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ABSTRACT: Documenting the occurrence of Parelaphostrongylus odocoilei has historically relied
on the morphological examination of adult worms collected from the skeletal muscle of definitive
hosts, including deer. Recent advances in the knowledge of protostrongylid genetic sequences now
permit larvae to be identified. Dorsal-spined larvae (DSLs) collected in 2003–2004 from the lung
and feces of six Columbian black-tailed deer (Odocoileus hemionus columbianus) from Oregon
were characterized genetically. The sequences from unknown DSLs were compared to those from
morphologically validated adults and larvae of P. odocoilei at both the second internal transcribed
spacer (ITS-2) of ribosomal DNA and the mitochondrial cytochrome oxidase II gene. We provide
the first unequivocal identification of P. odocoilei in Columbian black-tailed deer from Oregon.
The broader geographic distribution, prevalence, and pathology of P. odocoilei are not known in
populations of Oregon deer.

Key words: Columbian black-tailed deer, COX-II, ITS-2, muscle worm, Odocoileus hemionus
columbianus, Parelaphostrongylus odocoilei.

INTRODUCTION

Recognized as a parasite of the skeletal
musculature, the nematode Parelaphos-
trongylus odocoilei has been historically
documented in Columbian black-tailed
deer (Odocoileus hemionus columbianus)
from California and British Columbia
(Hobmaier and Hobmaier, 1934; Pybus
et al., 1984) and in mule deer (Odocoileus
hemionus hemionus) from Alberta, Can-
ada (Platt and Samuel, 1978; Samuel et al.,
1985). Other hosts identified include
woodland caribou (Rangifer tarandus car-
ibou) (Gray and Samuel, 1986); mountain
goat (Oreamnos americana) (Pybus et al.,
1984); and thinhorn sheep, including
Dall’s sheep (Ovis dalli dalli) and Stone’s
sheep (O. dalli stonei) (Kutz et al., 2001;
Jenkins, 2005). More recently, Jenkins et
al. (2005) documented P. odocoilei based
on molecular methods and assessment of
larval sequences in all of the above-
mentioned host species across a broad

range from California to Alaska and the
Northwest Territories (NT), Canada.

Efforts were made in 2003–2004 to
determine whether this parasite was pres-
ent in Columbian black-tailed deer in
western Oregon after observing verminous
pneumonia and dorsal-spined larvae
(DSLs) in lung tissue and feces of
necropsied deer (Bildfell et al., 2004).
Until recently, differentiating among spe-
cies of Parelaphostrongylus has required
collecting and examining adult worms
from skeletal muscle, because the DSLs
of Parelaphostrongylus and some other
protostrongyles in North American ungu-
lates cannot be unequivocally identified
based on morphological characters (Platt
and Samuel, 1978; Carreno and Lanke-
ster, 1993; Kutz et al., 2001; Jenkins et al.,
2005).

Differences in the second internal
transcribed spacer (ITS-2) of ribosomal
DNA have been used to identify many
nematode parasites (Gasser and Monti,
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1997; Criscione et al., 2005), including
specimens of DSLs among elaphostrongy-
lines and other protostrongyles (Gajadhar
et al., 2000). Restriction digestion of this
locus, however, has proven to be equivo-
cal, and it has now been demonstrated
that direct sequence comparisons are
required to differentiate among species
of Parelaphostrongylus if the ITS-2 is the
basis for identification (Jenkins et al.,
2005). The paucity of variation in that
locus, and the occurrence of distinct
paralogs within individual larvae, may
complicate attempts to differentiate close-
ly related species of elaphostrongylines.
Direct sequencing of more phylogeneti-
cally informative loci such as mitochon-
drial cytochrome oxidase may be prefera-
ble for exploring population level
relationships (Jenkins et al., 2005).

Sequences for the ITS-2 of six proto-
strongylid species are now available in
GenBank (Gajadhar et al., 2000; Junnila,
2002; Jenkins et al., 2005). Using methods
developed by Jenkins et al. (2005), we
compared sequences from morphological-
ly validated adult specimens with other-
wise unknown DSLs collected from wild
Columbian black-tailed deer. We report
the results of multilocus comparisons
(nuclear ITS-2 and mitochondrial cyto-
chrome oxidase II [COX-II]) leading to
the first identification of P. odocoilei in
Oregon, and a preliminary indication of
genetic diversity associated with this
nematode across its extensive range in
western North America. Additionally, we
provide the first mitochondrial COX-II
sequences for the congeners P. tenuis and
P. andersoni as an additional basis for
comparison.

MATERIALS AND METHODS

Lung tissue and a minimum of 10 g of fecal
material were removed from eight Columbian
black-tailed deer found in Lincoln and Benton
counties of western Oregon and submitted to
the Oregon State University School of Veter-
inary Medicine Diagnostic Laboratory in
2003–2004. All sampled deer showed ad-

vanced clinical signs of hair-loss syndrome
(Bender and Hall, 2004, Bildfell et al, 2004;
Foreyt et al., 2004), with two being euthanized
and six found dead. Larvae were collected by
using a modified Baermann apparatus (Foreyt,
1997), with the lung tissue being homogenized
to ensure better migration of first-stage larvae.
After a 24-hr settling period, larvae were
centrifuged to concentrate and decanted into
tubes with 95% ethanol solution for storage for
five samples, and three samples were held live
in physiological saline. Samples were sub-
mitted to the US National Parasite Collection
(USNPC) and the Animal Parasitic Disease
Laboratory, Beltsville, Maryland, for analysis
of DNA sequences. Dorsal-spined larvae of
protostrongyles were subsampled from each
host in which they were demonstrated by
microscopic examination. Individual DSL
from each host were selected and prepared
for sequence analyses, and physical voucher
specimens were deposited in the USNPC
(Table 1). Initial identification was based on
structure of the tail and size of the DSLs,
generally consistent with species of Parela-
phostrongylus (Lankester, 2001; Kutz et al.,
2001; Jenkins et al., 2005). Specimens avail-
able for study varied in condition based on the
timing of collections, methods of preservation
and handling of materials subsequent to
Baermann extraction. We did not always have
live specimens on which to perform extrac-
tions and sequencing; variation in results and
success in extraction may be attributable to
these factors.

Specimens

Individual larvae from four hosts were
characterized based on sequence comparisons.
Larvae from two additional hosts were mor-
phologically consistent with P. odocoilei, but
they were not amenable to molecular analysis
(dead and in poor condition). Sequences of the
ITS-2 of nuclear rDNA of these larvae were
compared with those derived from definitively
identified adult specimens of P. odocoilei
vouchered in the USNPC (from Dall’s sheep,
USNPC 94329, 94331, 94332, 94333, 94334),
experimentally infected Stone’s sheep (94891,
94892, 94893, 94894), and known sequences
for P. tenuis and P. andersoni in GenBank.
Additionally, comparisons were achieved with
ITS-2 sequences from DSLs across the known
range of P. odocoilei as summarized in an
extensive geographic survey by Jenkins et al.
(2005); these DSLs included those from
Columbia black-tailed deer in northern Cali-
fornia (Table 1).
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Sequences for the mitochondrial COX-II
locus were examined in the samples of larvae
from Oregon. Comparisons at this locus are
based on samples of identified DSLs and
adults of P. odocoilei in Columbian black-
tailed deer from northern California and
adults in O. d. dalli from the Mackenzie
Mountains, Canada, the latter specimens with
vouchers previously deposited in the USNPC
as accessions 94329 and 94333 (Hoberg et al.,
2005; Jenkins et al., 2005). Furthermore, these
specimens were compared with sequences of
adult P. tenuis derived from white-tailed deer
(Odocoileus virginianus) and larval P. ander-
soni from Barren-ground caribou (Rangifer
tarandus groenlandicus) to establish an un-
equivocal basis for species identification (Ta-
ble 1).

DNA extraction and amplification

The DNA from individual DSLs, including
both live and preserved specimens, was
extracted using a modification of the standard
QIAGEN DNeasy protocol (QIAGEN, Valen-
cia, California) by using two additional washes,
and a 10-min incubation, before final elution.
Polymerase chain reactions (PCRs) were
performed to amplify ITS-2 and COX-II. To
amplify ITS-2, primers NC1 (59-ACG TCT
GGT TCA GGG TTG TT-39) and NC2 (59-
TTA GTT TCT TTT CCT CCG CT-39) were
used (Gasser et al., 1993). To amplify COX-II,
primers MTD16 (59-ATT GGA CAT CAA
TGA TAT TGA-39) and MTD18 (59-CCA CAA
ATT TCT GAA CAT TGA CCA-39) were used
(Simon et al., 1994). Primers to amplify the
second half of COX-II correspond to those

TABLE 1. Samples of dorsal-spined larvae (DSLs) consistent with Parelaphostrongylus odocoilei in
Odocoileus hemionus columbianus from Oregon and California based on morphology and sequences from
the second internal transcribed spacer (ITS-2) and cytochrome oxidase II (COX-II) loci, and comparative
materials from P. odocoilei, P. tenuis, and P. andersoni.

Host USNPC Localitya
Larvae At/Sq

ITS-2
Larvae At/Sq

COX-II

Parelaphostrongylus odocoilei

Oregon
OR-6635b 95260c 44u439N, 123u559W 5/1d 10/5d

OR-6684 95261 44u379N, 123u599W 10/0 10/4
OR-7524 44u399N, 123u339W 10/2 10/0
OR-8408 94882 44u389N, 123u279W 19/9 19/10e

OR-8244 95263 44u239N, 124u029W 20/19 10/10e

OR-5995 95262 44u309N, 123u249W 15/0 15/4e

California (University of California, Hopland Research and Extension Center)

CA-0127 94338 38u589N, 123u079W 10/1 10/4
CA-0105 94337 38u589N, 123u079W 10/1 10/5
CA-0113 38u589N, 123u079W 5/1 5/1

Northwest Territories (NT)
94329, 94333 Adult male and female with definitive morphological identifica-

tion.f

Parelaphostrongylus tenuis from Odocoileus virginianus
British Columbia/Minnesotag

Parelaphostrongylus andersoni from Rangifer tarandus groenlandicus
94890 Beverly herd, NT, Canadaf

a Geographic locality in degrees latitude and longitude.
b Field collection number.
c Accession number for physical vouchers in US National Parasite Collection.
d Number of larvae studied (At 5 attempted; Sq 5 sequenced).
e These sequences are partial (short) and were not used in tree construction, but they are consistent and do not refute an

identification as P. odocoilei.
f See Jenkins et al. (2005) for ITS-2 and Hoberg et al. (2005) for COX-II.
g Sequence for ITS-2 from Gajadhar et al. (2000) and Junnila (2002). GenBank accession nos. AF504029 and AF504035;

COX-II sequences represent this material.
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denoted as C2-J-3400 and C2-M-3661 in
Simon et al. (1994) as originally specified by
Liu and Beckenbach (1992). The 39 position of
each primer corresponds to position 3400 and
3661 of the Drosophila yakuba mitochondrial
genome. A second pair of primers also was
developed from conserved sequences to aid in
amplifying certain specimens: MTD16int (59-
TAT GAG TTT AGT GAT ATT CC-39) and
MTD18int (59-CTC AAA ATA CCT CTT ATA
GC-39).

The standard protocol for Platinum High
Fidelity Taq polymerase (Invitrogen, Carls-
bad, California) was used for each 20-ml PCR
reaction. Each reaction was composed of 13
PCR buffer, 0.6 mM MgSO4, 0.2 mM dNTP
mixture, 0.5 mM each primer, 0.25 units of
Platinum High Fidelity Taq polymerase, and
2–2.5 ml of template.

Amplification of ITS-2 used an initial 94 C
denaturation for 3 min followed by 35–45
cycles of 94 C for 1 min, 55 C for 1 min, and
72 C for 2 min. Cycle parameters used for the
COX-II consisted of an initial 3-min denatur-
ation 94 C followed by 40–45 cycles of 30 sec
at 94 C, 30 sec at 45–50 C, and 30 sec at 72 C.
Each assay included a terminal extension step
of 72 C for 10 min and was followed by
cooling to 4 C. Each experiment included
reactions containing no template, PCR (re-
agents only), and extraction negative controls
to detect potential contamination. Reactions
were analyzed by electrophoresis through
a 1.4% agarose gel with ethidium bromide
staining.

Sequencing

To prepare PCR products for direct fluo-
rescent sequencing, 1.6 ml of ExoSap-ITH
(USB, Cleveland, Ohio) was added to 4 ml of
the PCR product to remove excess primers
and dNTPs. Samples were then incubated at
37 C for 15 min and then heated to 80 C for
15 min. To complete the sequencing reaction,
4 ml of BigDyeH Terminator version 3.0 or 3.1
(Applied Biosystems, Foster City, California)
and 3.2 pmol of primer were added before
cycle sequencing. When possible, PCR prod-
ucts were sequenced in both directions by
using the ITS-2 or the COX-II primers.
Samples were then electrophoresed on an
ABI 3100 or ABI 3730 capillary sequencer.

Data analyses

Sequence chromatograms were aligned and
edited using Sequencer 4.1 software (Gene-
Codes Corp., Ann Arbor, Michigan). Aligned
sequence chromatograms were inspected for
the occurrence of polymorphic sites, and

consensus sequences were used in subsequent
phylogenetic analyses, including homologous
sequences from the congeners P. tenuis and P.
andersoni. The relationships among all in-
dividual COX-II haplotypes were inferred by
means of Neighbor-Joining phylogenetic re-
construction based on Kimura two-parameter
genetic distances with PAUP* (Swofford,
2001). Because complete sequences were not
available from each larval specimen, analyses
were performed using both the complete
deletion method, which bases all pairwise
comparisons on the same subset of available
data, as well as the pairwise deletion method,
which uses all available comparative data from
each sequence pair.

RESULTS

Dorsal-spined larvae were recovered
from six of eight deer; other larvae present
in the Baermann samples included Dic-
tyocaulus cf. eckerti. The ITS-2 of all 29
larvae sequenced from four Columbian
black-tailed deer from Oregon (OR-6635,
OR-8408, OR-7524, and OR-8244) corre-
sponded perfectly to that described by
Jenkins et al. (2005) for P. odocoilei over
the 270 base pairs (bp) available for
comparison in all specimens. Perfect
correspondence to full-length (571-bp)
ITS-2 sequence of P. odocoilei also was
observed for 12 larvae derived from host
OR-8244, including the occurrence of
‘‘double traces’’ in three of five nucleotide
positions previously reported to exemplify
instances of nonuniformity among distinct
copies in individual genomes (Jenkins et
al., 2005). All ITS-2 sequences from
Oregon are reported here for the first
time.

Within the ITS-2, a mononucleotide
polyadenosine repeat proved difficult to
sequence in several of our specimens. This
difficulty in sequencing was probably
caused by variable numbers of adenosines
in the population of amplified PCR
product, but we do not know whether
such length variants occur endogenously
among the various nuclear copies of ITS-2,
or instead, whether such variants arose de
novo during the course of in vitro
amplification. Nevertheless, the uniformi-
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ty of the available ITS-2 sequences, out-
side this repeat region, permitted us to
compare even those specimens with dual
directional sequencing.

The total variation evident among COX-
II sequences derived from these DSLs,
and previously identified in two adult P.
odocoilei, is illustrated in Table 2. Those
larval sequences complete enough to
permit comparison with at least 80% of
the available adult sequences were sub-
sequently used to reconstruct their rela-
tionships under the criterion of Minimum
Evolution by using Kimura two-parameter
distances (Fig. 1). Among these 12 larvae
(one from CA-113, two each from CA-127
and OR 6684, and three each from CA-
105 and OR- 6635), a total of 10 distinct
haplotypes were evident. With one excep-
tion (OR-6635-20), the specimens from
California and Oregon comprise distinct,
reciprocally monophyletic clades that are
only poorly differentiated from one anoth-
er. Representative sequences for P. odo-

coilei, P. tenuis, and P. andersoni are
deposited in GenBank as DQ371934–
371951; all sequences for COX-II from
Parelaphostrongylus spp. are reported
here for the first time, with the exception
of the two adults of P. odocoilei as noted.

Haplotype variation was also evident
among other incomplete sequences de-
rived from the larvae of two additional
deer from Oregon (8408 and 8244)
(Table 2). Overall, 16 of the 21 variable
nucleotides represent synonymous third
codon position substitutions. Thus, selec-
tive neutrality would seem to characterize
most if not all of the evident population
variation in this locus.

DISCUSSION

We provide the first unequivocal iden-
tification of P. odocoilei in Columbian
black-tailed deer from Oregon. Previously,
the supporting evidence for the occur-
rence of P. odocoilei in this population

TABLE 2. Variable nucleotides in cytochrome oxidase II (COX-II) among dorsal spine larvae from Oregon
(OR) and California (CA) and adult Parelaphostrongylus odocoilei from the Mackenzie Mountains, Canada.a

Nucleotide position

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
2 6 8 8 8 9 0 0 1 2 3 4 4 4 5 8 9 1 3 3 7
9 2 2 4 6 5 1 7 0 5 1 4 6 9 8 2 4 0 6 7 2

3rd codon positions * * * * * * * * * * * * * * * *

Adult_USNPC_94329_DQ297381 . A G T A T A G C A T A T G T G A C T A .
Adult_USNPC_94333_DQ297382 . A G T A T A G C A T A T G T G A C T A .
CA_0105_1 T A A T A C G G T G A A C T T G T C T G C
CA_0105_2 T A A T A C G G T G G A C T T A T C T A .
CA_0105_3 T G A T A C G G T G G A C T T G T C T A .
CA_0113_1 T A A T A T G G T G G A C T T G T C T A C
CA_0127_1 T A A T A T G G T G G A C T T G T C T A T
CA_0127_2 T A A T A C G G T G G A C T C G T C T A C
OR_6635_1 C A A C G C G A C G G A C G T G T C T A .
OR_6635_2 . A A T A C G G T G G A C T C G T C . . .
OR_6635_3 . A A C A C G G C G G A C T T G T T . . .
OR_6684_1 . A A C G C G G C G G A C T T G T C . . .
OR_6684_2 C A A C G C G A C G G A C T T G T C T A T
OR_6684_3 . A A C G C G G C G G A C T T G T T . . .
OR_8244_1 . . A C G C G G C G G A T T T G T C A . .
OR_8244_2 . . . . . C G G C G G A C T T G T C A . .
OR_8408_1 . . . . . . . . . . G G C T T G T C . . .
OR_8408_2 . . . . . . . . . . G A C T T G T C A . .

a 16/21 variable positions occur at the third codon position; missing data indicated by a period.
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consisted mainly of the observation of
DSLs in deer fecal samples collected in
the northwestern region of Oregon during
1999 (Foreyt, 1999) and DSLs and eggs
found in lung tissue of deer clinically
affected with hair-loss syndrome (Bildfell
et al., 2004; Foreyt et al., 2004). The
overall geographic distribution, preva-
lence, and pathology of P. odocoilei remain
to be determined in Oregon deer popula-
tions.

Prior knowledge had suggested that P.
odocoilei occurred in a series of disjunct
geographic foci across western North
America involving Columbian black-tailed
deer, mule deer, and mountain goats as
definitive hosts (Lankester, 2001). The
first records from Dall’s sheep, from the
Mackenzie Mountains, NT, Canada, in-
dicated a considerably broader distribu-
tion for this nematode extending into the
subarctic (Kutz et al., 2001). Evidence for
an uninterrupted distribution for P. odo-
coilei in cervid and caprine hosts, from
California to Alaska and the NT, has now

been clearly demonstrated (Jenkins et al.,
2005).

Interestingly, with only one exception,
the larvae sampled from Oregon and
California seem genetically discrete, and
both are partitioned from populations in
the subarctic based on our preliminary
comparisons (Fig. 1). If generally true,
this partitioning would indicate that con-
tact among their respective host popula-
tions is currently insufficient to promote
substantial parasite gene flow. The di-
versity of COX-II haplotypes, and their
apparent geographic differentiation, offer
the promise that this locus may provide
a basis for more extensively exploring their
phylogeography and host associations, and
a way to more easily discriminate among
closely related species (Criscione et al.,
2005; Hoberg, Abrams, Jenkins, Ro-
senthal, unpubl.).

Our study, however, does not rule out
the possibility that other related species of
Parelaphostrongylus may occur in north-
western North America. For example,

FIGURE 1. Midpoint-rooted Neighbor-Joining tree reconstructed from variation in a portion of the
mitochondrial cytochrome oxidase II gene of dorsal-spined larvae (DSLs) collected from Columbia black-
tailed deer in Oregon (OR) and California (CA). Equivalent topologies result from trees reconstructed using
complete and pairwise deletion of gaps. Reconstruction reveals consistent separation (reciprocal monophyly)
of P. odocoilei and the congeners P. andersoni and P. tenuis. This result and comparisons of larval sequences
to those from validated adult specimens of P. odocoilei establishes the identity of DSLs from Oregon.
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demonstrating P. andersoni in coastal
Oregon would radically alter our current
understanding of the geographic distribu-
tion of this parasite, because it has never
been observed west of the Rocky Moun-
tains. Although we do not have sufficient
data to understand population genetic
variation in P. andersoni, based on COX-
II sequences it is clearly differentiated
from P. odocoilei (reciprocal monophyly as
established in Figure 1). Parelaphostrong-
ylus andersoni has been reported in white-
tailed deer at disjunct localities from the
southeastern United States, northeastern
Wyoming, and south central British Co-
lumbia, and it is typical in Barren-ground
and woodland caribou at boreal to Arctic
latitudes across the Nearctic (Lankester,
2001). There have been no substantiated
records in O. hemionus from regions west
of the Rocky Mountains, nor the far
western Nearctic (Lankester, 2001). Par-
elaphostrongylus odocoilei and P. ander-
soni would be expected in sympatry at
a minimum along the Cordillera from
southern British Columbia to southern
Alaska, and the Mackenzie Mountains of
the NT and Yukon (Kutz et al., 2001;
Lankester, 2001; Jenkins et al., 2005). The
latter parasite, however, was not demon-
strated in mule deer, Dall’s sheep, or
mountain goats during surveys for P.
odocoilei across this region (Jenkins et
al., 2005) or in phylogeographic studies
now in progress (Hoberg, Abrams, Jen-
kins, Rosenthal, unpubl.).

Interestingly, before the discovery of
a substantially more extensive geographic
distribution of P. odocoilei (Kutz et al.,
2001; Jenkins et al., 2005), there had been
only six records for this elaphostrongyline
in North America (Lankester, 2001).
Clearly, this points to the need for both
site-intensive and geospatially extensive
sampling to reveal the limits of the
geographic range and host association for
species of Parelphostrongylus in western
North America. An area of specific in-
terest should include eastern Oregon and
Washington and the region of the Great

Basin extending across Idaho into Wyo-
ming and Montana. Sampling protocols,
consistent with the model developed by
Jenkins et al. (2005), should include the
following: 1) simultaneous collection of
adult nematodes and DSLs from individ-
ual hosts, 2) identification of adult male
worms based on comparative morphology,
and 3) validating sequences for known
adults and larvae. Validation of sequences,
or the eventual development and applica-
tion of PCR-based diagnostic markers,
would provide the foundation for rapid
and geographically extensive sampling of
first-stage larvae derived solely from
collection and extraction of feces and
could serve in studies of population
genetics, phylogeography, and molecular
epidemiology (Hoberg et al., 2001; Cris-
cione et al., 2005; Jenkins et al., 2005).

Sequencing a mitochondrial locus from
adult and larval P. odocoilei and from P.
andersoni and P. tenuis has established
a basis to explore aspects of lungworm
population genetics that would be difficult
or impossible using ITS-2 alone. Our data
confirm previous findings that little geo-
graphic differentiation occurs in the ITS-2
of broadly distributed specimens (Jenkins
et al., 2005); by contrast, the worm
populations of physically proximate sam-
pling locales may differ by modest
amounts of variation in the mitochondrial
genome, as suggested by this preliminary
study. Furthermore, our comparisons in-
dicate that this mitochondrial locus seems
to recover stronger phylogenetic signal
differentiating the various species belong-
ing to the genus than does the ITS-2,
which may reflect the comparatively rapid
evolutionary rate and nonrecombinant,
uniparental inheritance of metazoan mi-
tochondrial genomes.

Moreover, our interspecific compari-
sons suggest that sequence variation in
this or other mitochondrial genes may
provide greater means to resolve differ-
ences among such closely related taxa and
to reconstruct their phylogeographic his-
tory. This increased resolution may be
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attributed to elevated replacement rates of
silent substitutions in mitochondrial genes,
which are inherited without recombina-
tion solely through maternal lineages.
Additionally, the interpretation of COX-
II variation will not be complicated by the
presence of intraindividual variation
among duplicated gene copies, as is
evident for the ITS-2 (Jenkins et al., 2005).

Documenting the host and geographic
distribution of parasitic helminths in both
wild and domestic ungulates is a matter of
practical significance, because of the
potential for host-switching at the inter-
face of natural and managed ecosystems,
and the possibility of translocation and
introduction of parasites into new geo-
graphic regions or exposure of naÏve hosts
populations concomitant with the move-
ment of deer and potentially caprines.
Additionally, ongoing processes linked to
anthropogenic changes in habitat and the
expected ecological perturbation atten-
dant to global climate change can be
predicted to dramatically influence how
pathogens and diseases are distributed in
space and time (Hoberg, 1997; Daszak et
al., 2000; Harvell et al., 2002; Hoberg et
al., 2002; Kutz et al., 2004, 2005). Base-
lines established through faunal surveys
and inventories remain necessary to define
and understand such ecological shifts, and
the consequences of emergent parasites
and pathogens.
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