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a b s t r a c t 

Rangeland production is a foundational ecosystem service and resource on which livestock, wildlife, and 

people depend. Capitalizing on recent advancements in the use of remote sensing data across range- 

lands, we provide estimates of herbaceous rangeland production from 1986 to 2019 at 16-d and annual 

time steps and 30-m resolution across the western United States. A factorial comparison of this dataset 

and three national scale datasets is presented, and we highlight a multiple-lines-of-evidence approach 

when using production estimates in decision making. Herbaceous aboveground biomass at this scale and 

resolution provides critical information applicable for management and decision making, particularly in 

the face of annual grass invasion and woody encroachment of rangeland systems. These readily avail- 

able data remove analytical and technological barriers allowing immediate utilization for monitoring and 

management. 

© 2021 The Author(s). Published by Elsevier Inc. on behalf of The Society for Range Management. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Rangeland production—specifically herbaceous aboveground 

iomass–is a foundational ecosystem service upon which live- 

tock, wildlife, and people depend. Estimates of production have 

ong been available via field-based measurements, but such esti- 

ates are geographically and temporally limited. Although statis- 

ical sampling techniques employed by national monitoring pro- 

rams ( MacKinnon et al. 2011 ; Herrick et al. 2017 ) provide means

o monitor production across rangelands, such techniques and pro- 

rams do not capture temporal variability or spatial heterogene- 

ty at scales relevant to management and decision making (e.g., 

ithin or across management units), with limited field-based plots 
✩ This work was made possible by the US Department of Agriculture, Natural Re- 

ources Conservation Service’s Working Lands for Wildlife, the USDA’s Conservation 

ffects Assessment Project, and the Bureau of Land Management. All data are freely 

vailable via the Rangeland Analysis Platform ( https://rangelands.app ). 
∗ Correspondence: Matthew O. Jones, 32 Campus Dr, ISB 418, Missoula, MT 59812, 

SA, 406-370-0052. 

E-mail address: matt.jones@umontana.edu (M.O. Jones). 
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ften extrapolated to ecoregion scales ( Karl et al. 2016 ). Satellite

nd airborne remote sensing methods ( Smith et al. 2019 ) informed

y field-based data can provide spatially contiguous and tempo- 

ally continuous estimates of rangeland production. Methodologies 

ften use empirical relationships between remote sensing indices 

e.g., normalized difference vegetation index; NDVI) or terrestrial 

idar retrievals and measured or estimated biomass from field plots 

o map production. This methodology is most often applied at local

r regional spatial scales ( Jansen et al. 2018 ) but has also been suc-

essfully implemented at broad national scales ( Reeves et al. 2020 ).

Vegetation production may also be estimated using remotely 

ensed data in process-based models, such as a light-use efficiency 

odel ( Monteith 1972 ) that calculates gross or net primary pro-

uction (GPP and NPP, respectively) based on remotely sensed es- 

imates of absorbed photosynthetically active radiation, the bio- 

hysical properties of vegetation types, and water and temperature 

onstraints. These GPP and NPP models are prolific ( Running et al.

004 ; Clark et al. 2011 ), but the common units of carbon (i.e., g

 m 

−2 yr −1 ) are not relevant to rangeland managers or practition-

rs. These models also require land cover data, which until recently

ere categorical at the pixel scale for US rangelands and produced
ange Management. This is an open access article under the CC BY license 
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Terms of U
t 5-yr time steps ( Homer et al. 2015 ). Models could therefore

ot account for within-pixel heterogeneity of rangeland plant func-

ional types (PFT) (e.g., annual grasses and forbs, perennial grasses

nd forbs, shrubs, or trees) or PFT variation in phenology and pro-

uctivity ( Browning et al. 2019 ). Accounting for this heterogene-

ty is especially critical considering the prominence of large-scale

oody encroachment and annual grass invasion into rangeland

ystems ( Jones et al. 2020 ). Continuous land cover datasets at an-

ual time steps are now available ( Rigge et al. 2020; Allred et al.

021 ), allowing models to quantify changes in production in re-

ponse to encroachment and invasion at temporal intervals rele-

ant to management. 

This technical note details the development of annual and

6-d rangeland herbaceous production estimates partitioned to 

erennial grasses/forbs and annual grasses/forbs across western US

angelands. The data are easily accessible, account for within-pixel

egetation PFT heterogeneity, and are provided at temporal and

patial resolutions (and units) relevant to management. We per-

orm a factorial comparison of this new production dataset and

hree national-scale datasets. We highlight the value of using all

ata in a “multiple-lines-of-evidence” approach when implement- 

ng production estimates, where incorporating data derived from

ifferent methods into a decision-making process can spur greater

ata acceptance and application and advance conservation of this

aluable rangeland resource. 

ethods 

et primary production partitioning 

Detailed descriptions of the method used to calculate NPP by

FT are provided in Robinson et al. (2019) ; we provide an overview

ere. We produced spatially contiguous 16-d Landsat NDVI com-

osites ( Robinson et al. 2017 ) using Landsat 5 TM, 7 ETM + , and 8

LI surface reflectance ( Vermote et al. 2016 ) from 1986 to 2019

cross western US rangelands ( Reeves and Mitchell 2011 ). Using

he 16-d NDVI and a PFT cover dataset ( Allred et al. 2021 ), we dis-

ggregated pixel-level NDVI using linear mixing theory to its sub-

ixel PFT components. In brief, the NDVI of a mixed pixel is disag-

regated to the PFTs present in the pixel, weighted by their frac-

ional cover and the ecoregion-scale phenology of each PFT; the

ean of the PFT specific NDVI values equate to the mixed pixel

DVI. To capture and incorporate the geographically specific PFT

DVI phenological characteristics, we built an overdetermined set

f linear equations ( Robinson et al. 2019 ) to solve for each PFT

DVI value within US EPA Level IV regions ( Omernik and Griffith

014 ). The result is PFT NDVI estimations that capture NDVI am-

litudes and regional PFT phenology. We reprojected and bilinearly

esampled all Landsat imagery to a geographic coordinate system

f approximately 30-m resolution before manipulation. 

The PFT-specific NDVI values are then used in the MOD17 NPP

odel adapted for Landsat ( Robinson et al. 2018 ). Using linear in-

erpolation, we calculated daily NDVI values between each 16-d

omposite. We then calculated daily NPP for each PFT present in

he pixel using daily PFT NDVI values, daily GRIDMET meteorol-

gy ( Abatzoglou 2013 ), and specific PFT’s biophysical properties

 Robinson et al. 2018 ). We multiplied NPP estimates by the PFT

ractional cover estimates, resulting in total grams of carbon as-

imilated per PFT per pixel per d (g C m 

−2 d 

−1 ). Daily values are

ummed to 16-d values (g C m 

−2 16 d 

−1 ) and to annual values (g

 m 

−2 yr −1 ). 

PP conversion to herbaceous aboveground biomass 

The herbaceous NPP, partitioned to perennial grasses/forbs and

nnual grasses/forbs, is allocated to aboveground (ANPP) pools us-
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 Jul 202
se: https://bioone.org/terms-of-use
ng these equations: 

ANPP = 0 . 129 · MAT + 0 . 171 (1)

NPP = fANPP · NPP (2) 

here fANPP is the fraction partitioned to ANPP and MAT is mean

nnual temperature ( Hui and Jackson 2006 ). We convert ANPP (g C

 

−2 16 d 

−1 ) to biomass (kg ha −1 or lb acre −1 ) using the pixel area

nd a 47.5% carbon content of vegetation estimate ( Eggleston et al.

006 ); the midpoint of a 45 −50% carbon to dry matter estimation

ange ( Schlesinger 2013 ). 

omparisons 

We calculated Pearson correlation coefficients between the 

erbaceous aboveground biomass (HAGB) estimates and 16 591

atural Resources Conservation Service (NRCS) National Resources 

nventory (NRI) plot-level estimates of herbaceous biomass col-

ected on rangelands from 2004 to 2018 ( NRCS, USDA 2015 ). The

AGB estimate corresponding to each plot was sampled from the

ame year as the plot measurement. 

We also compared HAGB estimates to US Forest Service Range-

and Production Monitoring Service (RPMS) data, provided annu-

lly from 1984 to 2018 at 250-m resolution ( Reeves et al. 2020 ),

nd to the gridded Soil Survey Geographic (gSSURGO) database,

hich provides fixed estimates of unfavorable, normal, and favor-

ble annual range potential production by soil survey units at 30-

 resolution ( Soil Survey Staff 2017 ). The RPMS and gSSURGO data

stimate total rangeland productivity (not solely herbaceous) but

re used here as the only available gridded productivity datasets

hat are specific to western US rangeland systems and cover a sim-

lar time period. To account for temporal variability, we compared

he 50th percentile of the two temporally dynamic datasets us-

ng yr 20 0 0 −2018 and the gSSURGO “normal” data. We calculated

earson correlation coefficients using a subsample (5 0 0 0 random

angeland locations) of each of the three datasets (RAP HAGB 50th

ercentile, RPMS 50th percentile, gSSURGO normal). For all com-

arisons we only included rangelands identified by Reeves and

itchell (2011) inclusive of afforested, pasture, and barren cat-

gories. We also calculated the difference between the gridded

AGB, RPMS, and gSSURGO estimates and the plot level NRI herba-

eous biomass estimates; scatterplots, correlations, and the geo-

raphic distribution of those differences are provided in supple-

ental information. 

esults 

erbaceous aboveground biomass 

Estimates of HAGB at 30-m resolution are provided annually

 Fig. 1 a −c) from 1986 to 2019 and as accumulating HAGB at 16-

 intervals (see Fig. 1 d). The HAGB is partitioned into perennial

rasses/forbs and annual grasses/forbs and accounts for variation

n pixel-scale fractional cover at annual time steps ( Allred et al.

021 ) and the phenology of each PFT. The data are accessible for

iewing and analysis via a publicly available online application, the

angeland Analysis Platform ( https://rangelands.app/ ). 

ata comparisons 

The HAGB data available via the Rangeland Analysis Platform

hereafter RAP HAGB) are well correlated ( r = 0.63) with 16 591

RI plot-level herbaceous biomass estimates ( Fig. 2 ). We sub-
4

https://wwww.rangelands.app/
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Fig. 1. Herbaceous aboveground biomass (HAGB) at 30-m resolution across western US rangelands available via the Rangeland Analysis Platform ( https://rangelands.app/ ). 

Total annual 2019 HAGB partitioned to ( a ) perennial grasses and forbs and ( b ) annual grasses and forbs. c, Total yearly HAGB and portions attributable to perennials and 

annuals for a Bureau of Land Management grazing allotment in southwest Idaho (red point in a ) from 1986 to 2019. d, For the same grazing allotment, 16-d accumulating 

total HAGB and partitioned contributions from perennial and annual grasses/forbs for 1986 −2019. 
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Terms o
racted the RPMS 50th percentile and gSSURGO “normal” gridded 

ata from the RAP HAGB 50th percentile (as well as the gSSURGO

rom RPMS), which provided the geospatial distribution of differ- 

nces between the products. Mapped differences ( Fig. 3 a −c) and

catterplots of 5 0 0 0 randomly sampled rangeland locations (see

ig. 3 d −f) display strong agreement as indicated by Pearson cor-

elation coefficients. At lower biomass levels ( < ∼1 500 kg ha −1 )

he RAP HAGB 50th percentile is well aligned with the RPMS HAGB

0th percentile (see Fig. 3 d) and the gSSURGO normal (see Fig. 3 e).

he RAP HAGB displays generally lower estimates than the other 
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 Jul
f Use: https://bioone.org/terms-of-use
wo data sets at higher biomass levels while RPMS and gSSURGO

re more evenly distributed along the 1:1 line (see Fig. 3 f). These

istributions are expected as RPMS and gSSURGO provide total 

roduction estimates while the RAP HAGB is herbaceous pro- 

uction only. Geographic distribution of the differences between 

he NRI herbaceous biomass estimates and the gridded HAGB, 

PMS, and gSSURGO estimates (see supplemental article and Fig. 

1, available online at doi:10.1016/j.rama.2021.04.003 ) demonstrate 

eneral agreement across the western United States with greater 

ifferences apparent in the southern Great Plains. 
 2024
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Fig. 2. Density scatterplot (bin width 50 kg ha −1 ) of Rangeland Analysis Platform (RAP) herbaceous aboveground biomass (HAGB) and 16 591 National Resources Inventory 

(NRI) plot-level biomass estimates, 1:1 line (black), and Pearson correlation coefficient ( r = 0.63). NRI biomass estimates > 6 0 0 0 kg ha −1 are not displayed. 

Fig. 3. Differences ( a −c ) between three gridded production datasets across western US rangelands using the 50th percentile of annual values (20 0 0 −2018) from Rangeland 

Analysis Platform (RAP) and Rangeland Production Monitoring Service (RPMS) data and “normal” values from gSSURGO. Scatterplots and Pearson correlation coefficients ( d −f ) 

of production values sampled from each data set for 5 0 0 0 randomly selected rangeland locations. 

Downloaded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 Jul 2024
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Estimates of rangeland production—specifically herbaceous 

boveground biomass or forage—are now available annually and 

t 16-d intervals from 1986 to 2019 at 30-m resolution across the

estern United States and represent five advancements specifically 

elevant to management. These data are 1) provided in units recog-

ized by and applicable to management (i.e., kg ha −1 or lb acre −1 );

) produced at temporal fidelities applicable to monitoring the ef- 

ects of climate, disturbance, management, and other factors; 3) 

alculated at a spatial resolution (30 m) that allows for assessment

f variability both within and across management units; 4) are eas-

ly accessible where monitoring, analysis, and interpretation can be 

chieved without the need for specialized technical knowledge or 

kills; and 5) account for annual pixel-scale changes in PFT com-

osition (e.g., annual grasses or trees encroaching rangelands) and 

he relative contributions of annual forbs and grasses and peren- 

ial forbs and grasses to total herbaceous biomass. The availability

f these data and other rangeland wide vegetation data ( Pastick et

l., 2020; Reeves et al. 2020; Rigge et al. 2020 ) has ushered in a

ew era where rangeland mapping from national to management 

cales is now a working reality ( Jones et al. 2020 ). 

These herbaceous biomass data provide land managers, prac- 

itioners, and decision makers novel, temporally continuous, and 

patially contiguous data for enhanced rangeland management. 

hese data can be paired with local knowledge and information to

etter inform management strategies at the scale of a grazing al-

otment or pasture. At larger scales, these biomass data shed light

n persistent ecosystem threats like invasive annual grasses ( Jones

t al. 2020 ) that are contributing to the continual rise of annual

rass/forb biomass on western rangelands ( Fusco et al. 2019 ; see

ig. 1 ). Differences in forage quality and phenology between annu-

ls and perennials also have important implications for rangeland 

unctions including accelerated wildfire return intervals ( Pilliod et 

l. 2017 ). These represent only a few of the many potential scenar-

os where such data can provide greater insight and better inform

anagement of grazing, wildlife, fuel, and fire, as well as assessing

utcomes of management practices. 

This technical note does not present a traditional validation of 

hese new RAP HAGB data due to the lack of plot-level HAGB data

t the scope and scale of the data product. While NRI plot-level

ata do include some destructive sampling (i.e., clipping, drying, 

nd weighing), the methods also incorporate subjective estima- 

ions and correction factors. Also, the model used to estimate RAP 

AGB is process based and not empirical—it does not incorporate 

iomass field plots at any step. We therefore examine “multiple 

ines of evidence” and factorially compare the four available broad- 

cale data sets of rangeland production. This method demonstrates 

 best-practices approach when using these types of data in a

ecision-making framework; use all data sources, examine their 

imilarities and discrepancies, and incorporate local knowledge to 

est inform a data-driven decision. 

mplications 

The temporally dynamic herbaceous aboveground biomass data 

epresent a culmination of advancements in using remote sens- 

ng data to monitor rangelands more effectively and efficiently. 

he new geospatial datasets of rangeland production provide land 

anagers and decision makers spatially contiguous and tempo- 

ally relevant data to monitor rangeland forage, conduct mean- 

ngful comparisons of management outcomes using common data, 

nd examine within-season variability of forage to better as- 

ess management actions. The readily available data (RAP, https: 

/rangelands.app/ ; RPMS, https://www.fuelcast.net/ ) remove analyt- 

cal and technological barriers, allowing for immediate utilization. 
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 Jul
f Use: https://bioone.org/terms-of-use
ever before have so much data been directly available and appli-

able to rangeland management. We anticipate and look forward to 

ew applications, analyses, discoveries, and innovations with these 

ata that improve our understanding and management of range- 

ands. 
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