
lock boundary (Nestor et al. 2002; Lehnert et al. 2010), even if
partly due to a stratigraphical gap within the Margachitina
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Fig. 17. Stereoscan microphotographs of selected Chitinozoa from the Kytayhorod section. A, H. Margachitina margaritana (Eisenack, 1937). A. ZPAL

Ch. 8/170S42, sample Kt 06/03; chain of ten vesicles in lateral view (A1) and detail of the connetcion between the vesicle (A2). H. ZPAL Ch. 8/170S32,

sample Kt 08/11; fragment of a chain of two slightly deformed vesicles showing how aperture is linked to the succeeding vesicle. B. Calpichitina densa

(Eisenack, 1962), ZPAL Ch 8/176S58, sample Kt 06/15. C. Pterochitina cf. macroptera Eisenack, 1959, ZPAL Ch. 8/156S128, sample Kt 06/16.

D. Ancyrochitina sp., ZPAL Ch 8/176S58, sample Kt 06/06. E. Eisenackitina dolioliformis Umnova, 1976, ZPAL Ch 8/176S73, sample Kt 06/05.

F. Cingulochitina odiosa (Laufeld, 1974), ZPAL Ch 8/172S46, sample Kt 06/16. G. Cingulochitina crassa Nestor, 1994, ZPAL Ch 8/172S48, sample Kt

06/13. I. Angochitina longicollis Eisenack, 1959, ZPAL Ch. 8/157S62, sample Kt 08/10. J. Ancyrochitina primitiva Eisenack, 1964, ZPAL Ch 8/176S58,

sample Kt 06/08. K. Eisenackitina lagena (Eisenack, 1968), ZPAL Ch 8/176S70, sample Kt 06/03. L, M. Conochitina proboscifera Eisenack, 1937.

L. ZPAL Ch 8/176S50, sample Kt 06/17. M. ZPAL Ch 8/176S41, sample Kt 06/14. N. Conochitina tuba Eisenack, 1932, ZPAL Ch 8/176S40, sample Kt

06/16. O, P. Conochitina pachycephala Eisenack, 1964. O. ZPAL Ch 8/176S39, sample Kt 06/18. P. ZPAL Ch 8/176S44, sample Kt 06/17. Q. Conochitina

cf. mamilla Laufeld, 1974, ZPAL Ch 8/176S27, sample Kt 06/13. R. Conochitina sp. ZPAL Ch 8/176S29, sample Kt 06/11. S. Cingulochitina cingulata

(Eisenack, 1937), ZPAL Ch 8/172S55, sample Kt 06/15.
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margaritana Zone sensu stricto, recognised from Estonia by
Loydell and Nestor (2005) and Hints et al. (2006; see also
Sadler 2012: fig. 8). Two identified species, Angochitina lon−
gicollis and, with reservation, Eisenackitina dolioliformis, are
quoted by Nestor et al. (2002) among chitinozoan victims of
the profound late Ireviken crisis in pelagic domain (= level 8
of these authors; or conodont Datum 6; see also Jeppsson et al.
2005).

Other groups.—Our field observations, as well literature
data on other fossil groups (Nikiforova and Predtechensky
1968: fig. 16; Nikiforova et al. 1972) are in a general agree−
ment with the main distribution patterns outlined above (Fig.
18), controlled primarily by oscillating regressive sea−level
trend (Koren et al. 1989: fig. 105).

The Restiv Beds are ecologically distinctive because of
the unique occurrences of graptolites (rare in a thin 0.2 m
level only; Fig. 15) and macroflora (Pseudosajania), and
also far more widely distributed benthic groups: crinoids,
gastropods, solitary rugose corals (Orthopaterophyllum),
nautiloids, and trilobites (Acidaspis; common in some lay−
ers). Also Tasmanites (Prasinophyceae, unilocular green al−
gae) was recovered only in the two lowest chitinozoan sam−
ples. Assemblages from the lowermost part of the Demshyn
Beds include the five above mentioned benthic groups and
bivalves, with locally frequent solitary rugose corals (Ortho−
paterophyllum, Sverigophyllum), whilst some higher sets
(e.g., units 4–6 of Nikiforova et al. 1972) are either un−
fossiliferous (nodular lithologies) or characterized by in−
faunal to epifaunal filter−feeding bivalve fauna only, with
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Grammysia and Mytilarca. The abundant brachiopod fauna
of upper Demshyn Beds is accompanied by a rather impover−
ished assemblage of trilobites, solitary corals (Stereotactis),
crinoids, and gastropods.

Poor benthos, in terms of diversity and frequency, is
known from the thick nodular limestone units of Maryanivka
Beds, where in a few layers, besides brachiopods, merely
solitary and colonial corals (Paleofavosites), gastropods, cri−
noids, and trilobites (Bumastus) have been found. Inten−
sively bioturbated micritic microfacies varieties of this suc−
cession (Figs. 5A, B, D, 11) demonstrate the recurrent devel−
opment of soft−bodied infauna in the muddy bottom sedi−
ments. In addition, there is noteworthy rock−forming abun−
dance of dasycladacean green algae (Rhabdoporella) in the
shallowing basin (Fig. 5B), up to ca. 50 m water depth
(Ischenko 1976, 1985). Also, the Wenlock phytoplankton as−
sociations are remarkably diverse in Podolian successions,
especially these from the Maryanivka Beds (more than 25
species; Le Hérissé et al. 2009: fig. 8).

Faunal dynamics across
the Klonk Event

Brachiopods.—The stratigraphically oldest brachiopod
found in the trench at Dnistrove is Dayia bohemica which oc−
curs in the topmost part of the Dzvenyhorod Beds (see also
Kaljo et al. 2012), i.e., about 1.3–1.6 m below the S–D
boundary (Fig. 19; see also detailed description of the brachi−
opod fauna from this section in Baliński 2012). The species
occurs mainly in the thin bedded nodular limestone where it
forms almost monospecific nest−like clusters of usually artic−
ulated shells (Fig. 4). D. bohemica is a characteristic species
for the uppermost layers of the Pridoli Series of Bohemia, Es−
tonia, Lithuania, and Latvia (Havlíček and Štorch 1990;
Rubel 1977). Tucker (1964) noted that Dayia navicula, a
closely related species to D. bohemica, in the Silurian of the
Welsh Borderland achieved its widest distribution and great−
est abundance in the offshore zones where the sea bottom
was below wave base. He also suggested that the incurvature
of the ventral umbo in D. navicula prohibited emergence of
the pedicle and that the majority of mature individuals rested
freely on the sea bottom (see also Kozłowski 1929: 180).
Boucot (1975) remarked that Dayia constituted a low−diver−
sity, single brachiopod genus community in quiet−water set−
tings within BA 3. Havlíček and Štorch (1990) proposed
a separate Dayia bohemica Subcommunity where the nomi−
nate species formed brachiopod banks. Johnson (1987) sug−
gested that BA 3 ranges approximately from 30 to 60 m water
depth. However, Martma et al. (2005: fig. 3) showed the
Ludlow Dayia assemblage in BA4, adjacent to the pelagic
biofacies, and this deeper−water position seems to corre−
spond better with the Podolian data (Gritsenko et al. 1999).
About 0.3 m above the layer with abundant Dayia bohemica
there is a few cm thick shale with numerous specimens of the

athyridide Dnestrina gutta (Fig. 4). D. gutta is a small spe−
cies, rarely exceeding 6 mm in length, with a plano−convex
profile, and open delthyrium. The species is known also from
the Pridoli of Moldavia, and Western Europe (Alvarez and
Copper 2002). A similar form was described as D. cf. gutta
by Jahnke et al. (1989) from the uppermost Silurian of
Yunnan Province, China. The occurrence of D. gutta in the
Dnistrove Level suggests stressed, impoverished, low diver−
sity, short−ranging assemblages living in somewhat deeper
water conditions than Dayia bohemica. Besides D. gutta,
very rare single valves of D. bohemica occur in these layers.
It seems justified to propose a low diversity, quiet water
Dnestrina gutta Community which is probably closely anal−
ogous to the slightly younger Gracianella Community of
Boucot (1975) mentioned below.

Although the first appearance of the atrypide Gracianella
(Sublepida) paulula at Dnistrove is ca. 20 cm below the S–D
boundary, its main occurrence is 40 cm above it. The occur−
rences are paired with the base of the �13Ccarb plateau (see Figs.
4 and 19). Other brachiopods constitute 9% of the assemblage
being represented by small−sized Resserella elegantuloides,
Plectodonta (Plectodonta) mariae pantherae, Pseudoprota−
thyris infantilis, and Howellella (Howellella) latisinuata. It
should be noted that within the range of G. (S.) paulula a layer
with the graptolite Monograptus uniformis angustidens has
also been recovered. The most characteristic brachiopod G.
(S.) paulula is characterized by its minute, up to 4 mm long,
weakly biconvex, ribbed shell. It seems that this fauna repre−
sents the low−diversity high dominance, quiet−water Gracia−
nella Community of Boucot (1975) recognised in the Silurian
non−reef communities of the Uralian–Cordilleran and North
Atlantic Regions. According to Boucot (1975) the community
relates mainly to BA 4 and 5 but also partly to BA 3 (see also
Johnson et al. 1976; Zhang 2001).

In the succeeding 4 m of rhythmic marls and limestones
the brachiopods are either very rare, poorly preserved or ab−
sent. However, at about 5.5 m above the S–D boundary (beds
47–48) a fossiliferous ca. 30 cm thick layer appears with a
high−diversity, well preserved, and distinctive brachiopod
assemblage dominated by medium−sized forms. The most
characteristic are Septatrypa (Septatrypa) secreta (27% of
the assemblage), Plectodonta (Plectodonta) mariae pan−
therae (13%), Sphaerirhynchia gibbosa (12%), Clorinda
pseudolinguifera (11%) and Talentella crassiformis (7%).
Thus, the five most common species constitute 70% of the
assemblage whereas the remaining 30% of the assemblage
comprises 11 brachiopod species. Only Sphaerirhynchia
gibbosa occurs more richly higher in the Dnistrove succes−
sion. The brachiopod assemblage is represented by a variety
of morphological types and ecological adaptations, e.g.,
small− to large−sized, concavo−convex, biconvex to globose,
smooth, ribbed to frilled, with or without functional pedicle
(Baliński 2012). The specimens are mostly articulated with
the exception of Clorinda pseudolinguifera which possessed
a mechanically weaker and more prone to disarticulation
hinge structure of deltidiodont type. The presence of numer−
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ous strophomenide P. (P.) mariae pantherae in the assem−
blage is very distinctive due to its colour pattern performing
apparently a protective function through disruptive camou−
flage against visual systems of potential predators (Baliński

2010). This in turn implies that the brachiopods lived within
the photic zone.

The presence of numerous S. (S.) secreta in beds 47–48
suggests that the fauna may be compared to the Silurian
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non−reef quiet−water Dubaria Community of Boucot (1975)
which corresponds with BA 3 (the genus Dubaria Termier,
1936 is considered a synonym of Septatrypa Kozłowski,
1929; see Copper 2002a: 1465). Jones and Hurst (1984)
noted, however, that Dubaria in the Silurian of North Green−
land inhabited quiet water, cryptic habitats associated with
reefs. On the other hand, according to Havlíček and Štorch
(1990) in the Pridoli of Bohemia the Dubaria Community is
related to quiet, shallow−water settings at about BA 2–3.
Thus, the inventory and character of the brachiopod and as−
sociated fauna from beds 47–48 at Dnistrove (see below) in−
dicate probably a setting near the lower (outer) limit of the
photic zone equivalent to the BA 3–4 boundary (see Brett at
al. 1993).

In summary, the relations between brachiopod faunal dis−
tribution and the isotope excursion are rather complex (see
Fig. 19), but progressively improved conditions for the ses−
sile shelly faunas are clearly associated with this event in the
earliest Devonian. Far more restricted benthos characterizes
the rapid increase phase of �13Ccarb values prior to the S–D
boundary. Only two species became extinct across the period
boundary (compare the diversity data in Talent et al. 1993).
Interestingly, monospecific acmes of Dayia minor distin−
guish also specific deeper−water habitats through the large−
scale Ludlow carbon cycle disturbance in the Prague Basin
(Lehnert et al. 2007b).

Conodonts.—The limestone layers in the Dnistrove succes−
sion are mostly rich in conodonts (Figs. 20). Comparatively
abundant are: Ozrkodina typica, Parazieglerodina eostein−
hornensis, Wurmiella excavata, and Panderodus unicostatus
(see detailed description of the conodont fauna from this sec−
tion in Drygant and Szaniawski 2012). Thus, despite some−
what irregular frequency trends, the less abundant faunas oc−
cur in the Dnistrove Level and in the uppermost part of the
succession (Drygant 2010). In diversity terms, however, more
suitable conditions for diverse pelagic biota are found in the
Devonian part, i.e., towards the end of the SIDECIE interval
(see Fig. 20).

An overturn in the faunas is recognised near the S–D
boundary level, when four Silurian−type species have dis−
appeared (e.g., Delotaxis detorta and Parazieglerodina eo−
steinhornensis), and a more species−rich Devonian assem−
blage (up to 6 species), with Zieglerodina remscheidensis,
Caudicriodus, and Pandorinellina, suddenly flourished in
the shallowing epeiric sea. This succession may be overall
correlated with the Oulodus elegans detortus to Icriodus
hesperius (= Caudicriodus hesperius after Drygant 2010 and
Drygant and Szaniawski 2012) zonal passage, as newly rede−
fined by Corradini and Corriga (2012: fig. 5), paired with a
radiation of early icriodontids (see also Slavík et al. 2012).
Furthermore, a resemblance to the North American faunal
step 3 of Barrick et al. (2005), determined by extinction of
Delotaxis detorta and approximated with the basal Devonian
shift to Decoriconus− and Pseudooneotodus−rich biofacies
with Zieglerodina remscheidensis, is noticeable.

Chitinozoans.—The occurrence of characteristic species
such as Urnochitina urna, Eisenackitina bohemica, Cingulo−
chitina ex. gr. ervensis, Calpichitina velata, Margachitina
catenaria and Anthochitina ex. gr. superba represents a clear
co−occurrence range zone within the S–D boundary interval at
Dnistrove (see SOM 6 and Figs. 21, 22). The high abundance
of the thick−walled vesicles of Urnochitina (Operculatifera)
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Fig. 20. Conodont and graptolite distribution through the S–D passage beds

at Dnistrove. Shades of gray denote two slices of the SIDECIE.
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could reflect a cold water environment related to the cooling

period preceding the S–D boundary event near the SIDECIE

onset (see below, and Figs. 22, 23, and 25), rather than high

energy hydrodynamic conditions. The abundant occurrence of

the similarly structured vesicles of Eisenackitina barrandei

and E. bohemica higher in the Klonk Event interval could

partly have an analogous nature.

In the upper part of the section, in the SIDECIE slice, an
abundant and diversified chitinozoan assemblage occurs
again, dominated by Ancyrochitina and Angochitina. These
are species of a fundamentally different group of Chitinozoa
belonging to Prosomatifera, characterized by thin−walled

highly ornamented vesicles, with spines, ramified processes
and vellum. This abundance could be the result of progres−
sive warming during the Lochkovian in the area.

In summary, the distribution of chitinozoans at Dnistrove
demonstrates specific dynamics across the major S–D isoto−
pic perturbation (see also Paris and Grahn 1996), comparable
only in part with the other pelagic and benthic groups ana−
lysed above (Fig. 23).

Other groups.—The S–D transition in Podolia is character−
ized overall by a slight diversity drop in the impoverished or−
ganic−walled microphytoplankton, by contrast with the di−
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Fig. 22. Stereoscan microphotographs of selected Chitinozoa from the Dnistrove section. A, H. Calpichitina aff. gregaria Paris and Křiž, 1984. A. Single

specimen in oblique lateral view, ZPAL Ch. 8/159S117, sample V−15. H. Vesicles aggregated in cluster, ZPAL Ch. 8/161S101, sample V−13.

B. Calpichitina velata (Wrona, 1980), ZPAL Ch 8/160S53, sample V−27. C. Pterochitina sp., ZPAL Ch. 8/152S099, sample V−28. D. Vinnalochitina pilosa

(Wrona, 1980), ZPAL Ch 8/159S054, sample V−27. E–F. Vinnalochitina cf. suchomastyensis Paris and Laufeld, 1981. E. ZPAL Ch 8/152S054, sample

V−25. F. ZPAL Ch 8/152S107, sample V−27. G, K–N. Urnochitina urna (Eisenack, 1934). G. ZPAL Ch 8/160S55, sample V−09. K. Specimen with wide

copula and operculum attached, ZPAL Ch 8/160S102, sample V−10. L. Detail of aboral part showing operculum attachment, ZPAL Ch 8/160S85, sample

V−10. M. Chain of three closely similar vesicles, ZPAL Ch 8/161S112, sample V−13. N. Two marginal vesicles of a chain, showing small terminal vesicle,

ZPAL Ch 8/161S104, sample V−15. I. Cingulochitina ex. gr. ervensis (Paris, 1979), Chain of four vesicles, ZPAL Ch 8/159S094, sample V−27.

J. Margachitina catenaria Obut, 1973, Chain of three vesicles, ZPAL Ch 8/159S094, sample V−27. O–Q. Eisenackitina barrandei Paris and Křiž, 1984.

O. ZPAL Ch 8/161S001, sample V−04. P. ZPAL Ch 8/152S017, sample V−05. Q. ZPAL Ch 8/152S058, sample V−13. R. Ramochitina cf. longispina

(Wrona, 1980), ZPAL Ch 8/172S077, sample V−03. S. Ancyrochitina cf. aurita Wrona, 1980, ZPAL Ch 8/159Y02, sample V−27. T–V. Anthochitina ex. gr.

superba Eisenack, 1971. T. ZPAL Ch 8/152S056, sample V−25. U. ZPAL Ch 8/159S042, sample V−25. V. ZPAL Ch 8/159S082, sample V−25.

W. Angochitina sp., ZPAL Ch 8/159S160, sample V−13. X. Eisenackitina sp., ZPAL Ch 8/160S54, sample V−03. Y. Eisenackitina bohemica (Eisenack,

1934), ZPAL Ch 8/159S127, sample V−23. Scale bars 50 μm.
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verse older Silurian (Wenlock–Ludlow) acritarch−chlorophyte
(prasinophyte) assemblages (see Le Hérissé et al. 2009: fig. 8).
In the Dnistrove Level (Fig. 4), palynomorphs in four samples
are poorly preserved in dark shaly lithologies due to pervasive
oxidation processes, and only the floras from limestone layers
are crudely recognizable (Paweł Filipiak, personal communi−
cation 2011). Together with infrequent acritarchs, leiospheres
and miospores (Apiculiretusispora?), tubular remains with
pseudo−cellular cuticles of an enigmatic land plant(?) group
Nematophytales (Laevitubuls? and Porcatitubulus) are com−
monly recovered. The clearly mixed marine−terrestrial charac−
ter differentiates the Podolian palynofacies from the coeval,
more offshore Bohemian assemblage, with acritarchs, leio−
spheres and mazueloids (Brocke et al. 2006). Large prasino−
phytes are widespread in both successions (see SOM 6), and
probably indicate episodic eutrophic and/or hypoxic condi−
tions, as known e.g., from the Frasnian–Famennian mass ex−
tinction boundary beds (Filipiak 2002; see also summary in Le
Hérissé et al. 2009).

From a faunal viewpoint, not very frequent trilobites (Pro−
etus, Acaste, and Calymene), brachiopods (atrypids, Delthyris,
Isorthis, Daya, and Zygospiraella), bivalves and rugosan horn
corals are quoted from the uppermost Dzvenyhorod Beds (see
lists in Nikiforova and Predtechensky 1968: fig. 29; Niki−
forova et al. 1972; Nikiforova 1977; Koren et al. 1989). The
topmost 1.6 m of the Silurian at Dnistrove are specifically

characterized by occurrences of crinoids, orthocone nauti−
loids, fistuliporid bryozoans, trilobites (Proetus, Acastella),
suspension−feeding bivalves (stationary epifaunal Actinopte−
ria, facultatively mobile infaunal Lunulicardium and Dua−
lina), and ostracods (Libumella, Kuresaaria). In particular, the
remnants of the large free−floating crinoid Scyphocrinites
elegans, including bulb−shaped loboliths, are very common,
forming several lenticular and locally graded bioclastic inter−
calations, up to 10 cm thick (see Fig. 5G). This unique acme
horizon is widely recognizable worldwide (e.g., Zhivkovich
and Chekhovich 1986; Jahnke et al. 1989; Havlíček and
Štorch 1990; Ferretti et al. 1998; Chlupáč and Hladil 2000;
Vacek 2007; Lubeseder 2008; Verniers et al. 2008; Donovan
and Lewis 2009; Valenzuela−Ríos and Liao 2012). Within the
upper Dnistrove Level, a thin black shale horizon with abun−
dant specimens of the guide graptolite Monograptus uniformis
angustidens was found (Fig. 4; see Nikiforova 1977). Con−
versely, numerous large shells of nautiloid Podolicoceras
giganteum are patchy distributed in a ca. 2 m interval thick
around the system boundary.

Above the S–D boundary, in addition to common bio−
turbating infauna (Fig. 5E, F), the brachiopod Septatrypa−
and Sphaerirhynchia−dominated faunas are accompanied by
rather rare but ubiquitous crinoid ossicles, trilobites (Aca−
stella), nautiloids (Risoceras), and occasionally also bivalves
(Actinopteria, Panenka, Mytyliarca), gastropods (Platyce−
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ras), corals (Pachyfavosites, solitary rugosan Pseudomicro−
plasma), graptolites (Linograptus), bryozoans, ostracods
(Richina), and tentaculitids.

Discussion

As stressed by many authors, the Silurian global biogeo−
chemical perturbations were regularly associated with step−
wise extinction events and restructurings, grouped “at the
very beginning or even prior” to the major isotopic event
(Munnecke et al. 2010: 301; see also Jeppsson 1997, 1998;
Munnecke et al. 2003; Cramer and Saltzman 2007a, b; Loy−
dell 2007; Calner 2008; Lehnert et al. 2010; Melchin et al.
2012: fig. 21.11; Molloy and Simpson 2012; Noble et al.
2012). In particular, Lehnert et al. (2010: 320) stated pre−
cisely for the Ireviken Event: “(…) faunal extinctions are
connected to time intervals of warming before the establish−
ment of more stable and cooler conditions during the main
Sheinwoodian glacial”. In fact, since the Jeppsson’s (1990,
1997, 1998, 2005) model of oceanic episodes, cooling pulses
and, at least in the Early Silurian, expanding ephemeral
Gondwanan ice sheets are usually considered responsible for
the ecosystem turning points (Lehnert et al. 2007a; Loydell
2007; Calner 2008; Žigait� et al. 2010; Sadler et al. 2011;
Giles 2012; Kozłowski and Sobień 2012; Melchin et al.
2012; Stanley 2012). Conversely, Retallack (2009) inter−
preted pedostratigraphic spikes (i.e., high−precipitation
deep−calcic excursions) as correlative very closely with the
Silurian carbon cycle disturbances, and corresponding to
greenhouse episodes and sea−level highstands. If so, both the
climatic and eustatic driving factors, associated with the
biogeochemical signals, were probably quite complex, as
shown for the Ireviken Event by Lehnert et al. (2010; see also
Stanley 2012). For example, as stressed Kozłowski and
Sobień (2012), a combination of glacioeustatic lowstand,
gustiness and low−latitude aridity might have been critical for
the aeolian Fe−dominated nutrient delivery and cyanobacte−
rial blooming. Also Loydell (2007) regarded that intensified
atmospheric circulation during icehouse intervals may have
caused increased nutrient input via wind−blown dust, result−
ing finally in enhanced bioproductivity and benthic oxygen
depletion.

Several authors (e.g., Wenzel and Joachimski 1996;
Lehnert et al. 2007a; Calner 2008: Fig. 3; Žigait� et al. 2010)
explicitly postulated that the Silurian eustatic cyclicity was
glacially driven (see a glacioeustatic scenario of the Lau
Event; Fig. 4 in Lehnert et al. 2007a), and this assertion is ex−
tended lastly to Early and Middle Devonian (Elrick et al. 2009;
see also Miller et al. 2011). However, as noted by Munnecke
et al. (2010: 404, 407): “In general there seems to be a clear
mismatch between �18O data and sea−level reconstructions
based on sequence stratigraphy” and “up until now there is no
consensus on Silurian climate development, especially for the
post−Llandovery”. In addition, Nardin et al. (2011) stressed
the climatic impact of changes in plate motion and weathering

of fresh volcanic rocks, which resulted in a long−term warm−
ing trend from the major late Telychian icehouse (Cancañiri
glaciation; Brand et al. 2006) to the Middle Devonian.

On the other hand, the stressed diachroneity of biotic and
isotopic signals, influenced by the pattern in the best−known
Ireviken Event, is an overestimation as the Silurian para−
digma. Sadler (2012: 5) acknowledged clearly that “there is
no standard numerical method for picking boundaries and
peaks of Silurian isotope excursions”. More importantly, as
confirmed also by the Podolian record, the extinction steps
are largely placed in the rising limb of the �13C curves (see
Figs. 24, 25), and thus linked to an initial shift in the carbon
cycling, but not with its background (= steady) biogeo−
chemical state. There is little doubt that these ecological turn−
ing points were driven by an accelerating disequilibrium of
fragile habitat parameters and suddenly increasing environ−
mental stress (see e.g., Urbanek 1993), coarsely only mir−
rored by the measured 13C enrichment trends.

Significance of the Podolian succession.—Both global iso−
topic events are unquestionably paired with �18Ocarb positive
excursions in the Podolian sections (Figs. 5A and 7), con−
firmed by heavy �18Ophosp values in Joachimski et al. (2009)
and Lehnert et al. (2010), and therefore to largely declining
near−surface temperatures in the marine basin (Figs. 24, 25).
Rapid climate perturbations, maybe forced by volcanic activ−
ity (Lehnert et al. 2010), are also partly supported by the �13C
secular patterns, suggestive of cooling episodes promoted by
falling levels of atmospheric pCO2, as recorded in negative
�13C shifts. This chemostratigraphical pattern is certainly
traced only across the S–D transition. The lower−resolution
data for the ESCIE are rather inconclusive but it seems to
deny a dominant warming trend, as postulated from the
North American �13C record by Cramer and Saltzman
(2007a). In fact, correlation of the �18Ophosp and �18Ocarb value
shifts and negative �13C signals is to some extent vague
(compare Fig. 6A with Bickert et al. 1997: fig. 3; Heath et al.
1998: fig. 2; Brand et al. 2006: fig. 12; Cramer and Saltzman
2007a: fig. 5; Lehnert et al. 2010: figs. 3, 4; see also Noble et
al. 2012: fig. 5), and further studies are warranted.

Furthermore, the predicted environmental changes are
expected to affect biota mostly in pelagic habitats (especially
conodonts, graptolites, and trilobites; e.g., Kaljo et al. 1996;
Lehnert et al. 2007b; Loydell 2007; Calner 2008; Sadler et al.
2011; ?also radiolarians, Noble et al. 2012), during times of
oligotrophic photic−zone conditions and reduced primary
production. Faunal responses in the both Podolian sections
follow the above scenario only in part, as manifested espe−
cially by the conodont crisis of the Ireviken Event (?also by
ostracod turnover; Abushik 1971), prior to the major isoto−
pic/climatic ESCIE disturbance. This large−scale biotic crisis
did not affect the relatively deeper−water brachiopods and
chitinozoans (in taxonomic richness terms). Nevertheless,
the Lilliput effect sensu Urbanek (1993), known among
Gotland brachiopods during the Lau Event (Gustavsson et al.
2005), is a recognizable phenomenon also in the Ireviken−re−
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lated brachiopod fauna from Kytayhorod. Thus, a regional
distinctiveness of the Podolian epeiric domain seems to be
manifested, especially in the negligible dynamics of speci−
men− and species−poor chitinozoan communities across the
Ireviken Event and heavy carbon ESCIE interval.

The carbonate ecosystem evolution, from outer shelf to−
ward reefal platform (Koren et al. 1989), was forced mostly
by the regional epeirogeny regime paired with a generally re−
gressive eustatic tendency, after the abrupt transgressive
onlap inluenced by conspicuous eustatic sea−level rise in late
Llandovery (the highstand 4 of Johnson 2006: fig. 1). This

synsedimentary tectonism in the shelf basin located near to
the mobile Trans−European Suture is revealed by several dis−
crepancies between global and regional sea−level changes,
along with rather weak correlation with glacioeustatic ef−
fects, implied from the O−isotopic data (Fig. 24; see above).
Remarkably, as revealed by the large−scale increase in the
87Sr/86Sr ratio (Brand et al. 2006; Gouldey et al. 2010), the
perturbation in long−term carbon cycle and pronounced cli−
matic changes due to increased chemical weathering were
likely driven by the initial plate−terrane collisions (Salinic
orogeny; see Goodman and Brett 1994; Ettensohn and Brett
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1998; Brand et al. 2006; Cramer and Saltzman 2007a; Kraw−
czyk et al. 2008).

The S–D boundary isotopic event appears to be more
widely geographically recorded than previously assumed (see
Małkowski et al. 2009: fig. 8). The SIDECIE, in various
chemostratigraphical variants, in addition to new Laurentian
and peri−Gondwanide sites (e.g., Suttner 2007; Kleffner et al.
2009), is recognizable in organic carbon also in the South
China, Turkey, and Morocco (amplitude between ca. 3‰ and
8‰; Zhao et al. 2011), as well as in the whole−rock carbonate
record in the Canadian Arctic islands (amplitude of ca. 3‰
and 3.5‰ in two sections; Märss et al. 1998), east Baltica (ca.
2‰ only; Kaljo et al. 2012) ; Central Urals (ca. 4‰ in shal−
low−water facies, but only 2.2‰ in pelagic micrites; Che−
khovich et al. 1990), and Subpolar Urals (at least ca. 1.5‰ in
shallow−water, coral−rich facies; Yureva et al. 2002).

During this S–D boundary turning point, a moderate fau−
nal changeover, both in benthic and pelagic groups, is recog−
nised in the Podolian epeiric sea exclusively at the very be−
ginning of the prolonged 13C−enriched SIDECIE timespan,
possibly due to progressive dysoxia induced via enhanced
bioproductivity by a climatic cooling (e.g., Wenzel and Joa−
chimski 1996; Loydell 2007), an echo of the conspicuous
mid−Pridoli glacial episode (Žigait� et al. 2010: fig. 3). In
Podolia, the pelagic graptolite acme and clay−dominated de−
position of the Dnistrove Level were clearly linked with a
deepening pulse across the S–D boundary (Fig. 25; compare
Koren et al. 1989: fig. 105; Kaljo et al. 2012), interpreted as a

typical event for the “Bohemian facies” by Walliser (1996;
see also Jeppsson 1998; Brett et al. 2009; Vacek et al. 2010,
Valenzuela−Ríos and Liao 2012). This sea−level pattern was
unexpectedly paired with “regressive” scyphocrinoid tem−
pestite episodes (see Fig. 5G) and nautiloid profusion on the
distal hemipelagic shelf that was recurrently punctuated by
major storm action (compare Vacek 2007). A similar pecu−
liar facies shift is commonly reported from strata deposited
during the Klonk Event (Walliser 1996), e.g., from Central
Urals (Zhivkovich and Chekhovich 1986), Sardinia (Ferretti
et al. 1998), Bohemia (Hladil and Beroušek 1992; Vacek
2007), China (Jahnke et al. 1989), and Morocco (Lubeseder
2008). As advocated by Vacek et al. (2010: 270): “The facies
change close to the S–D boundary and deposition of the
Scyphocrinites H[orizon] might predominantly result from a
biotic event unrelated to sea−level changes and local subsi−
dence, rather than from sea−level rise/drop”. In general
terms, comparable biotic dynamics were established in many
other localities from different continents (e.g., Havlíček and
Štorch 1990; Feist et al. 1997; Kříž 1998; Chlupáč and Hladil
2000; Yureva et al. 2002; Barrick et al. 2005; Suttner 2007;
Manda and Frýda 2010; Zhao et al. 2011; Valenzuela−Ríos
and Liao 2012). In particular, the transient collapse of the
Podolian carbonate factory (“carbonate crisis”) correspon−
ded to worldwide reef demise (Copper 2002b; Kiessling
2009), but without coeval loss in graptolite diversity (see
Sadler et al. 2011).

On the other hand, the possible influence of eustatic sea−
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level rise (?and nutrient−rich upwelling currents; Lubeseder
2008; Manda and Frýda 2010; Histon 2012) remains conjec−
tural in spite of contrary, i.e., regressive bathymetric data from
different regions (e.g., House and Ziegler 1997; Carrera et al.
2012), as summarized by Buggisch and Joachimski (2006)
and Małkowski and Racki (2009). A tectonic control of the
sea−level changes, in the collisional geodynamic setting (Aca−
dian orogeny and a final closure of the Iapetus Ocean; see e.g.,
Goodman and Brett 1994; Copper 2002b; Krawczyk et al.
2008; Małkowski and Racki 2009; Narkiewicz et al. 2011), is
expected also in the Klonk Event timespan. As manifested by
thicknesses of the Přidoli–Lochkovian open−shelf successions
(above 1 km; Nikiforova et al. 1972; Małkowski et al. 2009), a
subsidence rate in the peri−Tornquist foreland basin (?due
to dextral transtension) was very high (see Drygant 2003;
Sliaupa et al. 2006). During the comparatively very warm
timespan (Joachimski et al. 2009; Nardin et al. 2011), this
regionally effective factor overrode a regressive, allegedly
glacioeustatic tendency (see Žigait� et al. 2010).

After this overall increased stress episode, the Early Devo−
nian carbonate ecosystem quickly recovered in a shallowing
setting. Diverse shelly benthos and pelagic communities tem−
porarily flourished in the Podolian shelf domain (see Niki−
forova et al. 1972), still being affected by episodic oxygena−
tion and temperature changes.

Concluding remarks and
implications

The Ireviken and Klonk biotic crises and related global iso−
tope excursions, identified in Podolian sections, reveal oppo−
site environmental and biotic trends, partly influenced by the
later Caledonian geodynamic setting of the TESZ domain:

(i) The major Ireviken Event was marked by well−defined
temporal changes in detrital input, redox states and, suppos−
edly, bioproductivity, but without correlative relations with
the �13C pattern (Fig. 24). Thus, the global biogeochemical
disturbance was of minor ecosystem significance in the mostly
epeirogeny−controlled sedimentary signature of this epeiric
sea, as claimed also for other Laurussian sites in many other
studies (see review in Cramer and Saltzman 2007a, b; Calner
2008; Munnecke et al. 2010).

(ii) The depositional and ecological signature of the Klonk
Event exhibits some temporal links with the abrupt �13C shift
toward the basal Devonian isotopic plateau, although effec−
tively overprinted by the tectonically driven transgressive
trend in the crucial interval (Fig. 25). Regardless of specific
causes, the isotopic shift is reflected in the carbonate crisis
paired with a tendency towards eutrophication, oxygen defi−
ciency and temperature drop at the S–D boundary time. The
features collectively point to the uniqueness of the Klonk
Event among the Silurian global events, and some similarity
already to Devonian transgressive/anoxic episodes (see Walli−

ser 1996; Buggisch and Joachimski 2006; Małkowski and
Racki 2009).

(iii) In the light of the above results, advanced multi−
disciplinary studies to decipher complex interactions be−
tween Silurian ecosystems, forced by climatic, eustatic, tec−
tonic and subsequent biogeochemical (i.e., carbon cycling)
factors, and quickly evolving marine and terrestrial bio−
spheres, in terms of effects of the accelerated terrestriali−
zation (see Strother et al. 2010), are necessary in other
palaeogeographical domains.
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