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ABSTRACT: We followed seasonal and year-to-year population dynamics for a diverse rodent
assemblage in a short-grass prairie ecosystem in southeastern Colorado (USA) for 6 yr. We cap-
tured 2,798 individual rodents (range, one to 812 individuals per species) belonging to 19 species.
The two most common species, deer mice (Peromyscus maniculatus) and western harvest mice
(Reithrodontomys megalotis), generally had population peaks in winter and nadirs in summer;
several other murid species demonstrated autumn peaks and spring nadirs; heteromyids were
infrequently captured in winter, and populations generally peaked in summer or autumn. Inter-
annual trends indicated an interactive effect between temperature and precipitation. Conditions
associated with low rodent populations or population declines were high precipitation during cold
periods (autumn and winter) and low precipitation during warm periods (spring and summer).
Severity of adverse effects varied by species. Heteromyids, for example, were apparently not
negatively affected by the hot, dry spring and summer of 2000. Cross-correlations for the temporal
series of relative population abundances between species pairs (which are affected by both sea-
sonal and interannual population dynamics) revealed positive associations among most murids
and among most heteromyids, but there were negative associations between murids and heter-
omyids. These results have important implications for those attempting to model population
dynamics of rodent populations for purposes of predicting disease risk.

Key words: Abiotic environment, Colorado, grass-shrub habitat, population dynamics, rainfall,
rodents, temperature.

INTRODUCTION

In 1993, the first cases of hantavirus pul-
monary syndrome were diagnosed in hu-
mans in New Mexico, Arizona, and Colo-
rado (USA) (Nichol et al., 1993). The prin-
cipal vertebrate host of the novel etiologic
agent of this disease, Sin Nombre virus
(SNV; family Bunyaviridae, genus Hanta-
virus), has been identified as the deer
mouse (Peromyscus maniculatus) (Childs
et al., 1994). Subsequent intensive surveys
of wild rodent populations in the Americas
have shown that there are many hantavi-
ruses, each associated with an essentially
specific rodent host in a long-term, per-
haps co-evolutionary relationship (Mor-
zunov et al., 1998).

If we are to understand the dynamics of

rodent-borne virus infections and their re-
lationships with short- and long-term me-
teorologic events, it is necessary to con-
duct long-term, prospective monitoring of
multiple rodent populations and the han-
taviruses they harbor. We undertook such
studies by establishing sites at three eco-
logically diverse locations, two in western
Colorado and one in southeastern Colo-
rado; an interim summary of results at two
sites in western Colorado (on the western
slope of the Rocky Mountains) has been
published (Calisher et al., 1999). The hab-
itat types of the western slope sites are
montane shrubland and semidesert shrub-
land, respectively. The third study area, lo-
cated in southeastern Colorado, is ecolog-
ically distinct from the western slope sites,
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and the rodent assemblage there is more
diverse. A primary goal of our long-term
studies is to develop predictive models of
risk of human hantavirus disease. Such
models will require an understanding of
temporal changes in the abundance of
hantavirus host species and their compet-
itors and the influence of environmental
factors on rodent population dynamics.
Abiotic factors, including temperature and
precipitation, are hypothesized to form the
first tier of a trophic cascade that supports
host populations (Yates et al., 2002). This
article provides an overview of the dynam-
ics of rodent populations in southeastern
Colorado between 1995 and 2000 and
their association with abiotic environmen-
tal factors. In a companion article (Calish-
er et al., 2005), we relate these changes in
host abundance to changes in prevalence
of infection with hantaviruses.

Although our longitudinal studies were
designed principally to study the popula-
tion dynamics of the deer mouse, the res-
ervoir of SNV, several species in the rodent
assemblage at the Pinyon Canyon Maneu-
ver Site (PCMS) are hosts for other han-
taviruses. The white-footed mouse (Pero-
myscus leucopus) is host for New York-1
(Hjelle et al., 1995) and Blue River (Mor-
zunov et al., 1998) viruses; the brush
mouse (Peromyscus boylii) hosts Lime-
stone Canyon virus (Sanchez et al., 2001);
the western harvest mouse (Reithrodon-
tomys megalotis) hosts El Moro Canyon vi-
rus (Hjelle et al., 1994); the hispid cotton
rat (Sigmodon hispidus) hosts Black Creek
Canal (Rollin et al., 1995) and Muleshoe
(Rawlings et al., 1996) viruses; and the
meadow vole (Microtus pennsylvanicus)
hosts Prospect Hill virus (Lee et al., 1982).
The pinyon mouse (Peromyscus truei) of-
ten has antibody to a hantavirus and may
host an undescribed hantavirus, or it sim-
ply may be subject to frequent spillover
infection from other host species (Calisher
et al., 2005). Finally, the white-throated
woodrat (Neotoma albigula) hosts an are-
navirus, Whitewater Arroyo virus (Ful-
horst et al., 1996; Calisher et al., 2001a).

Thus, the population dynamics of all these
species are of interest to disease ecologists.
Secondly, the ecology of any one species is
best understood in the context of the com-
munity of which it forms a part. Therefore,
we present data on population dynamics of
all the principal members of the rodent
assemblage at our study site.

MATERIALS AND METHODS

The PCMS, Las Animas County, southeast-
ern Colorado, comprising more than 1,040
km2, was acquired by the US Department of
the Army in 1983 and is under the manage-
ment of Directorate of Environmental Compli-
ance and Management, Fort Carson, Colorado
(USA). Prior to this acquisition, the area had
been grazed by domesticated and wild ungu-
lates and had supported small populations of
humans since the late 1870s. The climate is dry
continental, and elevations range from 1,300 to
1,700 m (US Department of the Army, 1980;
Andersen et al., 1989; Shaw et al., 1989). To-
pography consists of broad, moderately sloping
uplands; vegetation is dominated by short-grass
prairie but includes pinyon pine (Pinus edulis)–
one-seeded juniper (Juniperus monosperma)
woodland (Costello, 1954).

After initial rodent sampling of numerous sites,
we selected three for longitudinal studies: 1) Pin-
yon Juniper (PJ2; 37833.0149N, 103859.5499W, al-
titude 1,676 m), on three sides a hilly pinyon
pine-juniper woodland site with surface limestone
and extending on the fourth side into short-grass
prairie; 2) Mouth of Red Rock Canyon (MRC;
37832.7599N, 103849.3529W, altitude 1,493 m), a
meadow with grasses and forbs and with a per-
manent water source; and 3) Red Rock Canyon
(RRC: 37832.1699N, 103849.1059W, altitude 1,463
m), a site near MRC, within a shallow canyon. At
PJ2 and MRC, webs, each consisting of 145 traps
arranged along 12 lines radiating from the center,
were established as described (Mills et al., 1999)
using 7.638.9322.9 cm Sherman live-traps. Be-
cause of lack of sufficient space within the canyon
to establish a web at the RRC site, a grid con-
sisting of three parallel trap lines, each 240 m
long, was installed. Trap stations were 10 m apart,
with 25 traps per line; trap lines were approxi-
mately 50 m apart.

The PJ2 site is at Big Arroyo Hills, also
known as Bear Spring Hills. This area is typical
of shallow limestone breaks. Other than rare
flooding from snowmelt, there is no water
source at this site. The MRC site is a relatively
flat, open plot with a creek flowing from a pond
formed by a natural spring at the west side and
running approximately southeast, forming a
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FIGURE 1. Quarterly precipitation as recorded at three weather stations near Pinyon Canyon Maneuver
Site, southeastern Colorado, 1995–2000.

marshy area for approximately 100 m from the
outlet of the pond. The remains of a homestead
are near the center of the web. The east side
of the plot, which extends from the mesa above
as a rocky hillside, ultimately becomes a field
with sparse grasses and forbs. The RRC site,
which is about 1.6 km south of MRC, is a rocky
slope on the north side, flat in the center, and
partly flat and partly rocky slope on the south
side. The creek running through it usually is a
dry bed.

In this area, skies are cloudless or contain
only a few clouds .300 days each year, and the
microenvironment can be warm even when the
air temperature is low. Data for all daily tem-
peratures and amounts of precipitation were
available for the period 1951 to 2000 for the
Rocky Ford weather station (Colorado State
University, Fort Collins, Colorado, USA), ap-
proximately 55 km from MRC. Although some
data were available from a station at Bear
Spring Hills, which is approximately 20 km
from the MRC site, and from another site at
RRC, adjacent to the MRC site, these data
were incomplete and were used only for com-
parison to Rocky Ford data.

Rodents were trapped under license from
the Division of Wildlife, Colorado Department
of Natural Resources. Collection of rodents and
safety procedures followed were those recom-
mended by the Centers for Disease Control
and Prevention (Mills et al., 1995; Calisher et
al., 1999). Except for January 1996 (two
nights), trapping was done for three nights ap-
proximately every 6 wk between January 1995
and November 2000, depending on weather
and site conditions; we terminated regular trap-
ping efforts at the PJ2 site after June 1998 be-
cause of logistical considerations. For other lo-

gistical reasons and because we did not begin
efforts each year on the same date, trapping
effort (numbers of trap nights) was not equal
among years.

Rodents were lightly anesthetized by gently
shaking them from the trap into a plastic Zip-
lock bag containing two tea strainers holding
gauze pads soaked in methoxyflurane or iso-
flurane. Animals were examined and species,
gender, reproductive condition, weight, stan-
dard measurements, and the presence of any
scars or ectoparasites were recorded. A se-
quentially numbered stainless-steel tag (Na-
tional Band and Tag Co., Newport, Kentucky,
USA) was inserted into the cartilage of an ear
of each animal, and an approximately 0.2-ml
blood sample was taken from the retro-orbital
plexus. The animal was then released at the ex-
act location at which it had been collected.

As a measure of relative abundance, trap
success was calculated as the number of indi-
viduals captured per 100 trap nights. Trap
nights were the number of traps set multiplied
by the number of nights they were left. Data
were analyzed using SPSS (Norusis, 1993) and
SAS (SAS Institute, Inc., 2000).

RESULTS

Environmental factors

Available data during the study period
(Fig. 1) indicate that, although absolute
values often differed, the temporal pattern
of precipitation at RRC was similar to that
at Rocky Ford (Pearson correlation coef-
ficient, r50.81, P50.001) and almost iden-
tical to that at Bear Spring Hills
(r50.9979, P,0.0001). There are no tem-
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perature data for RRC, but the patterns of
monthly mean minimum and mean maxi-
mum temperatures for Rocky Ford and
Bear Spring Hills were nearly identical
(r50.99, P,0.0001 for both comparisons;
data not shown). Temperatures at Rocky
Ford varied seasonally. Winters (January–
March) were cold (mean minimum and
mean maximum temperatures were 27.1
C and 11.9 C, respectively); summers
(July–September) were hot (12.9 C, 32.2
C); springs (April–June) were warm (7.3
C, 26.5 C); and autumns (October–De-
cember) were quite cool (24.1 C, 15.2 C).
Analysis of the deviations of the mean
temperature values from the 50-yr (1951–
2000) mean (Fig. 2) indicates that overall
temperatures during the study period
were generally warmer than in previous
years. There were 16 quarters during
which the mean maximum temperature
was warmer than the 50-yr quarterly mean
temperatures and eight quarters during
which this value was less than the 50-yr
mean. There were five quarters during
which the deviation was greater than or
equal to two standard deviations from the
mean (three greater and two lower; Fig.
2A). Seventeen quarters had mean mini-
mum temperatures greater than the 50-yr
average, compared to seven quarters dur-
ing which the mean minimum tempera-
ture was lower than the average. Two
quarters had mean minimum tempera-
tures greater than or equal to two standard
deviations above the mean (Fig. 2B).

For the 50-yr period from 1951 to 2000,
total annual precipitation at Rocky Ford
ranged from about 156 mm (1964) to 507
mm (1999), with the greatest precipitation
occurring from May to August of each
year. During the period from 1995 to
2000, annual precipitation totals were 321,
340, 463, 371, 507, and 244 mm, respec-
tively, with a mean of 374 mm. Taken on
a quarterly basis for 1951–2000, a mean of
34 mm of precipitation occurred in the
January–March periods, 108 mm in April–
June, 115 mm in July–September, and 39
mm in October–December.

We compared precipitation each quar-
ter from 1995 to 2000 with mean average
quarterly precipitation from 1951–2000.
Differences from the 1951–2000 means
were more than two standard deviations
greater than the 50-yr mean during five
quarters (Fig. 2C).

Unusually high precipitation during a
cold period (fall or winter) occurred dur-
ing two quarters, autumn 1997 and winter
2000. Only during autumn 1997, however,
were temperatures significantly colder
than the average for that quarter. Pro-
longed drought during warm weather
(spring and summer) occurred during a
single period, spring and summer 2000,
which coincided with maximum tempera-
tures that averaged 2–3 C above normal.
Rainfall during this period was 63% of
normal. Only four other spring-summer
periods during the 50-yr history had less
rainfall.

Trapping summary

We accumulated 36,195 trap nights:
9,715 at PJ2, 17,255 at MRC, and 9,225 at
RRC. In all, 6,155 captures of rodents
were recorded from January 1995 to No-
vember 2000 (Table 1). Of these, 3,788
(61.5%) were of the genus Peromyscus,
2,174 (35.3% of all captures) of which
were deer mice. An additional 884 (14.4%
of all captures) were western harvest mice.
The remaining 1,483 (24.1% of all cap-
tures) belonged to nine genera and 13 spe-
cies.

Seasonal population dynamics

Except for hispid cotton rats, popula-
tions of all frequently captured species
fluctuated similarly at MRC and RRC.
Therefore, these sites were combined for
displaying population dynamics for all spe-
cies except cotton rats (Figs. 3–5). Because
of its early termination and low numbers
of captures, PJ2 was omitted from the fig-
ures.

Muridae, Sigmodontinae: Relative
abundance of deer mice, as indicated by
trap success, generally peaked during au-
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FIGURE 2. Deviations from the 50-yr mean (1951–2000) for quarterly mean maximum (A) and mean
minimum (B) temperatures and quarterly precipitation (C) at Rocky Ford weather station (Colorado State
University, Fort Collins, Colorado, USA). Asterisks indicate deviations that are at least two standard deviations
from the 50-yr mean. The line shows quarterly trap success (number of individuals captured per 100 trap
nights) for deer mice (Peromyscus maniculatus).
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TABLE 1. Total captures of rodents belonging to 11 genera and 19 species at Pinyon Canyon Maneuver Site,
southeastern Colorado, January 1995–November 2000, by site and number of individuals.

Species
Total

captures

Total individuals captureda

MRC RRC PJ2 Total

Peromyscus maniculatus
Peromyscus truei
Reithrodontomys megalotis
Sigmodon hispidus
Neotoma albigula

2,174
1,166

884
393
340

294
94

343
121
74

478
186
117
129
70

47
145
60

0
20

819
425
520
250
164

Peromyscus leucopus
Perognathus flavus
Dipodomys ordii
Peromyscus nasutus
Onychomys leucogaster

274
249
184
157
156

23
80
60

2
49

67
37
22
57
14

2
93

1
0
5

92
210
83
59
68

Chaetodipus hispidus
Neotoma mexicana
Tamias quadrivittatus
Peromyscus boylii
Neotoma micropus

64
39
20
17
15

29
0
0
1
2

15
25
17

2
6

0
2
0
0
3

44
27
17

3
11

Microtus pennsylvanicus
Tamias minimus
Spermophilus variegatus
Microtus mexicanus

11
6
5
1

8
0
0
1

0
6
5
0

3
0
0
0

11
6
5
1

Total 6,155 1,181 1,253 381 2,815

a MRC 5 Mouth of Red Rock Canyon; RRC 5 Red Rock Canyon; PJ2 5 Pinyon Juniper.

tumn (October–December) or winter
(January–March), decreased during spring
(April–June) to a trough in summer (July–
September), before increasing again in au-
tumn (Fig. 3A). Exceptions were observed
during autumn 1997 and winter 2000,
when populations crashed (Fig. 3A). Sim-
ilar effects were seen for most rodent spe-
cies at our study sites. A third exception to
the general pattern was that the usual pop-
ulation increase did not occur in autumn
2000, following the hot, dry spring-sum-
mer period.

Population abundance for western har-
vest mice (Fig. 4A) was similar to that de-
scribed for deer mice, except that the
western harvest mice had high relative
abundances in summer 1997 and a period
of near-zero population levels followed by
slow recovery in summer 1998 to winter
1999.

Seasonal population dynamics for other
Peromyscus species appeared somewhat
distinct. Highest relative abundances of
white-footed mice most often occurred in

autumn (Fig. 5A), with lows in the spring.
Exceptions were again noted with the al-
most universal population crashes in au-
tumn 1997 and winter 2000. The pattern
for pinyon mice was generally similar to
that of white-footed mice, except for the
relatively high trap success in spring 1995
and spring 1998 and the fact that the peak
density in 1998 was delayed from fall to
winter.

Northern grasshopper mice (Onycho-
mys leucogaster) were captured at all three
sites but were never abundant (specific
trap success never exceeded 1%; Fig. 5A).
Their populations also often demonstrated
autumn peaks and spring lows, but de-
creased to zero captures in the summer
1998–spring 1999 period. Grasshopper
mice did not seem to be adversely affected
by the cold, wet autumn of 1997.

Because the patterns of occurrence of
hispid cotton rats differed at MRC and
RRC, trap success rates for the two sites
are shown separately (Fig. 5B). Relative
abundances at the two sites were generally
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FIGURE 3. Quarterly trap success for deer mice (Peromyscus maniculatus) and total quarterly precipitation
(A); percent of adults in reproductive condition and percent of captures consisting of juveniles (B), at two
mark-recapture sites in southeastern Colorado, 1995–2000.

coincident, peaking in summer–fall, except
that the sharp increase in relative abun-
dance at RRC for the summer–fall 1999
period did not occur at MRC.

Of three species of woodrats captured
(Table 1), only white-throated woodrats
were captured in sufficient numbers to
provide meaningful temporal analysis. The
seasonal pattern was consistent each year,
with relative abundance peaking in sum-
mer and lowest in winter (Fig. 5B).

Heteromyidae: Despite the much low-
er effort at PJ2, silky pocket mice (Perog-
nathus flavus) were more common at that
site than at MRC or RRC (Table 1). His-
pid pocket mice (Chaetodipus hispidus)
and Ord’s kangaroo rats (Dipodomys ordii)
were captured almost exclusively at MRC

and RRC. Because of the consistently low
relative abundances for the three hetero-
myid species (rarely exceeding 1% specific
trap success), seasonal trends were not
clear. The decreased heteromyid trap suc-
cess in winter (Fig. 5C) may represent the
entrance of these individuals into seasonal
torpor rather than any decline in relative
abundance.

Muridae, Arvicolinae: The few cap-
tured meadow voles and the Mexican vole
(Microtus mexicanus) at MRC and PJ2
(Table 1) represent the first reports of
these species at PCMS.

Sciuridae: We captured five rock
squirrels (Spermophilus variegatus), all at
RRC. Likewise, Colorado chipmunks
(Tamias quadrivittatus) and least chip-
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FIGURE 4. Quarterly trap success for western harvest mice (Reithrodontomys megalotis) and total quarterly
precipitation (A); percent of adults in reproductive condition and percent of captures consisting of juveniles
(B), at two mark-recapture sites in southeastern Colorado, 1995–2000.

munks (Tamias minimus) were captured
only at RRC (Table 1).

Interannual population dynamics

Although population patterns were gen-
erally similar from year to year, there were
several clear exceptions. The most dra-
matic exceptions were the population de-
clines in autumn 1997 and winter 2000
(Figs. 4 and 5). The only species that did
not exhibit abrupt population declines
during these quarters were Ord’s kangaroo
rat and, perhaps, the northern grasshopper
mouse. The autumn 1997 decline coincid-
ed with unusually high precipitation ac-
companied by cold temperatures. A sec-
ond interannual phenomenon was the ir-
ruption of hispid cotton rats that occurred
only at RRC during spring–autumn 1999.
Finally, the unusually dry and warm
spring–summer 2000 period was associat-
ed with low relative abundances in spring–
autumn 2000 for all species except the
three heteromyids and perhaps the grass-
hopper mice (Figs. 3–5).

Population dynamics of species pairs

We calculated correlation coefficients
for trap success indices over time for all
pairwise combinations of the 10 commonly
captured species at PCMS. Of the 45 pair-
wise cross-correlations, 27 species pairs
had positive correlations and 18 had neg-
ative correlations in species abundance
(Table 2). Fifteen of these correlations, 12
positive and three negative, were statisti-
cally significant (P,0.05, not corrected for
experiment-wise error rate). Among 45
comparisons, one would expect two to
three comparisons to be statistically signif-
icant by chance alone. If we were to cor-
rect for experiment-wise error rate, there
would be no significant comparisons. Nev-
ertheless, we believe these results dem-
onstrate a logical, nonrandom pattern. A
generally positive association was observed
among a murid group consisting of deer
mice, white-footed mice, pinyon mice, and
western harvest mice. A separate positive
association was observed among a mostly
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FIGURE 5. Quarterly trap success for white-footed mice and pinyon mice (Peromyscus leucopus, Pero-
myscus truei) and northern grasshopper mice (Onychomys leucogaster) (A); white-throated woodrats (Neotoma
albigula) and hispid cotton rats (Sigmodon hispidus) at MRC, and hispid cotton rats at RRC (B); Ord’s
kangaroo rats (Dipodomys ordii), hispid pocket mice (Chaetodipus hispidus), and silky pocket mice (Perog-
nathus flavus) (C), at two mark-recapture sites in southeastern Colorado, 1995–2000.

heteromyid group consisting of Ord’s kan-
garoo rats, hispid and silky pocket mice,
and grasshopper mice. Finally, cotton rats
and white-throated woodrats might rep-
resent a third positive association. Nega-
tive associations were observed among
some members of the heteromyid and mu-
rid groups (e.g., between Ord’s kangaroo
rats and white-footed and pinyon mice).
Recaptured rodents

Most rodents were not recaptured; the
majority of those recaptured were recap-

tured only once, 4–6 wk after first capture.
Mean minimum longevities for recaptured
rodent species ranged from 6 to 38 wk (Ta-
ble 3).

Of 786 deer mice (four mice of unde-
termined sex and 22 with missing tag num-
bers are not included), 277 (35.2%) were
recaptured, but few (1.0%) were recap-
tured .42 wk after they were first cap-
tured. This pattern held true for western
harvest mice (26.2%; 0%); pinyon mice
(40.6%; 2.2%); hispid cotton rats (19.8%;
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TABLE 2. Matrix of correlation coefficients for time series of monthly trap success (number of individuals
captured per 100 trap nights) for 10 common rodent species at Pinyon Canyon Maneuver Site, southeastern
Colorado, 1995–2000.a

PM RM SH PT PL OL DO CH PF NA

PM
RM
SH
PT
PL

1 0.357*b

1
0.371*

20.049
1

0.409**c

0.032
0.184
1

0.365*
20.142

0.238
0.506**
1

20.091
20.215

0.512**
20.072
20.008

20.410
0.258
0.263

20.310*
20.306*

20.213
20.181

0.226
20.207
20.108

20.199
0.071
0.180

20.152
20.034

20.068
20.333*

0.390*
0.025
0.489*

OL
DO
CH
PF
NA

1 0.272
1

0.452**
0.098
1

0406**
0.437**
0.525**
1

0.091
0.068
0.027
0.262
1

a PM 5 Peromyscus maniculatus; RM 5 Reithrodontomys megalotis; SH 5 Sigmodon hispidus; PT 5 Peromyscus truei; OL
5 Onychomys leucogaster; DO 5 Dipodomys ordii; CH 5 Chaetodipus hispidus; PF 5 Perognathus flavus; NA 5 Neotoma
albigula.

b * 5 Correlation significant at P50.05 (two-tailed).
c ** 5 Correlation significant at P50.01 (two-tailed).

1.3%); silky pocket mice (5.6%, 0.5%); and
northern grasshopper mice (36.9%, 3.0%).
A higher proportion of other species were
recaptured .42 wk after they were first
captured: white-throated woodrats (36.2%,
10.8%); white-footed mice (38.0%, 7.6%);
Ord’s kangaroo rats (37.9%, 7.6%); and
northern rock mice (P. nasutus; 36.8%,
10.5%). The eight most commonly cap-
tured species were compared using surviv-
al analysis. There were highly significant
differences among survivorship curves
(P,0.0001, Kaplan-Meier log-rank test).
Significance of pairwise comparisons is
shown in Table 4. Because of space limi-
tations, survival analysis was not conducted
for all species, but such analysis could be
performed using the data in Table 3. Of
the commonly captured species, white-
throated woodrats, white-footed mice, and
Ord’s kangaroo rats had the highest survi-
vorship; silky pocket mice had the lowest
(Fig. 6). Deer mice had a relatively high
short-term survivorship but did not survive
well after about 30 wk. Although pinyon
mice had high short-term survivorship (6–
18 wk), white-throated woodrats did better
in the longer term. Meadow voles, the
Mexican vole, least chipmunks, and rock
squirrels were not recaptured.

Breeding condition in deer mice and western
harvest mice

We monitored breeding condition of ro-
dents by determining whether adult fe-
males had perforate vaginal orifices or en-
larged or lactating nipples or whether
adult males had descended (scrotal) testes.
Except for the unusually warm winter of
1998 (mean maximum temperature .3 C
above 18-yr mean), breeding was strongly
seasonal. The percent of adult (.18 g)
deer mice in breeding condition was high-
est in spring and summer, usually decreas-
ing to very low levels in autumn and win-
ter (Fig. 3B). The only exception was in
the wet autumn of 1997, when the percent
of adults in breeding condition did not de-
crease. Although the seasonal pattern is
not as clear, the same general trend is seen
for adult (.8 g) western harvest mice (Fig.
4B). The proportion in breeding condition
did, however, decrease sharply in the au-
tumn of 1997.

Recruitment

Analysis of the proportion of the deer
mouse population consisting of subadults
(Fig. 3B) indicates that some recruitment
took place throughout the year. The sea-
sonal pattern was variable, but the highest
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TABLE 3. Rodents recaptured by species, sex, and number of weeks between first and last capture, Pinyon
Canyon Maneuver Site, southeastern Colorado, 1995–2000.

Species Sex
Total

captureda 4–6 7–18 19–30 31–42 43–54 55–66 67b Mean

Chaetodipus hispidus

Dipodomys ordii

F
M
F
M

20
19
37
29

1
4
1
5

0
0
7
2

0
0
2
2

0
0
0
1

0
0
3
0

0
0
0
0

0
0
2
0

5.7
5.8

29.7
15.0

Neotoma albigula

Neotoma mexicana

F
M
F
M

106
51
14
12

14
1
1
1

12
6
1
0

4
0
1
0

4
1
1
0

8
2
0
1

3
1
0
0

2
1
0
0

25.9
29.3
21.0
29.5

Neotoma micropus

Onychomys leucogaster

F
M
F
M

7
3

31
35

0
0
3
7

0
1
5
4

1
0
1
0

0
0
0
0

0
0
1
1

0
0
0
0

0
0
0
0

29.9
13.3
14.7
12.2

Perognathus flavus

Peromyscus boylii

F
M
F
M

129
66
2
1

3
3
0
0

2
0
0
0

1
1
1
0

0
0
0
1

0
1
0
0

0
0
0
0

0
0
0
0

10.2
19.0
30.1
36.0

Peromyscus leucopus

Peromyscus maniculatus

F
M
F
M

46
46

316
470

1
6

26
41

6
4

53
63

6
3

20
45

1
1
9

12

4
0
3
2

1
2
1
1

0
0
0
1

27.4
19.4
17.4
17.6

Peromyscus nasutus

Peromyscus truei

F
M
F
M

26
31

191
218

0
4

29
26

3
2

19
39

3
3

17
16

0
0
5
6

0
2
4
1

1
1
0
0

0
2
0
4

23.3
38.1
16.5
17.5

Reithrodontomys megalotis

Sigmodon hispidus

F
M
F
M

255
249
121
111

25
24
11
10

20
31
9
5

7
12

4
3

8
5
0
1

0
0
0
2

0
0
1
0

0
0
0
0

14.6
14.0
13.2
14.7

Tamias quadrivattatus F
M

10
4

1
0

0
0

0
0

0
0

0
0

0
0

0
0

6.4
0

a Ninety-one animals deleted because of missing tag number.
b Rodents captured more than 66 weeks after they were first captured (number of weeks between first and last capture): D.

ordii F (74 and 87), N. albigula F (73 and 101), N. albigula M (87), P. maniculatus M (81), P. nasutus M (106 and 125), P.
truei M (69, 69, 70, and 75).

TABLE 4. Kaplan-Meier log rank statistic for significance of differences in pairwise comparisons among
survivorship curves for eight commonly captured species at a mark–recapture site in southwestern Colorado,
1995–2000.a

DO NA PL PM PT PF RM

NA
PL
PM
PT

0.03
0.00
3.47
1.02

0.13
10.93*a

3.43
5.94
1.77 1.31

PF
RM
SH

37.10*
12.47*
14.13*

57.35*
29.30*
25.98*

47.30*
19.76*
19.44*

63.47*
17.58*
21.14*

70.68*
20.99*
25.75*

30.73*
14.11* 2.26

a NA 5 Neotoma albigula; PL 5 Peromyscus leucopus; PM 5 Peromyscus maniculatus; PT 5 Peromyscus truei; PF 5
Perognathus flavus; RM 5 Reithrodontomys megalotis; SH 5 Sigmodon hispidus; DO 5 Dipodomys ordii.

* Alpha set to P50.002 to provide for experiment-wise error rate of 0.05.
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FIGURE 6. Survivorship curves for seven common species of rodents in a mark-recapture study at Pinyon
Canyon Maneuver Site, Southeastern Colorado, 1995–2000.

percentage of subadults generally oc-
curred in fall or winter. The most notable
exception was the wet autumn of 1997;
this was the only point when the percent-
age of subadults was zero. The harvest
mouse population also showed a low level
of recruitment throughout the year. No
clear seasonal pattern was evident (Fig.
4B).

DISCUSSION

We followed seasonal and year-to-year
population dynamics for a diverse rodent
assemblage in southeastern Colorado for 6
yr. Patterns in population dynamics dif-
fered among species but shared some
common characteristics. Seasonal trends
were generally evident, and three primary
patterns were discernable by visual inspec-
tion. The two most common species, deer
mice and western harvest mice, showed
high populations in winter and nadirs in
summer. Other sigmodontine species
(white-footed mice, pinyon mice, and
grasshopper mice) generally had highest
relative abundances in autumn and lowest

numbers in spring. White-throated wood-
rat and hispid cotton rat populations gen-
erally peaked in summer and were lowest
in winter.

Superimposed upon these seasonal
trends was clear interannual variation,
sometimes associated with meteorologic
conditions that affected most species sim-
ilarly. These results indicate that ‘‘typical’’
seasonal population dynamics may occur
only under ‘‘average’’ conditions, and de-
partures from these average conditions
may occur frequently and result in distinct
changes in rodent population dynamics.
Cold, wet fall/winter conditions and hot,
dry spring/summer conditions were asso-
ciated with negative effects on populations
of most species. The cold, wet autumn of
1997 was coincident with an El Niño event
that brought high winter precipitation to
the Southwest and, at our study site, was
associated with abrupt declines in relative
abundances of rodents. The abrupt decline
in populations of many species in winter
2000 is not easily explained by meteoro-
logic conditions. Although precipitation
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was 40% above normal during the winter,
much of that rainfall occurred in March.
The population crash was first observed in
January, when rainfall was not higher than
normal and the temperatures were about
2 C warmer than normal. It is possible that
our meteorologic monitoring at Rocky
Ford did not detect local unfavorable con-
ditions at PCMS, or other factors may
have been responsible. Because popula-
tions of most species declined simulta-
neously, competition is unlikely to have
been a factor. Other extrinsic factors that
may have adversely affected rodent popu-
lations were not monitored in our study.
These include food resources, disease, and
predation. Although expensive and labor
intensive, studies that monitor all of these
factors have the best chance of identifying
the factor or combination of factors re-
sponsible for population phenomena.

Our results emphasize the importance
of long-term studies in understanding the
dynamics of small-mammal populations.
Conclusions based on 1 yr or 2 yr worth
of data may be inaccurate or misleading.
Similarly, we caution that our conclusions
are based on two trapping arrays at a single
location. Extrapolation of the patterns we
observed to other geographic areas, habi-
tats, or climatic conditions may not be ap-
propriate.

The apparent interaction between pre-
cipitation and temperature indicates that
these variables must be considered simul-
taneously when attempting to understand
or predict changes in relative abundance
of rodents. Precipitation during a period
of cold temperature was associated with
negative effects on rodent populations (au-
tumn 1997). Conversely, the lack of rain-
fall during a period of warm temperature
(spring–summer, 2000) was associated
with negative effects on populations of all
species except those that do not require
free water (heteromyids). The timing of
precipitation events will also be important
in its effect on the vegetation resource
base that supports animal populations. The
positive effects of rainfall during the grow-

ing season may be much more important
than they are during quiescent periods,
and frequent and evenly distributed rains
will be much more beneficial than occa-
sional downpours that result in large
amounts of runoff.

Favorable environmental conditions,
such as higher summer rainfall and mild
winters, have been associated with increas-
es in rodent population densities (Beatley,
1969; Meserve et al., 1995; Brown and Er-
nest, 2002; Yates et al., 2002). These in-
creases result from improvement in surviv-
al, reproductive success, and recruitment
and therefore frequently involve a time lag
that may be as great as a year. Some in-
vestigators, however, have observed effects
of weather on population growth with little
or no time delay (Llewellen and Vessey,
1998). Two notable departures from nor-
mal population dynamics observed in this
study were not periods of population
growth but rather periods of abrupt pop-
ulation declines. One of these declines ap-
peared to be associated with high rainfall
during a cold period and involved no tem-
poral lag (occurred within the same 3-mo
period). This indicates that these unfavor-
able climatic conditions not only adversely
affect reproduction but may result in the
death of individual rodents through expo-
sure or denial of food and shelter. The hot,
dry conditions during the spring and sum-
mer of 2000 were associated with an ap-
parently very low level of recruitment in
the following autumn, probably indicating
unfavorable conditions during the spring-
summer breeding season and very low re-
productive success. Both direct and indi-
rect (through vegetation) effects of unfa-
vorable weather conditions, especially hot,
dry summers and cold, wet winters, have
been observed in temperate ecosystems in
both North (Garsd and Howard, 1981,
1982) and South America (Crespo, 1944;
de Villafane and Bonaventura, 1987; Mills
et al., 1992).

Not all species were affected similarly
by environmental conditions. Hispid pock-
et mice and silky pocket mice were not
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negatively affected by the drought in
spring-summer 2000. In fact, populations
of each species reached very high relative
abundances during summer 2000. It is not
clear if they simply thrived because of
their lack of dependence on free water or
if their populations were enhanced be-
cause of a release from competitive pres-
sures by other species whose populations
remained low during this period.

The degree of correlation in abundance
between species pairs is another way to
look for commonalities in patterns of pop-
ulation dynamics that consider both sea-
sonal and interannual trends simulta-
neously. These analyses have been used as
an indication of the extent to which sym-
patric species are limited by common re-
sources. A positive correlation between
species pairs may indicate that those spe-
cies pairs respond similarly to, and are lim-
ited by, fluctuating common resources. A
negative correlation may indicate that
those species avoid competition by re-
sponding differently to resource variation
(Valone and Brown, 1996). The results of
our correlation analyses indicate that mu-
rids such as Peromyscus species share a
generally common pattern of population
dynamics and may respond similarly to
limiting environmental resources. Hetero-
myid species and grasshopper mice share
a separate pattern. We cannot say whether
these different patterns in sympatric spe-
cies evolved to minimize interspecific
competition or as specializations for dif-
ferent resources independent of competi-
tive pressures. Our results differ from
those seen by Valone and Brown (1996)
and Brown and Heske (1990) for many of
the same species. Those authors found
most associations to be positive, even
among murid and heteromyid species, and
concluded that general environmental
conditions (as opposed to interspecific in-
teractions) were of overriding importance
in determining population dynamics. A
possible explanation for the different re-
sults may be that the former studies took
place in a more xeric, water-restricted, de-

sert environment than is PCMS. Thus, the
rodent assemblage at PCMS may be con-
trolled by a combination of overriding abi-
otic environmental factors during harsh
conditions and a mix of environmental and
competitive factors during more benign
conditions.

The dynamics of breeding and juvenile
recruitment add to the interpretation of
seasonal and multiyear population dynam-
ics for deer mice and western harvest
mice. The percent juvenile generally par-
alleled the overall relative abundance,
while percent in breeding condition varied
inversely with relative abundance. These
trends probably reflect not only cessation
of breeding but also the dilution of the
breeding population by the new, sexually
immature cohort in the postbreeding sea-
son (autumn–winter). An exception to the
pattern is clearly seen for deer mice in the
fall of 1997, when the percent sexually ma-
ture remained high and the percent juve-
nile decreased to zero, indicating the com-
plete absence of recruitment during that
unfavorable period.

Populations of hispid cotton rats at
MRC and RRC increased abruptly at the
end of the summer of 1996 (Fig. 5B), de-
clining just as precipitously thereafter. In
summer 1999, cotton rats increased
abruptly at RRC (but not at MRC), and
again decreased precipitously. Fleharty et
al. (1972) have described ‘‘crashes’’ of his-
pid cotton rat populations. Hispid cotton
rats are a southern species that are near
the limit of their distribution at PCMS,
and they would be expected to be sensitive
to harsh, wintry conditions. We do not
know the explanation for the striking dif-
ference between cotton rat population dy-
namics between MRC and RRC in sum-
mer–autumn 1999. However, these pat-
terns emphasize the importance of conti-
nuity and replication when attempting to
describe general patterns of population dy-
namics for any species.

Based on low recapture rates for rodent
reservoirs of hantaviruses and commensu-
rately low prevalence of these viruses at
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another site at PCMS, we have inferred
that long-lived mice infected with a han-
tavirus are crucial to the trans-seasonal
persistence of these viruses (Calisher et al.,
2001b). Given that most rodents were
adults when first captured, the mean num-
ber of weeks between first and last cap-
tures is a minimum estimate of longevity
and at least 1 mo less than the actual lon-
gevity. Also, failure to recapture an animal
may represent emigration, not death. The
majority of rodents were captured only
once. Either they survived only a short pe-
riod or, perhaps more likely, they were
transients. Larger-bodied rodents (e.g.,
woodrats) generally had higher survivor-
ship than smaller-bodied rodents, but
some Peromyscus species (brush mice,
rock mice, white-footed mice) had much
longer survivorship compared to deer mice
and pinyon mice. Whether such persis-
tence at these sites was dependent on the
presence or absence of competing species,
predators, available nutrients, other com-
ponents of the environment, or species-
specific trapping responses is unknown.

On the basis of our relatively short study
period, we observed a trend toward warm-
er, wetter conditions in southeastern Col-
orado. If these conditions continue, they
may result in changing species composi-
tions in the rodent assemblages at PCMS.
Possible changes could include increasing
dominance by warm-adapted species, such
as hispid cotton rats, and decreasing rep-
resentation by some more dry-adapted
species, such as the heteromyids.

Our results have important implications
for those attempting to develop predictive
models of rodent population dynamics. To
the extent that they were associated with
abiotic causes, the population crashes we
observed and the subsequent extended ef-
fects on some populations could not have
been predicted using models based on
vegetative greenness indices. This implies
that 1) models that do not incorporate
temperature and precipitation may fail to
predict population changes such as the
general decline we observed in autumn

1997, and 2) it may be very difficult to pre-
dict populations for more than a few
months in advance whenever such overrid-
ing extrinsic abiotic environmental factors
are involved. Our results may be general-
ized to some other temperate ecosystems.
Cold, wet winters and hot, dry summers
were found to be detrimental to rodent
populations inhabiting the temperate Ar-
gentine Pampa (Crespo, 1944; Mills et al.,
1992). However, increased winter precip-
itation may be advantageous to murid ro-
dents inhabiting the desert Southwest
(Brown and Ernest, 2002; Yates et al.,
2002), and increased winter precipitation
in the form of snowfall may be advanta-
geous to some species in high-altitude or
boreal areas (Merritt et al., 2001). Thus, a
given model may be useful only for a spe-
cific region and a specific range of eleva-
tions.

During this nearly 6-yr study, we were
able to discern at least three patterns of
population dynamics for suites of rodent
species in southwestern Colorado. We also
identified specific abiotic environmental
(meteorologic) phenomena that were as-
sociated with dramatic changes in popu-
lation dynamics. These meteorologic phe-
nomena affected different species in dif-
ferent ways and had enduring effects for
some species. Typical seasonal population
cycles, which may be controlled within
certain limits by the interaction of a suite
of biotic and abiotic environmental factors,
are subject to disruption by periodic over-
riding abiotic phenomena. Such unusual
conditions are likely to be those associated
with population irruptions and outbreaks
of zoonotic diseases. In our study, we were
fortunate to witness several events that
were associated with apparent perturba-
tions of normal population cycles. Never-
theless, much longer term studies will be
required to discern the effects of truly rare
phenomena or to identify trends or cycles
that have a multiyear periodicity, such as
the El Niño southern oscillation.
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máticos y la ecologı́a de algunos roedores de
campo (Cricetidae). Revista Argentina de Zo-
ogeografı́a 4: 137–144.

DE VILLAFANE, G., AND S. M. BONAVENTURA. 1987.
Ecological studies in crop fields of the endemic
area of Argentine hemorrhagic fever: Calomys
musculinus movements in relation to habitat and
abundance. Mammalia 51: 233–248.

FLEHARTY, E. D., J. R. CHOATE, AND M. A. MARES.
1972. Fluctuations in population density of the
hispid cotton rat: Factors influencing a ‘‘crash.’’
Bulletin of the Southern California Academy of
Sciences 71: 132–138.

FULHORST, C. F., M. D. BOWEN, T. G. KSIAZEK, P.
E. ROLLIN, S. T. NICHOL, M. Y. KOSOY, AND C.
J. PETERS. 1996. Isolation and characterization
of Whitewater Arroyo virus, a novel North Amer-
ican arenavirus. Virology 224: 114–120.

GARSD, A., AND W. E. HOWARD. 1981. A 19-year
study of microtine population fluctuations using
time-series analysis. Ecology 62: 930–937.

, AND . 1982. Microtine population
fluctuations: An ecosystem approach based on
time-series analysis. Journal of Animal Ecology
51: 225–234.

HJELLE, B., F. CHAVEZ-GILES, N. TORREZ-MARTI-
NEZ, T. YATES, J. SARISKY, J. WEBB, AND M.
ASCHER. 1994. Genetic identification of a novel
hantavirus of the harvest Reithrodontomys me-
galotis. Journal of Virology 68: 6751–6754.

, S. A. JENISON, D. E. GOADE, W. G. GREEN,
R. M. FEDDERSEN, AND A. SCOTT. 1995. Han-
taviruses: Clinical, microbiologic, and epidemio-
logic aspects. Critical Reviews in Clinical Labo-
ratory Sciences 32: 469–508.

Downloaded From: https://bioone.org/journals/Journal-of-Wildlife-Diseases on 09 Nov 2024
Terms of Use: https://bioone.org/terms-of-use



28 JOURNAL OF WILDLIFE DISEASES, VOL. 41, NO. 1, JANUARY 2005

LEE, P. W., H. L. AMYX, D. C. GAJDUSEK, R. T. YAN-
AGIHARA, D. GOLDGABER, AND C. J. GIBBS.
1982. New haemorrhagic fever with renal syn-
drome-related virus in indigenous wild rodents
in the United States. Lancet 2: 1405.

LEWELLEN, R. H., AND S. H. VESSEY. 1998. The
effect of density dependence and weather on
population size of a polyvoltine species. Ecolog-
ical Monographs 68: 571–594.

MERRITT, J. F., M. LIMA, AND F. BOZINOVIC. 2001.
Seasonal regulation in fluctuating small mammal
populations: Feedback structure and climate. Oi-
kos 94: 505–514.

MESERVE, P. L., J. A. YUNGER, J. R. GUTIÉRREZ, L.
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