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Abstract. Leptonetidae are rarely encountered spiders, usually associated with caves and mesic habitats, and are
disjunctly distributed across the Holarctic. Data from ultraconserved elements (UCEs) were used in concatenated and
coalescent-based analyses to estimate the phylogenetic history of the family. Our taxon sample included close
outgroups, and 90% of described leptonetid genera, with denser sampling in North America and Mediterranean
Europe. Two data matrices were assembled and analysed; the first ‘relaxed’ matrix includes the maximum number of
loci and the second ‘strict’ matrix is limited to the same set of core orthologs but with flanking introns mostly removed.
A molecular dating analysis incorporating fossil and geological calibration points was used to estimate divergence
times, and dispersal–extinction–cladogenesis analysis (DEC) was used to infer ancestral distributions. Analysis of both
data matrices using maximum likelihood and coalescent-based methods supports the monophyly of Archoleptonetinae
and Leptonetinae. However, relationships among Archoleptonetinae, Leptonetinae, and Austrochiloidea are poorly
supported and remain unresolved. Archoleptonetinae is elevated to family rank Archoleptonetidae (new rank) and
Leptonetidae (new status) is restricted to include only members of the subfamily Leptonetinae; a taxonomic review with
morphological diagnoses is provided for both families. Four well supported lineages within Leptonetidae (new status)
are recovered: (1) the Calileptoneta group, (2) the Leptoneta group, (3) the Paraleptoneta group, and (4) the
Protoleptoneta group. Most genera within Leptonetidae are monophyletic, although Barusia, Cataleptoneta, and
Leptoneta include misplaced species and require taxonomic revision. The origin of Archoleptonetidae (new rank),
Leptonetidae, and the four main lineages within Leptonetidae date to the Cretaceous. DEC analysis infers the Leptoneta
and Paraleptoneta groups to have ancestral distributions restricted to Mediterranean Europe, whereas the Calileptoneta
and Protoleptoneta groups include genera with ancestral distributions spanning eastern and western North America,
Mediterranean Europe, and east Asia. Based on a combination of biology, estimated divergence times, and inferred
ancestral distributions we hypothesise that Leptonetidae was once widespread across the Holarctic and their present
distributions are largely the result of vicariance. Given the wide disjunctions between taxa, we broadly interpret the
family as a Holarctic relict fauna and hypothesise that they were once part of the Boreotropical forest ecosystem.
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Introduction

Biology of Leptonetidae

Leptonetids are a lineageof small, rarely encountered spiders that
live in moist habitats such as leaf litter, under rocks, and
especially in caves. The family includes 21 genera and 355
species placed into two subfamilies, Archoleptonetinae and

Leptonetinae (World Spider Catalog, ver. 19.5, see http://wsc.
nmbe.ch, accessed 19 August 2020). The archoleptonetines
(Fig. 1A) include eight species in two genera and are known
from the western USA, southern Mexico, Guatemala, and
Panama. Leptonetines (Fig. 1B) are more diverse (21 genera,
355 species) and have a Holarctic distribution with centres of
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diversity in North America, Mediterranean Europe, and east
Asia. Although the archoleptonetines have few features that
make them readily diagnosable by non-specialists, all
leptonetines share a unique eye arrangement where the
posterior median eyes are displaced from the main eye group
(Ledford and Griswold 2010, fig. 24, 27, 28).

Among spiders, leptonetids are best known for their
association with caves. Over 50% of described species are
known only from caves and many species show a range of
troglomorphic morphologies including eye reduction,
depigmentation, and appendage elongation (Mammola and
Isaia 2017). Most species are small (2–5 mm) and reside in
delicate sheet webs fromwhich they hang (Fig. 1C). Leptonetids
are microhabitat specialists, preferring environments where
moisture, temperature and humidity remain stable. Ideal
habitat includes breakdown debris in caves and layered rock
piles in heavily shaded areas. Observations of reproductive
biology have been reported (Cokendolpher 2004; Ledford
2004; Ledford and Griswold 2010) but most aspects of their
life history are unknown.

Given their habitat preferences, most species have
distributions that are highly localised. Sympatry is rare and
known only in a few surface-dwelling populations (Ledford
2004). Even in localities where leptonetids are known to
occur, they are rarely encountered and in some regions are
recognised as threatened species (US Fish and Wildlife
Service 2020). Although gaps in distributional range may be
partly explained by inadequate sampling, we propose that the
combination of specific habitat preferences and the repeated
pattern of narrow endemism for most species worldwide
supports a hypothesis of dispersal-limitation for the family.
The biological characteristics of limited dispersal ability and
high microhabitat preference often lead to biogeographic
histories that are dominated by vicariance, with sometimes
rare dispersal events, as seen in many other arachnid lineages
(e.g. Harrison et al. 2016; Hedin and McCormack 2017; Baker
et al. 2020).

Taxonomic history

Most research on leptonetids has focused on improving
understanding of a-level diversity. The western European
fauna is arguably the best known due to its long history
of study (Simon 1872) and the detailed descriptive efforts of
Brignoli (1967a, 1967b, 1968, 1971, 1974a, 1974c, 1978, 1979a,

1979b, 1979c), Fage (1913, 1931, 1943), Kratochvíl (1935,
1938, 1978), Machado and Ribera (1986), Ribera (1978,
1988), and Ribera and Lopez (1982). Although most of these
works are regionally focused, Fage (1913) treated the European
fauna comprehensively and Brignoli (1970, 1979d) provided
a global interpretation of leptonetid relationships and
biogeography. The North American fauna has a history of
monographic study starting with Gertsch (1971, 1974) who
described the majority of species and Platnick (1986) who
delineated three North American genera. Brignoli (1974b,
1977, 1979e) also worked on the North American fauna,
providing a global perspective that sharply contrasted with
Gertsch (1971, 1974). Gertsch (1971, 1974) argued that all of
the North American leptonetids should be placed in the
European genus Leptoneta but, unlike Brignoli, had limited
understanding of other European leptonetid genera. By
contrast, based on his experience working with European
leptonetids, Brignoli hypothesised that the North American
fauna likely included multiple genera (Brignoli 1972, 1977).
Two studies (Ledford and Griswold 2010; Ledford et al. 2011)
assessed the phylogeny of North American leptonetids
using nucleotide sequence data and better defined the
genera. During the past 10 years, the most striking
advances in leptonetid taxonomy have been in Asia where
over 100 new species have been described from China and
South Korea (Chen et al. 2010; Lin and Li 2010; Wang and Li
2010, 2011; Seo 2015a, 2015b, 2016a, 2016b; Guo et al. 2016;
He et al. 2019; Xu et al. 2019). Although most of these studies
do not include phylogenetic or biogeographic analyses (but
see Wang et al. 2017), they have greatly improved our
understanding of the Asian fauna.

Leptonetidae have a long history of controversy
surrounding their relationships to other spiders. Fage (1913)
was the first to recognise that leptonetids share convergent
morphology with other subterranean-adapted spiders, and
Brignoli (1979d) suggested that the hypothesised
relationships of leptonetids to other spiders were largely
based on these convergent features. One example is that
leptonetines, Telemidae, and some Ochyroceratidae have
independently evolved a peculiar arrangement of the
posterior spinnerets where there is a single row of
aciniform gland spigots used to build sheet webs (Ledford
and Griswold 2010, fig. 65–72). For this reason, many workers
have placed leptonetids among the Synspermiata (formerly
Haplogynae), usually as sister to Telemidae, despite the fact

(A) (B) (C)

Fig. 1. Images of live spiders in native habitats. (A) Archoleptoneta schusteri, Marin County, CA, USA;
(B) Calileptoneta helferi, Mendocino County, CA, USA; (C) Tayshaneta myopica in sheet web, Travis
County, TX, USA. Scale: 3 mm.
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that much of their morphology conflicts with this position.
The discovery of a cribellum in Archoleptoneta Gertsch, 1974
further compounded these conflicts and, given the traditional
placement of leptonetids within Synspermiata, had
implications for the interpretation of spinning organs as a
whole (Ledford and Griswold 2010). Brignoli (1979d) was
the first to propose that leptonetids might be more closely
related to entelegynes based on the absence of a cheliceral
lamina and the presence of expandable male genitalia. Ledford
and Griswold (2010) reviewed leptonetid morphology and
were the first to suggest the possibility of leptonetid
paraphyly, proposing that at least the archoleptonetines are
not part of Synspermiata, but instead are more closely related
to entelegynes.

Agnarsson et al. (2013) used a supertree approach and
was the first to suggest a relationship between Archoleptoneta
and austrochiloids, but thought that the result was caused by
long-branch attraction. Using transcriptomes, Garrison et al.
(2016) recovered leptonetids outside of Synspermiata, placing
Calileptoneta Platnick, 1986 as sister to Entelegynae. Several
studies built upon the foundation of Garrison et al. (2016),
including Shao and Li (2018) who recovered leptonetines as
sister to entelegynes but did not include austrochiloids as
part of their study. Fernández et al. (2018) added
transcriptomes for both leptonetid subfamilies (Archoleptoneta
and Calileptoneta) and in their preferred topology recovered
a monophyletic Leptonetidae sister to austrochiloids (Fig. 2).
Based on a combination of multigene nucleotide data and
morphology, Wheeler et al. (2017) recovered a polyphyletic
Leptonetidae, but did support a relationship between
Archoleptoneta and austrochiloids. As part of a study on basal
araneomorphs, Ramírez et al. (2021) included better
representation across Leptonetidae and used ultraconserved
elements (UCEs) to hypothesise a sister-group relationship
between Leptonetinae and austrochiloids, rendering
Leptonetidae paraphyletic.

Systematics and biogeography of Leptonetidae

In this paper, we present a phylogenomic analysis of
Leptonetidae including representatives from across the

geographic range of the family. Both genera of
archoleptonetines and 90% of described leptonetine genera
are sampled. Where possible, multiple exemplars for each
genus are used, including several from type localities. We
include a broad sample of austrochiloids and use Telemidae
as the outgroup. Because this study is an extension of a parallel
study on basal araneomorphs (Ramírez et al. 2021), we do not
include a broad sampling of entelegynes in order to assess the
relationships of leptonetids to other spiders. Instead, we focus
on testing the monophyly of leptonetid subfamilies and
explore relationships among leptonetid genera. We use our
results to review the current taxonomy of Leptonetidae and
identify areas in need of taxonomic revision. As the first study
to produce a global phylogeny of Leptonetidae, we also gain
insight into the historical biogeography of the group. Using a
combination of fossils and dates for continental events, we
present a chronogram and assess the biogeography of the
family using dispersal–vicariance analysis. Our results
provide a robust phylogenetic framework for the family that
can be used as a scaffold for forthcoming taxonomic works.

Methods

Taxon sampling

Representatives for 19 of the 21 described genera in
Leptonetidae were sampled from localities worldwide
(Fig. 3). Our sample does not include the genera Masirana
Kishida, 1942 and Rhyssoleptoneta Tong & Li, 2007. We
gathered original UCE data for 28 specimens, combined with
data for 17 specimens taken from previous studies (Wood et al.
2018; Ramírez et al. 2021) (Table S1 of the Supplementary
material). Depending on availability, multiple species within
a genus were used. We included a broad sample of
Austrochiloidea and used Usofila pacifica Banks, 1894
(Telemidae) as the outgroup.

DNA extraction

Most specimens were preserved for DNA studies (preserved in
high percentage ethyl alcohol at –80�C), and genomic DNA
was extracted from leg tissue using the Qiagen DNeasy Blood
and Tissue Kit (Qiagen, Valencia, CA, USA). For a handful of

Hypochilidae + Filistatidae

Synspermiata

Archoleptoneta

Calileptoneta

Austrochiloidea

Palpimanoidea + Entelegynae

Hypochilidae + Filistatidae

Synspermiata

Austrochiloidea (part)

Austrochiloidea (part)

Archoleptoneta

Leptonetinae (part)

Leptonetinae (part)

Palpimanoidea

Entelegynae
BS 90−100%

BS <90%

Austrochiloidea (part)

Austrochiloidea

Archoleptoneta +
Darkoneta

Leptonetinae

Palpimanoidea

Entelegynae

Hypochilidae + Filistatidae

Synspermiata

(A) (B) (C)

Fig. 2. Alternate hypotheses of leptonetid relationships from recent studies: (A) Fernández et al. (2018), fig. 1A (transcriptomes); (B) Wheeler et al.
(2017), fig. 3 (morphology + single genes); and (C) Ramírez et al. (2021), fig. 2 (ultraconserved elements). Figures represent summary trees. Support
values for relevant nodes are indicated.
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tissues preserved in 70–80% ethyl alcohol we used standard
phenol chloroform extractions with 24-h incubation for lysis.
Extraction type for each specimen is indicated in Table S1.
Extractions were quantified using a Qubit Fluorometer (Life
Technologies, Inc.) and quality was assessed by agarose gel
electrophoresis. Between 11 and 500 ng of total DNA was used
for UCE library preparation.

UCE data collection

UCE data were collected in multiple library preparation and
sequencing experiments. Up to 500 ng of genomic DNA was
used in sonication, using a Covaris M220 Focused-
ultrasonicator. Library preparation followed methods
previously used for arachnids, as in Starrett et al. (2017),
Derkarabetian et al. (2018, 2019), and Hedin et al. (2018a,
2018b). Target enrichment was performed using the MYbaits
Arachnida 1.1K kit (ver. 1, Arbor Biosciences; Faircloth 2017)
following the Target Enrichment of Illumina Libraries protocol
(ver. 1.5, see http://ultraconserved.org/#protocols). Libraries
were sequenced with an Illumina HiSeq 2500 with 125 bp
paired-end reads (Brigham Young University DNA
Sequencing Center).

Matrix filtering and assembly

Raw demultiplexed reads were processed with the PHYLUCE
pipeline (ver. 1.6, see https://phyluce.readthedocs.io/en/latest/;
Faircloth 2016). Quality control and adaptor removal were
conducted with the Illumiprocessor wrapper (B. C. Faircloth,
see https://github.com/faircloth-lab/illumiprocessor). Assemblies
were created with Velvet (ver. 1.2.10, see https://www.ebi.ac.uk/
~zerbino/velvet/; Zerbino and Birney 2008) and Trinity
(ver. 2.11.0, see https://github.com/trinityrnaseq/trinityrnaseq/
wiki; Grabherr et al. 2011), both at default settings. Assemblies
were combined for probe matching, retrieving assembly-specific
UCEs and overall increasing the number of UCEs per sample
relative to using only a single assembly method. Contigs were
matched toprobes usingminimumcoverage andminimumidentity
at liberal values of 65. UCE loci were aligned with MAFFT (ver.
7.471, see https://mafft.cbrc.jp/alignment/software/ Katoh and
Standley 2013) at default settings and trimmed with Gblocks
(ver. 0.91b, see http://molevol.cmima.csic.es/castresana/Gblocks/
Gblocks_documentation.html; Castresana 2000; Talavera and

Castresana 2007), with settings –b1 0.5 –b2 0.5 –b3 6 –b4 6 in
the Phyluce pipeline.

We expected some paralogy at the low minimum coverage
values used, but considered this as a tradeoff given the ancient
divergences considered. In addition to internal checks for
paralogy in Phyluce, we checked for paralogy by conducting
RAxML analyses on all individual Phyluce alignments. We
excluded individual loci that failed to recover the well
supported clade Austrochiloidea. We did not exclude
duplicate UCE loci, as found in Hedin et al. (2019) – these
are distinct UCE alignments that match the same protein, but are
expected to be well separated by long introns. Two data matrices
were assembled for phylogenomic analyses: (1) 65% (36 of 55
terminals) occupancymatrix, exon + intron, no ‘paralogs’matrix,
and (2) the same matrix as above using very strict Gblocks
settings (–b1 0.5 –b2 0.85 –b3 4 –b4 8) to further trim
alignments. We visually checked to confirm that these trimmed
alignments comprised mostly exon data. These two matrices
were developed to test the sensitivity of results to different
alignment parameters (e.g. see Portik and Wiens 2020), and
are referred to as ‘relaxed’ and ‘strict’ throughout the paper.

Phylogenomic analyses

Partitioned concatenation and coalescent-based analyses were
conducted. Maximum likelihood analysis of the concatenated
datasets was performed using RAxML (ver. 8, see https://cme.
h-its.org/exelixis/web/software/raxml/; Stamatakis 2014) with
the data partitioned by locus, the GTR+G substitution model,
and support estimated by 500 bootstrap pseudoreplicates.
Maximum likelihood analysis of the concatenated datasets
was also performed using IQ-TREE (ver. 1.7-beta9, see
http://www.iqtree.org/; Nguyen et al. 2015; Minh et al.
2020a) in order to calculate gene (gCF) and site (sCF)
concordance factors for the relaxed and strict data matrices
(Minh et al. 2020b). These measures were used as alternative
measures of support (Ane et al. 2006), especially for nodes
where topology conflicted between analysis type. An
SVDQuartets analysis (ver. 1.0, see https://www.asc.ohio-
state.edu/kubatko.2/software/SVDquartets/; Chifman and
Kubatko 2014, 2015) was conducted on both matrices using
PAUP* (ver. 4.0a, see https://paup.phylosolutions.com/),
implementing a multispecies coalescent tree model with
exhaustive quartets sampling and 100 bootstrap replicates.

Archoleptonetidae

Leptonetidae

Fig. 3. Distribution map of archoleptonetid and leptonetid samples included in this study.
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Molecular dating analysis

A molecular clock analysis was conducted in a Bayesian
framework with the MCMCtree module in the PAML
package (ver. 4.9i, see http://abacus.gene.ucl.ac.uk/software/
paml.html; Yang 2007). For the clock analysis we used
the relaxed matrix RAxML topology, and treated the
concatenated data as unpartitioned. The outgroup was
removed from the tree and dataset, and a maximum
boundary of 240 Ma was applied to the root node, based on
the upper boundary of the 95% highest posterior density
credible interval of the Leptonetidae + Austrochiloidea node
from Fernández et al. (2018). The analysis was run with a
model that assumes independent rates among branches (Yang
and Rannala 2006; Rannala and Yang 2007). Estimation of the
parameters (shape and scale) of the gamma distribution for the
substitution rate prior (m) was done with Baseml based on four
fossil and biogeographic-based calibration points treated as
fixed (shape = 1, scale = 5). We used shape = 1 and scale = 4.5
for the gamma distributed prior for s2, or the variability in
substitution rate among branches. The HKY sequence model
was used and the analysis was run with birth rate, death rate,
and species sampling priors of 2, 2 and 0.1 respectively.
Gamma priors for k (the transition/transversion ratio) and a
(shape parameter for among site rate variation) were left as
default (Yang 2007). Calibrations (see below) were treated as
soft boundaries (i.e. 0.025 probability date falls beyond
boundary; Yang and Rannala 2006; Inoue et al. 2010). The
first 40 000 iterations were discarded as burnin, followed by
40 000 iterations sampled with 100 iterations (4 million
generations). The analysis was run twice to ensure MCMC
convergence, with negligible differences in posterior date
estimates and 95% highest posterior density credible
intervals occurring between the two runs.

Our clock analysis was calibrated based on fossils in
Burmese Amber (Wunderlich 2008, 2012) and two
continental events in Mediterranean Europe (Lymberakis
and Poulakakis 2010; Garcia-Castellanos and Villaseñor
2011). Leptonetinae was assigned a minimum age of
98.19 Ma based on the fossil Palaeoleptoneta calcar
Wunderlich, 2008 from Burmese Amber. Burmese Amber
has been radiometrically dated to 98.79 � 0.6 Ma (Selden
and Ren 2017). Although this fossil cannot be confidently
placed among extant genera (Magalhaes et al. 2020), it appears
to share the ocular arrangement of leptonetines and we
interpret it as part of the Leptonetinae (Wunderlich 2012).
The Messinian Salinity Crisis, MSC (5.96–5.33 Ma) refers to
the large-scale desiccation of the Mediterranean basin leading
to reconnection of Mediterranean islands and part of north
Africa to mainland Europe (Garcia-Castellanos and Villaseñor
2011). We set the nodes uniting Sulcia violacea (Greece) +
S. cretica (Crete) and Paraleptoneta spinimana (Italy) +
S. bellesi (Tunisia) to a minimum age of 5.33 Ma because
these areas were most recently connected during the
MSC. Greece and Turkey were formerly connected in a
contiguous landmass called Ägäis. The breakup of Ägäis
resulted in the formation of Aegean Islands 12–9 Ma
(Dermitzakis and Papanikolaou 1981; Papadopoulou et al.
2010; Lymberakis and Poulakakis 2010). The node uniting

Cataleptoneta sengleti (Greece) + C. aesculpii (Turkey) was
set to a minimum age of 12 Ma based on their present
distributions. We acknowledge that using biogeographic
events as calibrations for divergence dating to assess
biogeographic history is potentially circular in its logic.
However, given the scarcity of fossils for Leptonetidae, we
feel that using these recent and localised events, and the benefit
they provide for estimating the age of leptonetid lineages
across the Holarctic, outweighs the negative aspects.

Biogeographic reconstructions

Biogeographic analysis was performed with the Reconstruct
Ancestral State in Phylogenies package (ver. 4.2, see http://
mnh.scu.edu.cn/soft/blog/RASP/; Yu et al. 2015) using the
dispersal–extinction–cladogenesis model (DEC) (Ree and
Smith 2008) implemented in the C++ version of Lagrange
(S. A. Smith, see http://mnh.scu.edu.cn/soft/blog/RASP/). We
use the APE package (Paradis et al. 2004) in R (ver. 4.0, R
Foundation for Statistical Computing, Vienna, Austria, see
https://www.R-project.org/) to convert the relaxed RAxML
tree topology into a relative-rate scaled ultrametric tree
(‘chronopl’ using an assigned lambda value of 0.1). Analysis
settings allowed for two unit areas in ancestral distributions and
equal probabilities of dispersal events between all areas. Terminal
taxa were assigned to six distribution ranges: (A) eastern North
America, (B) western North America, (C) South America, (D)
Mediterranean Europe, (E) Australia or New Zealand, and (F)
East Asia. Four of the assigned regions (eastern North America,
western North America, East Asia, Mediterranean Europe)
correspond to infraregions identified in meta-analyses of
Holarctic biogeography (Sanmartín et al. 2001; Donoghue and
Smith 2004).

Results

Data

Voucher data, input DNA values, assembled contig numbers,
and UCE locus numbers are provided in Table S1. In total, 408
loci were included in the final matrices. The relaxed data
matrix included 97 094 basepairs (mean locus length of 238)
and 39 114 parsimony informative sites; the strict data matrix
included 49 656 basepairs (mean locus length of 122)
and 17 638 parsimony informative sites. Raw reads from
our 30 original samples have been submitted to the SRA
(PRJNA694694); aligned matrices and .TRE files are
available at Dryad (doi:10.25338/B8SS5F).

Phylogenomic analyses

Maximum likelihood analysis using RAxML and IQ-TREE for
both data matrices resulted in identical topologies with the
exception of the RAxML strict matrix (Fig. 4 and S1–S3 of the
Supplementary material). All ML analyses recovered a sister-
group relationship between Leptonetinae and Austrochiloidea
that is highly supported with a bootstrap value of 100%.
However, genealogical and site concordance factor analysis
for this node resulted in relatively low values of gCF 33% and
sCF 40.5% for the relaxed data matrix (Fig. S2) and gCF
21.5% and sCF 40.3% for the strict data matrix (Fig. S3). We
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Calileptoneta group

Leptoneta group

Paraleptoneta group

Protoleptoneta group

0.08

Lep1F9 Chisoneta chisosea (USA, Texas)

G2023 Calileptoneta californica (USA, California)

CR1653 Leptoneta infuscata (France)

CR1189 Leptoneta comasi (Spain)
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Fig. 4. Concatenated RAxML results for the relaxed data matrix. Unless otherwise indicated, bootstrap support for all nodes is 100%. Taxa indicated in
bold represent the type species for that genus.
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present these values as contrasting measures of support,
noting that for both data matrices a majority of gene trees
(over 60%) support alternative resolutions of this node despite
the 100% bootstrap support.

SVDQuartets results are presented for both data matrices in
Fig. S4–S7 of the Supplementary material. As suggested by the
low gCF and sCF values, the SVD trees and associated 50%
majority rule consensus trees show two conflicting resolutions
for relationships within Leptonetidae. For both data
matrices, SVD optimal trees recover leptonetid monophyly;
archoleptonetines are sister to leptonetines and each subfamily
is monophyletic. By contrast, the SVD 50% majority rule
consensus trees show leptonetid paraphyly identical to our
ML results, although support values are low. Despite the
ambiguous resolution between the leptonetid subfamilies and
Austrochiloidea, all three major lineages (Archoleptonetinae,
Leptonetinae, Austrochiloidea) are strongly supported as
monophyletic in all analyses. We therefore elevate the
subfamily Archoleptonetinae to Archoleptonetidae (new rank)
and restrict Leptonetidae to include only members of the
subfamily Leptonetinae. This taxonomic structure is used
throughout the remainder of the paper.

Relationships among the three species representing
Archoleptonetidae are consistent and well supported across
all analyses. We recover four main lineages within
Leptonetidae which we refer to as the Paraleptoneta,
Leptoneta, Protoleptoneta, and Calileptoneta groups.
Although relationships among these groups vary by
analysis, the Calileptoneta group is consistently sister to the
Paraleptoneta + Leptoneta + Protoleptoneta groups. RAxML
analyses of the relaxed data matrix results in a sister group
relationship between the Paraleptoneta and Leptoneta groups
(Fig. 4). However, RAxML analysis of our strict data
matrix results in a sister group relationship between the
Protoleptoneta and Leptoneta groups (Fig. S1). This node
has low bootstrap support in both cases, with 91% support
for the relaxed data matrix and 58% for the strict data matrix.
Further, gCF and sCF values show that only 6–11% of the
gene trees support a relationship between the Paraleptoneta
and Leptoneta groups which we interpret as additional
evidence of topological uncertainty (Fig. S2–S3).
SVDQuartets analysis for both data matrices result in a
sister group relationship between the Protoleptoneta and
Leptoneta groups (Fig. S4–S7); however, 50% majority rule
consensus trees show lower support for this node.

The European genera Leptoneta Simon, 1872, Leptonetela
Kratochvíl, 1978, Paraleptoneta Fage, 1913, Protoleptoneta
Deltshev, 1972, and Sulcia Kratochvíl, 1938 are all supported
as monophyletic. However, the type species Cataleptoneta
edentula Denis, 1955 does not group with C. aesculapii
(Brignoli, 1968) or C. sengleti (Brignoli, 1974). The type
species Barusia maheni (Kratochvíl & Miller, 1939) is
sister to B. insulana (Kratochvíl & Miller, 1939) but
B. laconica (Brignoli, 1974) is sister to Cataleptoneta
semipinnata Wang & Li, 2010 and does not group with the
types of Barusia or Cataleptoneta. Teloleptoneta Ribera, 1988
is weakly supported as sister to Protoleptoneta. One
undetermined specimen from Croatia (AR4354) is sister to
Appaleptoneta Platnick, 1986 + Leptonetela Kratochvíl, 1978.

Leptonetela thracia Gasparo, 2005 is supported as sister to
L. jiulong Lin & Li, 2010. All North American genera are
monophyletic, including Appaleptoneta Platnick, 1986,
Calileptoneta Platnick, 1986, Chisoneta Ledford &
Griswold, 2011, Neoleptoneta Brignoli, 1972, Ozarkia
Ledford & Griswold, 2011, and Tayshaneta Ledford &
Griswold, 2011. Montanineta Ledford & Griswold, 2011 is
weakly supported as sister to Protoleptoneta + Teloleptoneta.
The Asian genera Falcileptoneta Komatsu, 1970 and
Longileptoneta Seo, 2015 are both monophyletic. A single
female specimen from Taiwan (CASENT9056030) is sister to
Longileptoneta but is a juvenile and unable to be confidently
assigned to this genus.

Molecular dating

Results from our dating analysis are presented in Fig. 5.
We summarise posterior mean divergence times for major
splits below and provide a list of key divergence times in
Table S2 of the Supplementary material. The age of the root
node is estimated as early Jurassic (189 Ma). Both
Archoleptonetidae (112 Ma) and Leptonetidae (126 Ma) are
of Cretaceous origin and the most recent common ancestor of
Austrochiloidea + Leptonetidae dates to the mid-Jurassic
(163 Ma). Most of the major divergences within Leptonetidae
occur in the middle to late Cretaceous. The Paraleptoneta,
Leptoneta, Protoleptoneta, and Calileptoneta groups arose
87–110 Ma and the majority of more recent divergence
occurred in the mid-Paleogene.

Biogeography

Results for our biogeographic analysis are presented in Fig. 6.
Multiple dispersal and vicariance events are inferred and,
with few exceptions, their probabilities are 1.0 (Table S3 of
the Supplementary material). No extinction events are
reconstructed on the phylogeny. Archoleptonetidae is
reconstructed to have an ancestral distribution in western
North America. Leptonetidae is predicted to have originated
in a region spanning western North America and
Mediterranean Europe. The ancestor of the Paraleptoneta,
Leptoneta, and Protoleptoneta groups most likely originated
in Mediterranean Europe with a low probability of dispersal
(0.52) to eastern North America. The Paraleptoneta and
Leptoneta groups both have reconstructed origins in
Mediterranean Europe. The Protoleptoneta group most
likely had an ancestral distribution spanning eastern North
America and Mediterranean Europe with a low probability of
dispersal (0.54) to east Asia. The Calileptoneta group is
reconstructed to have originated in a region spanning
western North America and Mediterranean Europe.

Discussion

Systematics

Recent studies of spider phylogeny have recovered conflicting
results for the relationships of Archoleptonetidae and
Leptonetidae, ranging from hypotheses of monophyly
(Fernández et al. 2018), to paraphyly (Ramírez et al. 2021),
and polyphyly (Wheeler et al. 2017). Given the conflict
observed between these studies (Fig. 2), and the results
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Fig. 5. MCMC tree chronogram generated from the relaxed data matrix. Nodes A–D represent calibration points used in our analysis:
A, Palaeoleptoneta calcar from Burmese Amber (98.19 Ma); B, Breakup of Ägäis (12 Ma); C, Messinian Salinity Crisis (5.33 Ma);
D, Fernández et al. (2018).
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Fig. 6. Inferred ancestral range reconstruction based on the DEC model, based on the relaxed RAxML topology. D, dispersal; V, vicariance.
Numbers at nodes are used for reference only and do not indicate measures of statistical support (see Table S3).
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of our analyses, it is not unreasonable to question the elevation
of Archoleptonetidae. Further, what are the possible causes for
the discordance between these results and how does our study
address their limitations?

Among the primary strengths of our study is taxon
sampling. We include specimens collected over the past
16 years, many species of which are monotypic, rare, or
live in difficult to access habitats such as caves.
Admittedly, our sampling is limited in Asia, but efforts to
access additional material from this region have been
challenging. By contrast, most recent studies have relatively
sparse sampling of archoleptonetids and leptonetids.
Fernández et al. (2018) includes two exemplars
(Archoleptoneta and Calileptoneta) and provides insight
into their relationships to other spiders, but lacks sufficient
depth to test the monophyly of Archoleptonetidae and
Leptonetidae. Wheeler et al. (2017) has broader representation
with Archoleptoneta, Calileptoneta, Leptoneta, and
Neoleptoneta but does not include the ecribellate Darkoneta in
order to test the monophyly of Archoleptonetidae. Ramírez et al.
(2021) includes denser sampling within Archoleptonetidae
and Leptonetidae but is mostly focused on the evolution of
tracheael systems in basal araneomorphs. Our study expands
on Ramírez et al. (2021) by adding representatives of most
leptonetid genera, thereby providing a robust test of the
monophyly of Archoleptonetidae and Leptonetidae while
gaining insight into relationships among the genera.

In addition to differences in sampling, each of these studies
used a different type of data. Wheeler et al. (2017) used
nucleotide data from six genes routinely used in spider
systematics. Their results are perplexing as Leptonetidae is
polyphyletic with Leptoneta sister to Austrochilidae and
Calileptoneta + Neoleptoneta sister to Entelegynae (Fig. 3).
Analytical instability was recognised as a problem by the
authors, who also argued that a polyphyletic Leptonetidae
was unlikely to be based on morphological synapomorphies.
Given the problems of the Wheeler et al. (2017) analysis,
the question becomes focused on whether or not
Archoleptonetidae and Leptonetidae are sister groups.

Fernández et al. (2018) expanded on the results of Garrison
et al. (2016), which used transcriptomes to infer relationships
across the spider tree of life. Given that both transcriptomes
and the UCEs in our study are exonic (following results of
Hedin et al. 2019), the core data should be comparable and we
expected similar results. As part of their study, Fernández et al.
(2018) developed several data matrices, most of which
recovered a monophyletic Leptonetidae (Archoleptonetinae
+ Leptonetinae). However, their ML analysis of a truncated,
strict orthology matrix resulted in a paraphyletic Leptonetidae
with Calileptoneta sister to austrochiloids. Our study also
shows conflicting results for the resolution of this node with
ML analyses supporting leptonetid paraphyly (Austrochiloidea
+ Leptonetidae) and some SVDQuartets results showing
leptonetid monophyly (Archoleptonetidae + Leptonetidae),
although weakly supported. Similar to Fernández et al.
(2018), our strict matrix was partly intended as a sensitivity
test by restricting our data to a core set of orthologs and
removing flanking introns where alignment may be uncertain.
Even with nearly 50% of the data removed, the strict matrix

still does not consistently resolve the node as some
SVDQuartets results recover leptonetid monophyly (Fig. S4,
S6). Interestingly, despite the fact that our ML analyses
show 100% bootstrap support for a sister group relationship
between Austrochiloidea and Leptonetidae (Fig. 4, S1–S3), the
relatively low gCF and sCF values suggest that most of the
gene trees recover alternate resolutions for the node. In
summary, our results and those of Fernández et al. (2018)
show ambiguity in the resolution of this node as reflected in
both analytical sensitivity and gCF and sCF values.

Although we are encouraged by the results in our study, we
recognise that conflict in the relationships of Austrochiloidea,
Archoleptonetidae and Leptonetidae persists. As a
consequence, we argue that the node is best viewed as a
trichotomy in need of further study. One key outcome of all
recent studies is that Archoleptonetidae and Leptonetidae are
not part of Synspermiata, a result predicted by morphology
(Brignoli 1979d; Ledford and Griswold 2010) and
corroborated by all phylogenomic analyses. Regardless of
the eventual placement of Archoleptonetidae and Leptonetidae,
the elevation of Archoleptonetidae is supported by their
morphology (Ledford and Griswold 2010), facilitates their
diagnosis, and serves a grouping function. We therefore view
the elevation of Archoleptonetidae as both warranted and timely,
especially as our understanding of spider phylogeny improves
with increased adoption of phylogenomic methods. As newly
defined, Archoleptonetidae is a small family consisting of
two genera; however, many areas within their distributional
range are undersampled and we expect that more species likely
await discovery.

In each of our analyses, we recover four main lineages
within Leptonetidae which we refer to as the Paraleptoneta,
Leptoneta, Protoleptoneta, and Calileptoneta groups. The
Paraleptoneta and Leptoneta groups include species limited
to Mediterranean Europe, whereas both the Protoleptoneta and
Calileptoneta groups include species distributed on multiple
continents. The North American fauna is well represented in
our study, and all genera have high statistical support
corroborating the hypotheses of Ledford et al. (2011, 2012).
Chisoneta, Neoleptoneta, Ozarkia, and Tayshaneta comprise a
single lineage that is distributed from the south-western USA
to Mexico and is sister to the remainder of the Protoleptoneta
group. Representation of the Asian fauna is weaker, but
Falcileptoneta and Longileptoneta are monophyletic and
well supported as part of the Protoleptoneta group.
Although our sample includes only a single Leptonetela
species from China, L. jiulong Lin & Li, 2010 is sister to
L. thracia Gasparo, 2005, supporting the synonymies of the
generaGuineta, Qianleptoneta, and Sinoneta (Lin & Li, 2010).
With the exception of Cataleptoneta, the European genera are
supported as monophyletic. However, as discussed below,
several species are likely misplaced. Although our study
does not include Asian representatives of Leptoneta, several
Leptoneta species are part of our analyses, including the type
L. convexa Simon, 1872. Based on the features of their
genitalic morphology (J. Ledford, pers. obs.) and the
distribution of Leptoneta in western Mediterranean Europe,
we predict that all of the currently described Asian Leptoneta
are misplaced.
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As the first study to assess leptonetid phylogeny using a
sample of most genera, it is not surprising to discover
taxonomic problems and learn that some genera need
revision. In particular, the generic limits among Barusia,
Cataleptoneta, and Paraleptoneta are unclear. The type
species Cataleptoneta edentula (Denis 1955) does not group
with C. semipinnata (Wang and Li 2010) and C. sengleti
(Brignoli 1974a). Barusia has similar problems as
B. laconica (Brignoli 1974a) does not group with the type
species B. maheni. Taxonomic issues within Barusia and
Cataleptoneta date to Kratochvíl (1978), who based his
diagnoses on spination differences on the male palpal tibia
and not details of palpal bulb morphology as had been done
by previous workers. Barusia, Cataleptoneta, Paraleptoneta,
and Sulcia are all characterised by complex spination patterns
on the male palpal tibia (Le Peru 2011), making the
morphological distinction between them unclear. Although
recent studies on Cataleptoneta (Wang and Li 2010;
Deltshev and Li 2013; Gavish-Regev et al. 2016; Demircan
2020) have contributed to our understanding of its diversity,
they have not provided a broad perspective on the diagnosis,
distribution, or relationships of the genus as a whole. Work in
progress (C. Ribera, unpubl. data) further shows that the
genetic diversity within Paraleptoneta is higher than
expected despite a history of synonymy (Brignoli 1979c).
Based on our results, we hypothesise that at least two
additional genera remain undescribed; the first includes
B. laconica and C. semipinnata and the second includes
C. sengleti and C. aesculapii. However, we believe that
taxonomic changes to Barusia and Cataleptoneta need the
context of a more comprehensive revision and we defer any
changes until the lineage can be more carefully studied.

Within Leptonetidae, there are three described monotypic
genera: Montanineta Ledford & Griswold, 2010 from the
eastern USA, Teloleptoneta Ribera, 1988 from Portugal,
and Rhyssoleptoneta Tong & Li, 2007 from China. Until
this study, none of these taxa have been included in a
phylogenetic analysis and the justification used in their
descriptions was based solely on the degree of difference in
their genitalic morphology. Although our study does not
include Rhyssoleptoneta, both Montanineta and
Teloleptoneta group with Protoleptoneta (Deltshev 1972)
although support within this clade is low. Unpublished
single-gene analyses also show an ambiguous relationship
between Protoleptoneta and Teloleptoneta (C. Ribera,
unpubl. data). Close inspection of the genitalic morphology
ofMontanineta, Protoleptoneta, and Teloleptoneta show some
similarities (J. Ledford, pers. obs.) and one solution is that all
of these genera could be combined into a single genus.
Although this would simplify the nomenclature of the
group, it would not change our interpretation of the
relationships in the lineage as a whole. Namely, given the
wide geographic disjunction between these genera we view
them as relictual; the closest relative of Montanineta, for
example, lives on a different continent. One specimen from
Croatia (AR4354) likely represents yet another monotypic
genus given the geographic disjunction with its closest
relatives (Appaleptoneta and Leptonetela). Lastly, although
Rhyssoleptoneta was not included in our analysis examination

of its genitalic morphology shows similarity in palpal
structures to Appaleptoneta (J. Ledford, pers. obs.) and we
predict that the genus may be part of the Calileptoneta group.

Biogeography

Given that our sampling of Archoleptonetidae is limited to
representatives from California and Arizona, it is not
surprising that the ancestral distribution for the group is
reconstructed as western North America (B). As more species
are described, we expect that the biogeography of
Archoleptonetidae will become better understood.

Results of our molecular dating analysis estimate the origin
of Leptonetidae at 126 Ma and its ancestral distribution is
inferred to encompass an area spanning western North
America and Mediterranean Europe (BD, node 107, Fig. 6).
Although the Paraleptoneta and Leptoneta groups are
reconstructed to have ancestral distributions restricted to
Mediterranean Europe (D, node 80, Fig. 6), the
Protoleptoneta and Calileptoneta groups are relatively older
and have ancestral distributions that include combinations
of areas including eastern and western North America,
Mediterranean Europe, and east Asia (nodes 97 and 106,
Fig. 6).

During the mid-Jurassic, Pangaea split into the northern and
southern supercontinents Laurasia and Gondwana. The origin
of Leptonetidae (mid-Cretaceous) coincides with a time when
Laurasia was largely connected, although North America and
Asia remained separated. Most of the major divergences
within Leptonetidae occurred 100–70 Ma. Within this time,
Laurasia split into two palaeocontinents: Euramerica (Europe
+ eastern North America) and Asiamerica (western North
America + Asia). North America was divided by the Mid-
Continental Seaway and western North America was connected
to east Asia through Beringia. Europe was divided from Asia by
the Turgai Strait and eastern North America remained connected
to Europe through multiple, periodic land bridges across the
Atlantic (reviewed in Sanmartín et al. 2001).

During the early Tertiary a continuous region of vegetation,
the Boreotropical forest, was distributed across Laurasia. The
boreotropics hypothesis (Wolfe 1975; Tiffney 1985) postulates
that the biogeographical disjunctions often seen in plants
between eastern North America–Europe and western North
America–Asia resulted from the fragmentation of Laurasia
and the recession of the Boreotropical forest. Based on the
age estimates, ancestral distributions, and the biology of
leptonetids, we hypothesise that they were once widespread
across Laurasia. One possibility is that they were associated
with the Boreotropical forest ecosystem and their phylogeny is
largely the product of vicariance as Laurasia fragmented. This
scenario not only aligns well with our results, but also explains
the repeated pattern of narrow endemism for most leptonetid
species worldwide. As Laurasia drifted apart, the climate
became drier and leptonetids were restricted to areas where
mesic conditions similar to those found in the Boreotropical
forest persisted. This may also explain the close association of
leptonetids with caves, which, due to their cool and moist
environments, may have functioned as refugia. As such, we
argue that leptonetids may be regarded as a largely relictual
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fauna, similar to Holarctic relict floras (Tiffney 1985; Lavin
and Luckow 1993; Milne and Abbott 2002).

As a relictual fauna, we predict that extinction has played
a significant role in shaping the present distribution of
leptonetids. Although our DEC analyses recover no
extinction, we view this result as improbable given the age
and reconstructed ancestral distributions for most groups in
our analyses (Fig. 5, 6). The underestimation of local
extinction is also a known issue with DEC analysis (Ree
and Smith 2008). Although dispersal is inferred in our DEC
results, the probabilities associated with these events are low
(Table S3). We also find the pattern of sympatry within
Leptonetidae of particular interest; in most cases leptonetid
genera do not have overlapping distributions, even among
distantly related lineages. In areas where the distributions of
genera are close, such as eastern Europe, our phylogeny
reveals taxonomic problems. There are few cases of
sympatry within genera although sampling error may be a
contributing factor given the relative rarity of leptonetids
in collections. We interpret these patterns as evidence for
niche conservatism in the group through deep geologic
time, a pattern predicted by their biology and supported by
phylogeny.

Paraleptoneta and Leptoneta groups

The origin of the Paraleptoneta and Leptoneta groups dates
to 105 Ma and coincides with the separation of Europe and
Asia by the Turgai Strait. The Paraleptoneta group includes
Barusia, Cataleptoneta, Paraleptoneta, and Sulcia, which are
primarily distributed in the eastern Mediterranean but also
have records in the Levant and Tunisia (Ribera and Lopez
1982; Gavish-Regev et al. 2016). At the time of the origin of
this group, the eastern Mediterranean formed a continuous
plate from Turkey to the Balkans, including the Aegean and
Croatian Islands. The present geographical distribution of the
Paraleptoneta group includes all of southern Europe (except
for the Iberian Peninsula), where Pleistocene glaciations had
minimal impact (Clark et al. 2009; Batchelor et al. 2019). It is
likely that the group extends further north, although currently
there are no known species at higher latitudes. Our analysis
suggests an eastern origin (Turkey or Greece) with subsequent
colonisation to the Balkan Mountains, from Albania to Croatia
and Italy, extending southward to Tunisia during the
Messinian Salinity Crisis (Garcia-Castellanos and Villaseñor
2011).

The Leptoneta group includes 30 species distributed
throughout the western Mediterranean and 38 species in
Asia (World Spider Catalog, see http://wsc.nmbe.ch). Based
on the species included in our analysis, and the distributions of
all other Leptoneta from Europe, we interpret the genus to be
of Iberian origin; all Leptoneta species in Europe occur in
regions that were formerly part of or connected to the
peninsula. Results from our molecular dating analysis
estimate the divergence of Leptoneta at 33 Ma. During this
time the Iberian Peninsula was located between Eurasia and
North America but separated from the northern mainland of
Africa. This timing also precedes the drying of the Turgai

Strait and subsequent uplift of the Himalayas. A key
consequence of this timing is that Leptoneta is restricted to
the western Mediterranean. In conjunction with our
observations of its morphology, we view this as evidence
that all currently described Asian Leptoneta are misplaced
and belong to other genera.

Protoleptoneta group

The Protoleptoneta group is estimated to have diverged
87.5 Ma and includes genera from eastern North America,
Mediterranean Europe, and east Asia. The ancestral
distribution of the lineage has a mixed probability of origin,
but most likely includes an area spanning eastern North
America and Mediterranean Europe (AD, node 97, Fig. 6).
Two main lineages occur within the group; the first includes
four genera (Chisoneta, Neoleptoneta, Ozarkia, and
Tayshaneta) distributed in the southern USA and Mexico.
This group is estimated to have arisen 77 Ma in eastern
North America after the closure of the Mid-Continental
Seaway and the subsequent uplift of the western mountain
ranges as part of the Laramide orogeny. The westernmost
species in this lineage, Ozarkia apachaea (Gertsch, 1974) is
known from the Chiricahua Mountains and we predict that the
western mountains presented a barrier to further dispersal of
the group in western North America.

The second Protoleptoneta group lineage includes five
widely disjunct genera: Falcileptoneta (east Asia),
Longileptoneta (east Asia), Montanineta (eastern North
America), Protoleptoneta (Mediterranean Europe), and
Teloleptoneta (Mediterranean Europe). Given the
geographic complexity, the DEC analysis infers a mixed
probability of origin for this group (node 96, Fig. 6). Two
possibilities are presented: (1) Mediterranean Europe + east
Asia (DF, 70.9%), and (2) eastern North America + east Asia
(AF, 29%). The first scenario requires dispersal to eastern
North America, perhaps by the Thulean or De Greer land
bridges, both of which are recognised as important routes
between Mediterranean Europe and eastern North America
(Sanmartín et al. 2001; Brikiatis 2014). The second scenario
requires dispersal to Mediterranean Europe which seems less
likely given the persistence of the Turgai Strait until the late
Tertiary (30 Ma). One possible explanation for the ambiguity
is insufficient sampling in Asia. Falcileptoneta and
Longileptoneta, for example, are broadly distributed in
Japan, Korea, and Taiwan and together include over 50
species. Our data includes only four representatives of these
genera and we predict that increased sampling will greatly
inform the inferred ancestral distribution of the group.
Based on the number of described species, the centre of
diversity for the Protoleptoneta group appears to be east
Asia. The genera Montanineta and Teloleptoneta are
monotypic and Protoleptoneta includes only four species,
mostly known from isolated caves. Given the age of the
Protoleptoneta group and its inferred ancestral distribution,
we hypothesise that Montanineta, Teloleptoneta, and
Protoleptoneta are relictual and perhaps the last extant
members of formerly widespread lineages.
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Calileptoneta group

The origin of the Calileptoneta group is estimated at 110 Ma
and is reconstructed as having an ancestral distribution
spanning western North America and Mediterranean Europe
(BD, node 106, Fig. 6). This timing is close to the origin of the
mid-Continental Seaway, which separated North America into
two subcontinents (Laramidia in the west and Appalachia in
the east). Given the age of the group, a plausible scenario is
that the group was formerly widespread and then divided by
the formation of the mid-Continental Seaway.

Within the Calileptoneta group, one lineage corresponds to
Calileptoneta, which is known only from western North
America (B, node 101, Fig. 6). Although we see no
relationships between Calileptoneta and taxa from east
Asia, the western North America–east Asia disjunction is
well established and we predict that some unsampled taxa
in Asia will have close affinity with Calileptoneta. The
monotypic genus Rhyssoleptoneta, for example, shares
palpal homologies with Calileptoneta (J. Ledford, pers.
obs.) and may prove important to understanding
relationships and biogeography within this group.

The second lineage includes taxa from Mediterranean
Europe, eastern North America, and east Asia. The group is
reconstructed to have originated in Mediterranean Europe (D,
node 105, Fig. 6) with an estimated age of 103 Ma. Given the
reasonably ancient age of the group, we predict that it was
formerly widespread and some lineages (AR 4354 and
Appaleptoneta) are relictual. Within this group, the genus
Leptonetela is the most diverse with over 100 species
described from Asia (China and Vietnam) and 12 from the
eastern Mediterranean (Turkey, Caucasus, and Greece).
Although we only have two Leptonetela species in our
dataset, both Mediterranean Europe and east Asia are
represented. The estimated age for the split of L. jiulong
(Guizhou, China) and L. thracia (Greece) is 19 Ma (the origin
of the genus Leptonetela is older, c. 80 Ma) after the closure of
the Turgai Strait (Tangelder 1988; Sanmartín et al. 2001). We
interpret the occurrence of Leptonetela in Europe as a recent
dispersal from South Asia, that occurred before the rise of the
Tibetan plateau or the formation, further north, of the Gobi
Desert, which prevented connection between Central Asia and
the Eastern Mediterranean. Increased sampling will likely
improve our understanding of the biogeography of
Leptonetela, especially in the region from Turkey to India,
which remains undersampled and may hold more species.

Conclusions

Archoleptonetids and leptonetids are ancient lineages of
spiders whose relationships have been enigmatic for over
100 years. Brignoli (1979d) was the first to recognise that
they were likely not part of Synspermiata (then Haplogynae)
although he did not have a clear conception of where they fit on
the spider tree of life. He also recognised that the placement of
leptonetids with telemids and ochyroceratids was a result of
the poor state of knowledge about these families at the time.
Since Brignoli, most workers have placed Leptonetidae
(including Archoleptonetidae) as sister to Telemidae

(Platnick et al. 1991; Ramírez 2000) although it was widely
recognised that aspects of their morphology (absence of
cheliceral lamina, cylindrical gland spigots, expandable
male genitalia, respiratory structures) argued against this
arrangement. Ledford and Griswold (2010) reviewed the
morphology of both groups and found additional problems,
proposing that they were more closely related to entelegynes.

Among the challenges with both families is that they are
rarely encountered spiders, even by specialists, and their small
size and delicate features make them difficult to study. For
example, in the absence of scanning electron microscopy, the
intricate features of the male palpal bulb are rarely observed
and most species worldwide remain inadequately described
and diagnosed (but see Ledford 2004; Ledford and Griswold
2010; Ledford et al. 2011, 2012). The increasingly widespread
adoption of phylogenomics has provided insight into
relationships among all spiders, although, as demonstrated
in this study, this is not a panacea. The deep splits inherent
on the spider tree of life are difficult to resolve, especially
among early-diverging araneomorph groups such as
archoleptonetids and leptonetids. As shown in a recent
study on spider fossils (Magalhaes et al. 2020), many of the
early-diverging araneomorphs known from fossils are difficult
to place and extinction of these lineages is likely a
confounding factor in understanding present-day spider
phylogeny. However, despite the inability of our study and
recent phylogenomic studies to resolve relationships among
austrochiloids, archoleptonetids, and leptonetids it is clear that
they are not part of Synspermiata, a hypothesis supported by
both their morphology and molecular data. Resolving
relationships among these groups will require special
attention, likely incorporating data from fossils and careful
analysis of their morphology.

Although problems with the current taxonomy of
leptonetids are identified in our study, most described
genera are monophyletic. The problems within the
Paraleptoneta group are especially intriguing as they have a
long history of study, including detailed illustrations and
descriptions of the male and female genitalia. However,
none of these groups has undergone comprehensive revision
and no European genera have ever been quantitatively
analysed. Further, significant sampling gaps remain,
especially in eastern Europe, where a wealth of diversity
undoubtedly remains undiscovered as evidenced by the
undescribed genus from Croatia included in this study. The
most substantial challenge in leptonetid systematics is the
Asian fauna. Recent efforts focused on Asian leptonetids
have provided insight into their diversity, but only one of
these studies (Wang et al. 2017) include quantitative analyses
of their phylogeny. The result of these descriptive efforts is
that most Asian leptonetids remain unplaced, and genera such
as Leptoneta continue to be used as placeholders thereby
preventing a complete picture of their biogeography. Given
the age and distribution of the family, we predict that
connections especially to the western North American fauna
await discovery. Among the goals of this study is to provide a
comprehensive phylogenetic scaffold such that new species in
Asia can be more confidently placed.
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Taxonomy

Justification

We have decided to raise both subfamilies
Archoleptonetinae and Leptonetinae to family status on the
grounds that to do so is practical, making each easier to
diagnose and that it does no phylogenetic harm, i.e. each is
monophyletic. Further, if our preferred tree is correct (Fig. 4),
with Leptonetinae sister to theAustrochiloidea to the exclusion of
the Archoleptonetinae, Leptonetidae sensu lato becomes
paraphyletic and relimiting the family becomes essential.

Austrochiloidea, Archoleptonetidae and Leptonetidae

This analysis and other recent analyses (e.g. Fernández
et al. 2018) suggest that Archoleptonetidae and Leptonetidae
are closely related to Austrochiloidea (Austrochilidae,
including Hickmania, and Gradungulidae). Whereas
molecular data unite these taxa, they do not share any
obvious morphological synapomorphies. Austrochiloids are
readily distinguished from Archoleptonetidae and
Leptonetidae. The austrochiloid families share the
morphological synapomorphies of a clypeal hood, i.e. a
median projection over the middle cheliceral base
(Griswold et al. 2005, character 30), a distal notch in the
orifice of the trichobothrial base (Griswold et al. 2005,
character 9), and a peculiar genitalic morphology in which
the gonopore is visible anterior to the epigastric fold (Griswold
et al. 2005, character 135; Ramírez 2014 character 363).
Austrochiloids are large spiders, and all have austral
distributions. Members of Kaiya, smallest of the
gradungulids, still have a body length of 1.2 cm and a leg
span of more than 3 cm, whereas some austrochiloids are
veritable giants. Hickmania troglodytes (Austrochlidae) may
have a body length of 2 cm and a leg span of 17 cm, and
Macrogradungula moonya (Gradungulidae) may have a body
length of 2 cm and a leg span of more than 18 cm! By contrast,
temperate Archoleptonetidae and Leptonetidae are small
spiders (less than 5 mm body length) with long, slender
legs, with a leg spread of less than 2.5 cm. All have only
six eyes (or none), three claws with the STC (superior tarsal
claws) simple (unlike the asymmetrical claws of
Gradungulidae, raptorial claws of Trogloraptoridae or
enlarged, bipectinate STC of many Dysderoidea), no
cheliceral lamina, unusual iridescence, especially on the
legs and carapace (shared with Ochyroceratidae and
Psilodercidae, among others), autospasy at the patella–tibia
joint (shared with Filistatidae, Austrochilinae (Thaida and
Austrochilus) and linyphioids), patella–tibia gland plates
(shared with the Telemidae; similar structures occur in
various Entelegynae), no external epigynum (unlike
Entelegyne and some Palpimanoidea and Synspermiata), a
single posterior spiracle, a divided cribellum (unlike the
entire cribellum of Hypochilidae and cribellate
Austrochiloidea) or a small colulus (unlike the large coluli
of Telemidae, Ochyroceratidae and Psilodercidae and
some Synspermiata), clypeus with margin evenly concave
(unlike the median hood of Austrochiloidea), and no peg
teeth (unlike Palpimanoidea).

Ledford and Griswold (2010, p. 4) diagnosed Leptonetidae
sensu latu based on a set of homoplastic putative
synapomorphies, which assumed placement of Leptonetidae
in the Haplogynae, an hypothesis and grouping now discarded.
Features cited were unusual iridescence, especially on the legs
and carapace, patellar–tibial gland plates, autospasy at the
patella–tibia joint, the presence of tartipores on the ALS
(shared widely but absent in Synspermiata), male palpi with
a fused tegulum and subtegulum but with an expandable basal
haematodocha (a peculiar morphology, which requires further
study in austrochiloids), and a respiratory system consisting of a
pair of short median branches with long laterals that open to a
single spiracle anteriad of the ALS (also found in many
Entelegynae). This diagnosis overlooks notable differences
between Archoleptonetinae and Leptonetinae in eye position,
spinning organs and male and female genitalia: recognising
Archoleptonetidae and Leptonetidae as families will make each
far easier to diagnose.

Family ARCHOLEPTONETIDAE
Gertsch, 1974 (new rank)

Archoleptonetinae Gertsch, 1974: 198

Diagnosis

Archoleptonetidae may be diagnosed from all other spiders
except Leptonetidae by the characters listed above.
Archoleptonetids may be diagnosed from leptonetids by
having the endites with a pair of conspicuous stout setae,
by the simple ocular arrangement with PME and PLE
contiguous, and by the form of the tarsal organ, spinning
organs and genitalia. All Archoleptonetidae have the tarsal
organ with at least one elongate sensillum, multiple MAP
(major ampullate gland) spigots on the ALS (anterior lateral
spinnerets) and have only a few scattered AC (aciniform
gland) spigots on the PMS and PLS (posterior median and
lateral spinnerets); at least Archoleptoneta have a divided
cribellum. Archoleptonetidae have the male palpal tibia and
tarsus simple and cylindrical and the palpal bulb with an
elongate embolus and three accessory sclerites, two of
which straddle the embolus at the base (PRS, MS) and one
that is situated prolaterally (RLS). In addition, the simple
female genitalia with two receptacula and oval to elongate
patellar–tibial glands may distinguish Archoleptonetidae from
Leptonetidae.

Type species: Archoleptoneta schusteri Gertsch, 1974.

Composition

Two genera: Archoleptoneta Gertsch, 1974 (2 species) and
Darkoneta Ledford & Griswold, 2010 (6 species).

Family LEPTONETIDAE Simon, 1890 (new status)

Leptonetidae Simon, 1890: 80

Diagnosis

Leptonetidae may be readily diagnosed from all other spiders
by the unique ocular arrangement with PME displaced behind
the ALE and PLE, AME lost. Another character seemingly
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unique to the leptonetids is the metatarsus III with an apical
preening comb. Leptonetids may be distinguished from
archoleptonetids by the endites lacking conspicuous stout
setae and by the form of the tarsal organ, spinning organs
and genitalia. Leptonetid tarsal organs may have an elongate
base but the sensillum(a) are short and inconspicuous. All
leptonetids are ecribellate with a small colulus (like the
archoleptonetids Darkoneta) but the ALS have only a single
MAP (major ampullate gland) spigot and at least the PLS have
tightly packed rows of AC (aciniform gland) spigots.
Leptonetid male palpi typically have the tibia and tarsus
modified: the lateral surfaces of the tibia typically have a
variety of spines and twisted setae that in many genera are
produced into large spine-like apophyses and the palpal tarsus
is dorsally constricted and often modified apically and
retrolaterally, usually bearing chemosensory and a variety
of other specialised setae. The leptonetid female genitalia
that present a vulva with a large, central atrium with a pair
of lateral twisted spermathecae bearing numerous flagellate
pores, which are connected laterally to the atrium by short,
twisted tubes, are unique. In addition, leptonetids have
patellar–tibial glands but these differ in shape from those of
archoleptonetids and from the family Telemidae.

Type species: Leptoneta convexa Simon, 1872.

Composition

In total, 19 genera and 347 species: Appaleptoneta (Platnick
1986) (7 species), Barusia (Kratochvíl 1978) (5 species),
Calileptoneta (Platnick 1986) (9 species), Cataleptoneta
(Denis 1955) (8 species), Chisoneta (Ledford et al. 2011)
(4 species), Falcileptoneta (Komatsu 1970) (50 species),
Leptoneta (Simon 1872) (70 species), Leptonetela (Kratochvíl
1978) (108 species), Longileptoneta (Seo 2015b) (5 species),
Masirana (Kishida, 1942, in Komatsu 1942) (26 species),
Montanineta (Ledford et al. 2011) (1 species), Neoleptoneta
(Brignoli 1972) (8 species), Ozarkia (Ledford et al. 2011)
(9 species), Paraleptoneta (Fage 1913) (2 species),
Protoleptoneta (Deltshev 1972) (4 species), Rhyssoleptoneta
(Tong and Li 2007) (1 species), Sulcia (Kratochvíl 1938)
(10 species), Tayshaneta (Ledford et al. 2011) (19 species)
and Teloleptoneta Ribera, 1988 (1 species).
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