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Ten practical questions to improve 
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By Sarah E. McCord , Justin L. Welty , Jennifer Courtwright , Catherine Dillon , 
Alex Traynor , Sarah H. Burnett , Ericha M. Courtright , Gene Fults , Jason W. Karl , 
Justin W. Van Zee, Nicholas P. Webb, and Craig Tweedie 

On the Ground 

• High-quality rangeland data are critical to supporting 

adaptive management. However, concrete, cost-saving 

steps to ensure data quality are often poorly defined and 

understood. 
• Data quality is more than data management. Ensur- 

ing data quality requires 1) clear communication among 

team members; 2) appropriate sample design; 3) train- 
ing of data collectors, data managers, and data users; 
4) observer and sensor calibration; and 5) active data 

management. Quality assurance and quality control are 

ongoing processes to help rangeland managers and sci- 
entists identify, prevent, and correct errors in past, cur- 
rent, and future monitoring data. 

• We present 10 guiding data quality questions to help 

managers and scientists identify appropriate workflows 
to improve data quality by 1) describing the data ecosys- 
tem, 2) creating a data quality plan, 3) identifying roles 
and responsibilities, 4) building data collection and data 

management workflows, 5) training and calibrating data 

collectors, 6) detecting and correcting errors, and 7) de- 
scribing sources of variability. 

• Iteratively improving rangeland data quality is a key part 
of adaptive monitoring and rangeland data collection. 
All members of the rangeland community are invited to 

participate in ensuring rangeland data quality. 
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quality control. 
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High-quality data are a critical component of rangeland 

esearch and management where short- and long-term im- 
lications of management decisions have significant policy,
022 
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conomic, and ecological impacts. Data collected on range- 
ands are diverse, collected by observers, sensors, and remote 
ensing through inventories, monitoring, assessments, and ex- 
erimental studies. Rangeland data are used and re-used in 

 variety of management and research contexts. Rangeland 

ata applications include, but are not limited to, adjusting 

tocking rates 1 ; evaluating conservation practices 2 ; assessing 

and health at local, regional scales, and national scales 3–5 ; de- 
ermining restoration effectivness 6 , 7 ; developing or improv- 
ng models 8 , 9 ; and advancing our understanding of range- 
and ecosystems responses to management decisions 10 and 

atural disturbances.11 To evaluate progress toward meeting 

anagement objectives, managers often use a combination of 
atasets.12 Use-based monitoring, such as forage utilization,
nables managers to adapt management in response to short- 
erm thresholds.1 Site-scale monitoring data collected using 

robabilistic sample designs are often used to infer condition 

nd trend across spatial and temporal scales,13 such as the 
atural Resources Conservation Service (NRCS) National 
esources Inventory (NRI) and Bureau of Land Manage- 
ent (BLM) Assessment Inventory and Monitoring (AIM) 

rograms. In all uses of rangeland data, confidence in data- 
upported decision-making is boosted by high-quality data 
nd eroded by errors and data issues. These issues also relate 
o rangeland research, where inference from research studies,
xperimental monitoring, treatments, and practices are also 

sed to support management decisions.6 For example, the Na- 
ional Wind Erosion Research Network (NWERN) uses a 
mall number of research sites to calibrate dust emission mod- 
ls that can then be run on monitoring datasets such as AIM
nd NRI to provide managers and conservation planners with 

ust estimates.8 If the data from NWERN were found to be 
aulty, all subsequent dust estimates across multiple study sites 
ould also be faulty. Therefore, any discussion of rangeland 

ata must be paired to a discussion of data quality among land
nd natural resource managers, conservation planners, and re- 
earchers. 

Ensuring data quality involves more than maintaining and 

anaging data. This distinction is often overlooked in range- 
and research and management,14 despite the widely recog- 
ized need for quality data to support effective decision- 
aking. Data quality describes the degree to which data 

re useful for a given purpose due to their accuracy, pre- 
17 
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Figure 1. The data lifecycle documents the progression of data through 
planning, data collection, data review, data maintenance and storage, 
and data analysis and interpretation. Quality assurance occurs continu- 
ously throughout the data lifecycle, whereas quality control begins after 
data are collected. For simplicity we have only identified five lifecycle 
stages. However, this framework can easily be expanded or contracted 
to accommodate a different number of lifecycle stages. 14 , 49 Modified 
from McCord et al. 2021. 14 

Table 1 
Ten important questions to improve rangeland data quality 

Question Quality assurance Quality control 

1. What is my data ecosystem? X 

2. What is my data quality plan? X 

3. Who is responsible? X 

4. How are data collected? X 

5. How are the data stored and 
maintained? 

X 

6. How will training occur? X 

7. What is the calibration plan? X 

8. Are the data complete, correct, 
and consistent? 

X 

9. What are the sources of 
variability? 

X- for future data 
cycle 

X- in current 
data cycle 

10. How can we adapt to do 
better next time? 

X- for future data 
cycle 

X- in current 
monitoring cycle 
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ision, timeliness, reliability, completeness, and relevancy.15 

ata management is the process of collecting, annotating,
nd maintaining quality data so they are findable, accessi-
le, interoperable, and re-usable.16 Recent efforts to improve
angeland data quality have focused on improving the effec-
iveness of data management,17 including describing the data
ifecycle,18 building data management plans,19 following data
tandards,20 using metadata,21 and leveraging software for
ata management.22 Although high-quality data are a con-
equence of good data management and good data manage-
ent identifies data quality issues, data management is not the

nly process that contributes to data qualit y. Data qualit y is
lso the result of clear communication among team members,
ell-documented study objectives, careful selection of meth-
ds and sample designs, adequate training, and frequent cali-
ration, and appropriate analysis.23 All members of the range-
and community, including data managers and data collectors,
ave a role in improving and maintaining data quality.14 

While the importance of data quality is broadly accepted
n the rangeland community, specific steps for ensuring data
uality are often unclear, overlooked, or considered synony-
ous with data management. To address data quality, many

nventory and monitoring efforts refer to quality assurance
QA) and quality control (QC) as “QA/QC,” but the mean-
ng of QA/QC can be highly variable between programs and
ndividuals.12 , 24 The purpose of QA/QC is to increase the re-
eatabilit y, defensibilit y, and usabilit y of data by 1) preventing
rrors whenever possible, 2) identifying errors that do occur,
) fixing the error with the correct value if possible, and 4)
escribing and noting remaining errors that cannot be fixed
o they can be excluded from analyses.23 To achieve these
oals, all members of a study or monitoring team, which in-
ludes data managers, must have a shared understanding of
ata quality and what actions they are responsible for to en-
ure the desired level of data quality is attained. 

We find it useful to separate the term QA/QC into its
ifferent components: QA and QC ( Fig. 1 ). QA is a proac-
ive process to prevent errors from occurring 

12 , 23 and includes
he careful design of the monitoring programs (Stauffer et al.
his issue), training and calibration of data collectors and sen-
ors (Newingham et al. this issue), structured data collection
Kachergis et al. this issue), and active data management. QC
s a reactive process where errors are identified and corrected
f possible 12 , 23 and includes outlier, logical, and missing data
hecks and expert review of data that occur sometimes itera-
ively throughout the data life cycle. Although QA and QC
re two distinct processes, both are question driven. QA asks
What could go wrong? How can we prevent it?” and QC
sks “What is going wrong? What did go wrong? Where did
t go wrong? Why did it go wrong? Can we fix it?” Because
oth sets of questions are important, we encourage the range-
and community to adopt “QA&QC,” rather than “QA/QC,”
hich implies that one can exist without the other and is fre-
uently interpreted as a single process (QC). 

Here we present 10 practical, overarching QA&QC ques-
ions for the rangeland community to adopt ( Table 1 ). If asked
egularly and answered thoroughly, these 10 questions can
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elp researchers and managers improve the quality of range-
and data. The questions build upon each other; however, any
uestion can be revisited at any time. Questions 1 to 7 are QA
teps to prevent errors. QC is addressed in Questions 8 to 10.
dditionally, Questions 9 and 10 can be considered QC ques-

ions for the current data collection cycle and QA questions
o adapt future data collection. These questions are used to
stablish projects, build data management plans, evaluate ex-
sting research and monitoring programs, prioritize limited
esources, and improve collaboration within data collection
Rangelands 



Figure 2. A general conceptual model of the data ecosystem and data flow. Monitoring data can exist in a range of states. Raw data include the 
original observations or values in paper format, personal electronic file (e.g., Excel, Microsoft Access database, and ESRI file geodatabase), or in an 
enterprise database (e.g., SQL or Postgres). Raw data may be transcribed from paper to an electronic file to a database. Indicators are derived from 

the raw data, which can be direct indicators (e.g., bare soil, vegetation composition) or combined with covariates to produce modeled indicators 
(e.g., dust flux). Data may also exist as interpretations of monitoring data using benchmarks, site scale analysis, or landscape analysis. For each 
data state, there is an opportunity for data to degrade due to errors of omission (i.e., missing data), commission (incorrect values or observations), 
or incorrect assumptions regarding the data. Once raw data are in a degraded state it is extraordinarily difficult to achieve a reference state again, 
although it may be possible to reverse degraded indicators and interpretations. For every type of data, metadata provide critical “data about the data”
that enables the use and re-use of data. Rangeland managers and scientists who work with data can build a more detailed version of this conceptual 
model, appropriate to their data, to anticipate resource needs, potential weak points in the data flow, and where QA&QC steps can prevent or correct 
degraded data. 
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. What is my data ecosystem? 

Successful implementation of QA&QC is most effective 
hen data collectors, data managers, and data users have a 

hared understanding of what kinds of data are being col- 
ected, how those data are collected and stored, how data will 
e used, and where there are opportunities for error.19 To 

uild this shared understanding, we recommend constructing 

 conceptual diagram of the data ecosystem ( Fig. 2 ). In de-
cribing the data ecosystem, scientists and managers identify 
ifferent kinds of data they are working with, how those data 
ight be transformed from data collection to data storage, to 

ata analysis, and how those data will be documented through 

etadata. This helps identify where personnel and technolog- 
cal (e.g., data collection applications, databases, and analysis 
022 
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oftware) resources are needed and anticipate weak points and 

pportunities for preventing errors. Within the data ecosys- 
em, it is useful to envision different states (e.g., raw data, cal-
ulated indicators or variables, and interpreted data) as well as 
hat each of those states might look like when they are cor-

upted. If we can anticipate the conditions under which the 
ata no longer accurately represent rangeland condition, it is 
asier to prevent those issues from occurring. For example,
n building a conceptual model of a data ecosystem, a team 

ight notice that they are planning to collect data on paper 
nd store those data in a database. However, the team might 
ote that they currently do not have a process for digitizing
he data so that it can be ingested into the database, therefore
dditional staff time will be needed to enter and check those 
ata to prevent transcription errors. Similarly, while describ- 
19 



i  

d  

d  

c
 

s  

o  

i  

c  

d  

a  

a  

t  

t  

d  

l  

d  

a  

p  

i

2

 

d  

w  

c  

p  

o  

t  

t  

r  

t  

c  

t  

v  

i  

c  

n
 

c  

t
B  

o  

w  

p  

o  

m
fl  

i  

c  

n  

u  

l  

t  

a

3

 

c  

t  

a  

i  

t  

a  

i  

d  

h  

t  

a  

W  

i  

t  

a  

c  

o  

l  

d  

s  

r  

j  

o  

r  

w  

c  

b  

d  

k  

c  

b  

a  

m

4

 

a  

d  

o  

d  

t  

d  

r  

t  

d  

c  

p  

u  

a  

e  

t  

f  

2
Downloaded
Terms of Us
ng the anticipated analyses, a team realizes that the planned
atabase schema will require transforming data into another
ata format, so they are able to plan and automate that pro-
ess. 

Although calculated and interpreted data can often be re-
tored with some effort as long as the raw data are sound, the
pportunities for degraded raw data to be corrected are lim-
ted because it is difficult, if not impossible, to replicate field
onditions from the raw data collection event.25 The kind of
ata (e.g., qualitative vs. quantitative, sensor vs. observational)
nd available resources available will guide the selection of
ppropriate data quality actions.26 The conceptual model of
he data ecosystem also recognizes that errors will occur, and
herefore includes a process for documenting errors in meta-
ata documentation when they do occur. It is incumbent upon

and managers and researchers who collect and use rangeland
ata to have a detailed conceptual model of their data to en-
ct a data quality plan that promotes a desirable data workflow,
reserves data quality, and documents the data and any known
ssues. 

. What is my data quality plan? 

A data quality plan, informed by an understanding of the
ata ecosystem (Question 1), can make it easier to anticipate
here there are opportunities for error and how those errors

an be prevented. A data quality plan describes 1) how sam-
le designs and analyses are checked to make sure they meet
bjectives, 2) strategies for data collector training and calibra-
ion, 3) descriptions of the maximum allowable variability in
he data, 4) how to detect errors, 5) how to correct those er-
ors if possible, and 6) how to properly annotate the errors so
he original value is still recorded and an explanation of the
hange is given. For instance, how will the team handle loca-
ion coordinates that look incorrect? Where will the original
alue be recorded, and how will the change be described? This
s necessary in case the updated value is later proven to be in-
orrect and an additional change based on the original data is
eeded. 

A data quality plan should encompass the entire data life-
ycle ( Fig. 1 ), from sample design to analysis, and address
he role of each team member in the data collection effort.27 

ecause data quality tasks are often captured across a range
f documents, it is important to plan how and where you
ill describe your data quality plans.28 In addition to im-
ortant QA&QC steps recorded in data management plans,
ther data quality plans might be described in protocol docu-
ents,12 sample design documentation,29 and analysis work- 

ows.30 We also encourage developing a process for revis-
ng the data quality plan in response to insights gained from
ollecting, managing, and anal y zing data. Assigning version
umbers and dates to data quality plans will help future data
sers understand the data ecosystem at the time data were col-
ected. With a documentation strategy in place, Questions 3
o 10 can be used to populate and improve those data quality
nd data management plans. 
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. Who is responsible? 

Rangeland data collection is often a collaborative, interdis-
iplinar y process.6 Ever y member of the monitoring or study
eam who interacts with data is responsible for maintaining
nd ensuring the quality and integrity of those data. While
n some cases the land manager, project leader, data collec-
or, data manager, analyst, interpreter, and data QC specialist
re the same person, often these roles are filled by multiple
ndividuals with different levels of experience or even from
ifferent organizations. For instance, the data collector may
ave little connection to how the data are anal y zed and in-
erpreted, whereas the data manager and analyst sometimes
re not intimately familiar with the data collection protocols.

ithin data collection teams, assigned roles and responsibil-
ties also ensure that data quality tasks are appropriately dis-
ributed according to skillset. This is particularly important
s data collectors also have the greatest power to detect and
orrect errors before they are embedded in the dataset. With-
ut a shared understanding of how quality data will be col-
ected and stored, errors are likely to occur. Therefore, c lear ly
efining who is responsible for what, and when, is critical to
uccessfully maintaining data quality.19 Discretely identified
oles that c lear ly tie to the broader monitoring or study ob-
ectives empower each member of the team to take ownership
f preventing, detecting, correcting, and documenting any er-
ors within their domain and toolset. Detailed timelines of
hen tasks are to be completed can help budget resources to

omplete data quality tasks and identify where there might
e lapses in data quality due to heavy workload. The longer
ata stay in a file cabinet or hard drive, the more institutional
nowledge is lost as data collectors leave and project leads fo-
us on other projects. Clearly communicating roles has added
enefits when multiple kinds of data are involved, as collecting
nd managing observational data may have different require-
ents compared with sensor data.31 

. How are data collected? 

Data quality steps will differ depending on whether data
re collected electronically or on paper data sheets. Electronic
ata collection applications provide a cost-efficient method
f quickly capturing accurate data while at the same time re-
ucing error rates.31 , 32 For instance, hand-recorded geospa-
ial coordinates are often transposed or erroneous. Electronic
ata capture of study locations can reduce this common er-
or. While more and more data collection programs use elec-
ronic data collection,33 , 34 considerable amounts of rangeland
ata are still recorded on paper datasheets. Although upfront
osts of equipment purchase, training, and form design to sup-
ort electronic data capture are greater than paper, these are
p-front investments whereas the labor costs of data entry
nd error checking are continual ( Table 2 ).32 Initial knowl-
dge required to design electronic forms for field data collec-
ion may take time, but once the skill is learned, subsequent
orms can be developed quickly with minimal effort and eas-
Rangelands 



Table 2 
Properties and requirements of electronic and paper data. ∗

Skill or capability Electronic Paper 

Design knowledge required Minimal to 
Advanced 

Minimal 

Field technician training (how to enter data) Moderate Minimal 

Electronic field devices required Yes Sometimes † 

Batteries required Yes Sometimes † 

Customizable data entry forms Yes Yes 

Data entered Once ‡ Twice ‡ 

Data are handwritten No Yes ‡ 

Required fields enforced Yes No ‡ 

Data validation Yes No ‡ 

Enforced field types (e.g., text or integer) Yes No ‡ 

Automatically capture GPS coordinates Yes No ‡ 

Hidden fields (appear only when necessary) Yes No 

Scan and automatically enter Barcodes and QR 

Codes 
Yes § No ‡ 

Interactive maps Yes No ‡ 

Electronic backups in the field Yes ║ No 

Near real time QC Yes No ‡ 

Note: This table, together with Question 4, can be used to determine the 
best data collection systems for each monitoring program. 
∗Based on the experience of the authors. 
† Lab and simple field experiments may not require a GPS unit or camera, 
but most field experiments will require a GPS device or camera, which rely 
on batteries. 
‡ Indicates a source of additional error that may be introduced. 
§Camera or laser reader and appropriate software required. 
║ A laptop is generally required for backups if wi-fi or cellular coverage is 
not available. 
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ly shared within the range community either through range- 
and specific applications (e.g., Database for Inventory, Mon- 
toring, and Assessment,33 Vegetation GIS Data System,35 

nd LandPKS 

34 ) or customizable survey software (ESRI Sur- 
ey123 forms, https://survey123.arcgis.com/; Open Data Kit,
ttps://opendatakit.org/). Electronic data capture also im- 
roves data quality through automated data quality checks 
see Question 8), automated geospatial data capture, setting 

llowable data ranges, field standardization (e.g., only num- 
ers allowed in number fields), and controlled domains or op- 
ions (e.g., plant species name codes) for each field, and au- 
omatically linking different data types (e.g., photos and tab- 
lar data). Cloud-based data uploads from mobile devices to 

nterprise databases (e.g., ESRI’s Survey123 to ArcGIS on- 
ine workflow) and automated QC scripts (e.g., the Georgia 
oastal Ecosystems sensor QC toolbox) enables real-time er- 

or checks that provide feedback to data collectors. This al- 
ows data collectors to correct issues if necessary during the 
eld season.30 , 31 We encourage the rangeland community to 

xplore the many low-cost options for electronic data capture,
ut do recognize that paper data collection may be the appro- 
riate solution for some data collection teams due to lack of 
esources, the size of the team, and some field settings (e.g.,
et conditions where waterproof devices are unavailable or 

emote locations where recharging batteries is difficult). At a 
022 
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inimum, it is important to have a paper data collection plan 

s a backup, as screen glare, extreme temperatures, low bat- 
eries, and lack of signal are all common challenges of using 

lectronic data capture. 
Raw data in an electronic format are also easily ingested 

nto electronic data storage platforms or databases (see Ques- 
ion 5). Emerging data collection mobile platforms (e.g.,
SRI Survey123, Open Data Kit) allow for cloud-based 

ata upload and automated data submission. Additionally, a 
omprehensive data capture and data storage workflow can 

ake rangeland data more readily available for use in data- 
upported decision-making and research. We anticipate that 
he availability of electronic data capture applications and 

entral data repositories will continue to increase and become 
ntegral to rangeland data collection. 

. How are the data stored and maintained? 

Proper data management before, during, and after a study 
s one of the most critical, and often overlooked, parts of data
uality.36 Improper data management can lead to loss of data,
educed inference, misleading conclusions, improper exposure 
f personally identifiable information, an erosion of trust in 

he data (by stakeholders or the public), and inability for oth- 
rs to use data in both the short- and long-term.27 Rangeland 

ata includes raw data (see Question 4), as well as calculated 

ndicators or variables, sample design information, interpreted 

ata, additional tables (e.g., crosswalk tables or those with site 
evel information), geospatial data, and analysis datasets (e.g.,
enchmarks). Planning for data management includes iden- 
ifying standard formats for field types (e.g., date, text, integer 
ormats), creating naming conventions, and setting up file and 

older structures, backup plans, and security for protected and 

ersonally identifiable information.20 , 27 

Recent technological and practical advances enable data 
anagement to proceed more quickly and efficiently than ever 

efore.32 These advances include practical guidance on struc- 
uring data as “tidy data,”where each observation unit is a row,
ach variable is a column, and each observation is a cell.22 Al- 
hough open-source text files and spreadsheets like Microsoft 
xcel may be used for storing and visualizing rangeland data,

elational databases, such as the ESRI file geodatabase and 

icrosoft Access, open source databases such as MySQL, and 

nterprise versions of these databases (e.g., SQL Server, Post- 
res) allow users to link different kinds of tidy data together 
n a coherent structure. Relational databases 1) improve stor- 
ge and access to data by allowing users to efficiently orga- 
ize and search the database, 2) support complex queries and 

alculations that present the data in different ways, 3) visual- 
ze the data from multiple different viewpoints to aid in the 
A&QC and analysis processes, and 4) centralize data across 
ata collectors and over time.37 

Data management and storage systems also make it easier 
o share and standardize data, either directly with partners,
ia web services, or to data repositories. In addition to storing 

aw, calculated, and anal y zed data, data management also in- 
21 
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Figure 3. Calibration (Question 7) is an important process to minimize observer variability in the line-point intercept method (A), especially when the 
true value is not known or is difficult to measure. 12 For successful calibration in the BLM AIM and the NRCS NRI programs, the line-point intercept 
absolute range of variability among observers should be less than or equal to 10% (B). 12 , 50 Photo courtesy of Rachel Burke 

Box 1 
Calibration among data collectors 

Calibrating data collectors is the primary control on detecting and reducing observer variability in rangeland data collection (see Question 7). Calibration among data collectors, 
as used by the AIM program, addresses observer and measurement error during data collection. It acts as a mechanism of quality assurance by providing time for data collectors 
to discuss discrepancies in data and clarify differences in protocol interpretation. Data collection begins only after all data collectors are calibrated. Results of AIM calibration 
exercises ( Fig. 3 ) are used to identify sources of error and protocol misinterpretations, which allows data collectors and project managers to improve training, protocols, and 
QA&QC practices to mitigate those specific issues. Calibration data from regional AIM training sessions helps observers and instructors identify areas of improvement prior to 
data collection ( Fig. 3 ). Each observer records measurements on the same transect and those observations are compared. If the range of variability among observers is less than 
the tolerance range (e.g., 10% for line-point intercept), the calibration is successful and formal data collection may begin. If observers do not successfully calibrate on all 
indicators for a method, observers discuss the results, identify sources of confusion, and repeat the calibration exercise on a new transect. 
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ludes curating metadata. Metadata enables the reusability of
ata by providing managers and researchers with the needed
nformation to interpret and use data. S tandardiz ed data for-

ats and metadata documentation (e.g., FGDC, ISO, EML)
re most useful when they include data history records, a data
ictionary of field name meanings, documented known errors,
patial projection (e.g., NAD83), and date format (e.g., ISO
601) to guide appropriate use of the data. Metadata provide
 validation of data quality to others (see Question 8), thus
etadata are a core component of any dataset.21 

. How will training occur? 

Training is the primary opportunity to ensure that team
embers understand how to collect, manage, and use data

roperly and consistently. Frequent training, together with
lear roles and responsibilities (Question 3), reduces errors
ue to personnel turnover and provides staff with updates to
rotocols and workflows. Rangeland monitoring courses are
ffered in many university programs to give young range-
and professionals exposure to the rangeland data collection
nd monitoring community (see Newingham et al., this is-
ue). These university courses, as well as in-person national
onitoring training programs, and web-based training re-

ources all provide new and experienced users with further
uidance (e.g., https://www.landscapetoolbox.org/training).
eb-based training activities including manuals, courses, and
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ecorded presentations provide an introduction or brief re-
resher on how to collect data and use data collection tools
e.g., data collection apps, water quality instruments) when
ravel to in-person training is impractical. For field-based col-
ection methods, we recommend in-person training as the pri-

ary learning method that is supplemented by web-based
raining. In the field, instructors can demonstrate techniques,
nswer questions, and provide feedback to data collectors in
 more dynamic way than is possible in remote learning set-
ings. Field trainings also should include data capture, either
ith electronic apps or using paper data sheets, so that data

ntry can be reviewed and field data workflows, such as daily
ackups to avoid data loss, are practiced. In these trainings,
ata collectors benefit from exercises that involve reviewing
ata for completeness, correctness, and consistency (Ques-
ion 8) and making corrections as needed. Ideally, all data col-
ectors would attend an in-person training at the beginning
f each field season. Many monitoring programs, including
IM, NRI, and Interpreting Indicators of Rangeland Health,
old yearly, standardized field trainings to reach the rangeland
ata collection community. 

. What is the calibration plan? 

Calibration by comparison of measurements to a standard
r among data collection specialists helps data collectors iden-
ify and correct implementation and equipment errors be-
Rangelands 
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Figure 4. Visualizing monitoring data can be used to identify outliers, missing data, and other data errors (Question 8). Visual data checks can include 
looking for consistency or correlation between methods, such as bare ground estimates from the line-point intercept and canopy gap methods (A). 
Data visualization can also identify where and why incorrect values were entered. For instance, in the BLM AIM and NRCS NRI, data collectors are 
required to use the ecological site name recognized by the NRCS; however, in some instances those names are unknown to the data collectors and 
so the data collectors use a different name or leave the field blank (B). As a result, it may be assumed there is no ecological site ID available, which 
may not always be the case. In all cases, photos or site revisits are valuable in confirming or correcting errors. 
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ore they occur during data collection. Calibration is not to 

e taken lightly. A faulty sensor or uncalibrated field tech- 
ician can result in incorrectly collected data. If calibration 

rror is within the range of expected values, the error may 
ever be detected resulting in erroneous conclusions. Depend- 

ng on the data, calibration may occur between data collec- 
ors ( Box 1 , Fig. 3 ),12 against a known value,38 , 39 or through 

ouble-sampling (i.e., repeat sampling of the same attribute 
ith two different methods to improve precision).40 A cali- 
ration exercise is successful if the indicator estimated by data 
ollectors is within an allowable range of variability.12 If an 

ndicator value falls outside the tolerance range, calibration 

esults are reviewed by the team (data collectors, project lead- 
rs, and instructors) at the plot to identify the sources of vari- 
bility and re-train data collectors. Sensor equipment calibra- 
ion schedules should follow the factory-recommended cali- 
ration intervals. For observational data, we recommend that 
ll data collectors calibrate ear ly and of ten. For instance, fol- 
owing the Monitoring Manual for Grassland, Shrubland, and 
avanna Ecosystems ,12 data collectors must successfully cali- 
rate prior to data collection and then monthly or when en- 
ering a new ecosystem, whichever occurs first. Similarly, for 
pecies composition by weight and other production meth- 
ds, recalibration may occur more frequentl y during earl y and 

apid phenological changes when encountering a new precipi- 
ation pattern, landform, utilization rates, and changes in veg- 
tation. If a new data collector joins the data collection team,
 calibration event also is triggered. 

Although it is not common practice to publish calibration 

esults alongside rangeland data, we encourage the rangeland 

ommunity to adopt this practice. Publishing calibration re- 
ults can verify that calibration steps were taken and detail the 
022 
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bserver variability within the dataset (Question 9). Calibra- 
ion data are also important when describing advantages and 

isadvantages between methods and prior to replacing an ex- 
sting method with a new one.41 Calibration results may pro- 
ide opportunities for including observer variability as a co- 
ariate in analysis. Public calibration data can identify areas of 
mprovement for teaching data collection methods (Question 

), where if one program is especially successful at calibration,
he community can learn from those successful training and 

ata collection practices. 

. Are the data complete, correct, and 

onsistent? 

Frequent review of rangeland data for completeness, cor- 
ectness, and consistency will detect errors and missing data 
n a timely and efficient manner ( Fig. 4 ). Errors detected in
his review process are best addressed in the field, during data 
ollector review. However, these checks are also important 
teps in data storage and analysis workflows. Many of these 
ata checks can be automated using digital data collection 

orms and web-based dashboards (e.g., Tableau, ESRI Ar- 
GIS Insights). Data are complete if they have every data 
lement present so that every field in every data form is 
ompleted for every method required for that project. Data 
re correct if they are accurate and follow the data collec- 
ion protocol. For instance, a correct application of the line- 
oint intercept method requires accurate plant identification,
roper pin drop technique, and consistent species code se- 

ection following a known taxonomic reference (e.g., USDA 

lant codes, unknown plant protocol) in the correct location 
23 



Table 3 
Summary of BLM AIM lotic core indicator crew and intra-annual variability (Question 9) as assessed by residual mean square error (RMSE), coefficient of 
variation (CV), and signal to noise (S:N) ratio 

Category Indicator First study Second study 

RMSE CV S:N RMSE CV S:N 

Water quality pH (SU) High ∗ High ∗ Low 

∗ High ∗ High ∗ Low 

∗

Specific conductance ( μS/cm) High ∗ High ∗ Moderate ∗ Low 

† Moderate † Moderate † 

Total phosphorous ( μg/L) High ∗ High ∗ High ∗ Low 

† Moderate † Moderate † , §

Total nitrogen ( μg/L) Low 

‡ Low 

‡ Low 

‡ Moderate † High † Moderate † 

Macroinvertebrate O/E score (unitless) High ∗ High ∗ Moderate ∗ High ∗ High ∗ Moderate ∗

Riparian 
function 

Bank cover + stability (%) High ∗ High ∗ High ∗ High ∗ High ∗ Moderate ∗

Bank stability (%) High ∗ High ∗ Moderate ∗ Low 

‡ Low 

‡ Low 

‡ 

Bank cover (%) Moderate † High † Moderate † Moderate † High † Moderate † 

Bank angle ( o ) Moderate † High † Moderate † High ∗ High ∗ Moderate ∗

Canopy cover - bank (%) High ∗ High ∗ Moderate ∗ Moderate † High † Moderate † 

Riparian vegetative complexity (unitless) Low 

† Moderate † Low 

† Low 

‡ Low 

‡ Low 

‡ 

Riparian vegetative complexity - woody only (unitless) High ∗ High ∗ Moderate ∗ Low 

‡ Low 

‡ Low 

‡ 

Non-native woody vegetation (%) NA NA NA High † Low 

† Moderate † 

Stream 

habitat/function 
Fine sediment < 2 mm (%) High † Moderate † Moderate † Moderate † Moderate † Moderate † 

Pool frequency (#/km) NA NA NA Moderate † High † Moderate † 

Floodplain connectivity (unitless) Moderate † High † Moderate † Moderate † High † Low 

† 

Large woody debris (#/100 m) High ∗ High ∗ High ∗ Moderate Low Low 

Depth coefficient of variation (%) High ∗ High ∗ High ∗ Moderate † Moderate † Low 

† 

Instream habitat complexity (unitless) Low 

‡ Low 

‡ Low 

‡ Low 

‡ Low 

‡ Low 

‡ 

Covariate Bankfull width (m) High ∗ High ∗ High ∗ High ∗ High ∗ High ∗

Slope ( o ) Moderate † High † Moderate † High ∗ High ∗ High ∗

Entrenchment (unitless) NA NA NA Moderate † High † Low 

† 

Note: Each indicator is rated as having High, Moderate, or Low precision across the three measures. RMSE thresholds were based on published values 
and professional judgment of meaningful differences in measured indicators. 47 CV Values < 20% are characteristic of high consistency; 20–35% moderate 
consistency; and > 35% low. 47 Following Roper et al., 47 we used S:N to assess indicator precision where S:N < 2 equals low precision; ≥ 2.0 to < 10 equals 
moderate precision, and ≥10 equals high precision. 

∗ Indicator rated as having high precision for at least two of the three measures. 
† Indicator rated as having high precision for at least one measure and moderate for a second. 
‡ Indicator rated as having low precision for two or more measures. 
§ Outliers were removed from total phosphorous analyses for one pair of sites in the 2013-2015 study and two pairs in the 2017 study. Outlier inclusion 

resulted in Moderate/L ow/L ow and L ow/Moderate/L ow ratings, respectively. 
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n the datasheet.12 Although data reviewers might find it dif-
cult to check the pin drop technique later, we can infer that,

f both plant identification and other elements of a pin drop
re recorded correctly, the likelihood of other methodologi-
al errors is lower. It is also helpful to review data for likely
pelling mistakes (e.g., squirel, sqiurrel, squirell), as typos and
nclear handwriting result in species misidentification and er-
oneous values. Data checks might also find data to be correct
f measured values fall within allowable ranges (e.g., percent-
ges must be between 0 and 100%). 

Correct data also can be verified by consistency checks
o verify that data follow expected patterns 16 or logical rela-
ionships among data collection programs, between methods,
ver time, and within the ecological potential of the site.38 

ethod consistency checks, for instance, might verify that
tream bankfull channel width is greater than wetted width
hen sampling below flood stages or that total canopy gaps

re equal to or less than bare soil cover ( Fig. 4 ). Ecological con-
istency checks rely on local knowledge to ensure that range-
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and data are consistent with our understanding of ecosystem
rocesses and change. Specific checks include ensuring that
pecies are consistent with ecological site potential and, where
epeat measurements are available, that changes in species
omposition are likely given climate and management data.

here outliers exist, ecological checks can determine if those
utliers are due to site heterogeneity, extreme conditions, or
ue to an error.42 For instance, stream pH values below 6 or
bove 9 are only possible if substantial alteration has occurred
e.g., acid mine drainage). As rangeland ecosystems change,
e urge extreme caution before removing outlier values from
nalyses, as it is possible that these values represent previ-
usly unobserved disturbances (e.g., fire, drought, and climate
hange) or novel ecosystems.43 Therefore we recommend a
preponderance of evidence”approach, using photos and other
atasets, to identify erroneous outliers.29 

Quality assurance plans should contain data quality objec-
ives that set desired levels of completeness, correctness, and
onsistency.23 If data do not meet these objectives, corrective
Rangelands 



Box 2 
Studying variance decomposition in the BLM AIM wadeable stream and river core methods 

The BLM Lotic AIM conducted a study to quantify the intra-annual variability (see Question 9) for two different iterations of the wadeable stream and river AIM field 
protocol. In this study, approximately 10% of the total monitoring locations were resampled, 25 locations for the first protocol iteration (2013-2015) and 37 for the second 
(2017). Locations were distributed proportionally among geographical regions and stream types to adequately characterize spatial variation and the types of streams data 
collectors encountered. Although, the study aims included separating sampling and nonsampling error, this proved difficult. To minimize within season temporal variation and 
attempt to isolate data collector bias, locations were sampled within 4 weeks of each other. The first study assessed crew variability among all possible pairs of data collectors and 
crews were not aware of repeat sampling. The second study assessed crew variability between a single crew and all other crews due to crew logistical constraints. Within season 
variability was quantified using residual mean square error (average deviation, in native units, among repeat measurements), the coefficient of variation (variability between 
repeat measurements scaled to the mean), and the signal to noise ratio (estimate of sample variability relative to site variability; Table 3 ). Each measure of variability was rated as 
corresponding to high, moderate, or low repeatability and then used as a line of evidence to determine overall repeatability of the BLM Lotic AIM wadeable stream and river 
core indicators. As a result of these two studies, adaptive monitoring principles were applied.46 Some indicators were omitted from the program (e.g., ocular estimates of 
instream habitat complexity), and protocol changes were made to others (e.g., floodplain connectivity) to improve consistency among data collectors (see Question 10). 

Measures of indicator precision were comparable to those of other monitoring programs.47 This assures data users of the high quality of lotic AIM data and its comparability to 
other monitoring programs. 
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ction is taken, if possible, and all data edits are tracked (see 
uestion 2) with a clear rationale for the edit. If no corrective 

ction is possible, data are omitted if they are c lear ly wrong or,
f they are questionable but not c lear ly wrong, data are flagged
s suspect with a clear comment about why they may not be 
ppropriate to use in certain analyses. For example, a vegeta- 
ion cover value deemed too high to be plausible that cannot 
e fixed would be excluded from an analysis looking at aver- 
ge cover but could still be included in an occupancy analysis.
f electronic data capture is part of the data collection pro- 
ram (see Question 4), many checks for completeness, cor- 
ectness, and consistency can be programmed into data col- 
ection applications to prevent common errors. However, eco- 
ogical checks generally require manual review of data after 
ollection and a level of expertise that individual data collec- 
ors may not have. Photos and data visualization also can assist 
ith these ecological checks ( Fig. 4 ). 

. What are the sources of variability? 

Even if data are complete, correct, and consistent it is im- 
ortant to identify where there are general sources of varia- 
ion in a dataset. In addition to spatial and temporal ecolog- 
cal variation, variability in rangeland data is due to variation 

n data collectors. Collectively, these factors add noise (uncer- 
ainty) to rangeland data that obscure our capacity to detect 
ifferences among locations or changes through time.44 Sam- 
ling error occurs when your estimate differs from the true 
alue because you have only sampled a portion of the entire 
opulation.12 Sample design, stratification, and sample size 
an influence adequate characterization of ecological varia- 
ion through space and time (see Stauffer et al. this issue for 
 review of this topic). Additionally, sampling and nonsam- 
ling variance components can be combined in power analy- 
es to determine the size of changes the data collection effort 
an detect and assist with designing better studies.45 Sam- 
ling error is an important source of variability and should 

e considered prior to collecting or anal y zing data. Here we 
ocus our discussion on variance components that are a re- 
ult of nonsampling errors (i.e., errors not due to the lim- 
022 
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tations of sample designs in measuring ecological variabil- 
ty), which can be addressed through QA&QC. Sampling 

nd nonsampling variance components can be combined in 

ower analyses to determine the size of changes the data col- 
ection effort can detect and can assist with designing bet- 
er studies ( Box 2 ). Describing variability across data collec- 
ors can identify which indicators data collectors struggle to 

easure consistently ( Box 2 , Question 7) and improve data 
ollection protocols and training ( Box 1 , Question 6). Ulti- 
ately, certain indicators may not be measurable at desired 

evels of precision no matter how many replicates are taken or 
ow well data collectors are trained. After careful considera- 
ion through the adaptive monitoring process,46 new methods 
f measuring these indicators may be selected, the indicators 
ay be omitted from the study, or the indicators may only 

e sampled in situations where the indicators are needed, and 

ess precise data are acceptable. 
Quantifying different components of indicator variability 

s time intensive and expensive. Thus, only a few monitor- 
ng programs and studies have conducted such analyses.47 , 48 

f similar data are collected across monitoring programs and 

tudies, data may be used to quantify sampling and nonsam- 
ling error across locations and years, but estimates of within 

eason variability could differ among programs. For example,
he precision of stream indicators such as bankfull width, per- 
ent fine sediment, and percent stream pool habitat differs 
mong monitoring programs that use relatively similar field 

ethods.47 Such field measurement variation, or intra-annual 
ariability, can result from the combined effects of measure- 
ent variation among different field crews, within-season en- 

ironmental variability, and changes in location. Intra-annual 
ariability is likely the variance component of most interest 
o monitoring programs assessing trend across years so that 
hey can make proper inferences in analysis. For example, if 
ercent vegetative cover changes from 80% to 90% between 

ear 1 and 2, but data collected within the same year by two
ifferent data collectors differs by 10% at a monitoring lo- 
ation, any changes in cover < 10% could simply be due to
bserver bias rather than management changes. Ideally, mon- 
toring programs and long-term studies would quantify vari- 
bility among crews within a season for each major iteration 

f a protocol ( Box 2 ). 
25 
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0. How can we adapt to do better next time? 

Improving rangeland data quality involves using QA&QC
uestions to evaluate data and adaptively manage monitor-
ng and research programs. Data collection, especially within

onitoring and long-term studies, is an iterative process, with
ontinual improvements based on feedback from the team,
etrics from training and calibration, implementation of data
anagement systems, and results of data review.36 Even in the

est data collection systems, mistakes will be made through-
ut the data collection process. New situations or “edge cases”
ay be encountered that highlight opportunities for clarify-

ng protocols. Successful data collection efforts identify and
earn from those mistakes and adjust for the next field season
r in the next study. Rangeland studies and monitoring pro-
rams can learn from each other by sharing these mistakes
nd lessons learned with the community. Through adaptive
onitoring, QA&QC Questions 1 to 9 can be revised and

efined in subsequent monitoring cycles to produce a higher
uality dataset. For example, within the BLM AIM program,
ata management protocols, calibration protocols, training,
nd electronic data capture programs are updated and revised
nnually in response to feedback from data collectors, data
sers, and errors found during QA&QC. However, we cau-
ion against rapid changes in monitoring programs and long-
erm studies, as substantial shifts can limit power to detect
hange or differences over space and time. Therefore, when
 comparative analysis is critical, care should be taken to en-
ure that any updates to the monitoring program and study
re thoughtfully considered and other data sources (e.g., re-
ote sensing 

11 ) are available to provide a preponderance of
vidence in detecting trend.36 

onclusions 

High-quality rangeland data are key to data-supported
ecision-making and adaptive rangeland management. We
ave presented 10 QA&QC questions that managers, data
ollectors, and scientists can address to ensure data quality and
hereby increase the efficacy of monitoring and other data col-
ection efforts. The answers to our 10 questions can guide the
ppropriate personnel, data management tools, and analysis
trategies to maintain data quality throughout the data life-
ycle. Given the expense of collecting and managing range-
and data, improving data quality workflows will reduce the
requency of costly errors and ensure that rangeland data are
t for use in decision-making and in rangeland research and
odeling. In the experience of the authors, high-quality data

re also more likely to be collected once and used for many
urposes, which increases the efficiency of rangeland moni-
oring. Research studies, assessment, monitoring, and inven-
ory programs can improve data quality by thoroughly de-
cribing the data ecosystem, c lear ly defining roles and respon-
ibilities, adopting appropriate data collection and data man-
gement strategies, identifying sources of error, preventing
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hose errors where possible, and describing sources of mea-
urement variability. Ensuring data quality is an iterative pro-
ess and improves through adaptive management of monitor-
ng and inventory programs. The QA&QC questions posed
n this paper apply to all members of the rangeland commu-
ity and all data collected in experimental studies, inventories,
hort-term monitoring, and long-term monitoring programs.

e encourage interagency and interdisciplinary partnerships
o discuss these questions early so that data quality is ensured
s a collaborative process. Improving data quality will improve
ur ability to detect condition, pattern, and trend on range-
ands, which are needed to improve adaptive management and
o-production of scientific research for natural resource man-
gement. 
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