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ABSTRACT

Obese women (body mass index �30 kg/m2) are at greater
risk than normal weight women of pregnancy complications
associated with maternal and infant morbidity, particularly the
development of cardiovascular disease and metabolic disorders
in later life; why this occurs is unknown. Nonpregnant, obese
individuals exhibit systemic vascular endothelial dysfunction.
We tested the hypothesis that obese pregnant women have
altered myometrial arterial function compared to pregnant
women of normal (18–24 kg/m2) and overweight (25–29 kg/
m2) body mass index. Responses to vasoconstrictors, U46619
(thromboxane mimetic) and arginine vasopressin, and vasodila-
tors, bradykinin and the nitric oxide donor sodium nitroprusside,
were assessed by wire myography in myometrial arteries from
normal weight (n¼ 18), overweight (n¼ 18), and obese (n¼ 20)
women with uncomplicated pregnancies. Thromboxane-prosta-
noid receptor expression was assessed using immunostaining in
myometrial arteries of normal weight and obese women.
Vasoconstriction and vasodilatation were impaired in myome-
trial arteries from obese women with otherwise uncomplicated
pregnancies. Disparate agonist responses suggest that vascular
function in obese women is not globally dysregulated but may be
specific to thromboxane and nitric oxide pathways. Because
obesity rates are escalating, it is important to identify the
mechanisms underlying impaired vascular function and establish
why some obese women compensate for vascular dysfunction
and some do not. Future studies are needed to determine
whether central adiposity results in an altered endocrine milieu
that may promote vascular dysfunction by altering the function
of perivascular adipose tissue.

body mass index, myometrium, nitric oxide, preeclampsia,
pregnancy, thromboxane, vascular

INTRODUCTION

Obesity, defined by the World Health Organization as a
body mass index (BMI) �30 kg/m2, is one of the most
significant risks to 21st-century global health, challenging
traditional concerns of undernutrition and infectious disease as
a cause of ill health in the general population [1]. Between
1980 and 2008, worldwide obesity rates doubled for men (to
10%) and women (to 14%) [2]. Similar trends were observed in
the number of obese pregnant women registering for antenatal
care [3–5]; the United Kingdom national average has doubled
to 16% since 1992 with even higher rates in Northern England
where nearly one in five pregnant women is clinically obese [6,
7]. In pregnancy, maternal obesity is an independent risk factor
for serious maternal and fetal complications, including
hypertension, preeclampsia (PE), aberrant fetal growth (both
fetal overgrowth and fetal growth restriction), stillbirth,
congenital abnormalities such as spina bifida and cardiac
defects, gestational diabetes, and intervention in labor (e.g.,
Cesarean section) [6–9].

Healthy pregnancies depend on the maternal cardiovascular
system, and uterine vasculature undergoing a series of complex
physiological adaptations (e.g., ,40% increase in cardiac
output [10], remodeling of uterine spiral arteries [11], and
altered vascular resistance [12]) to ensure optimal placental
vascular bed perfusion. In obese pregnant women, cardiac
output and blood pressure (though still in normal range)
exceeds that in nonpregnant obese subjects and that normally
observed in pregnancy [13, 14].

Systemic vascular tone is normally modulated by the activity
and interaction of the endothelium and adjacent smooth muscle.
However, nonpregnant, obese individuals exhibit systemic
vascular endothelial dysfunction [15]. Similar dysfunction has
been observed in women with the maternal syndrome PE [16,
17]. Preeclampsia, which affects 3%–5% of pregnancies, is
characterized by hypertension (blood pressure �140/90 mmHg)
and proteinuria (�300 mg/24 h). It is a leading cause of maternal
and perinatal morbidity and mortality [18] and carries a
particular additive risk of future cardiovascular and metabolic
disorders (e.g., cardiovascular disease and diabetes) for both
mother and baby [19–21]. The origins of PE are unclear but the
current pathogenic model suggests a two-step process [22]: 1)
uteroplacental hypoperfusion and subsequent placental oxidative
stress promotes 2) release of factor(s) into the maternal
circulation that trigger widespread maternal inflammation and
systemic endothelial dysfunction. Epidemiological evidence
demonstrates that maternal obesity (BMI .30 kg/m2) triples
the risk of developing PE [23]. Thus, obese women may be
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susceptible to developing PE because they have preexisting
subclinical vascular endothelial dysfunction.

Maintenance of efficient end organ perfusion is promoted
by tone oscillations (rhythmic constriction and dilation) in
small peripheral blood vessels [24, 25]. Oscillation initiation
and propagation requires cross talk between the endothelium
and vascular smooth muscle leading to alterations in
intracellular calcium (Ca2þ) levels in the latter [26]. Abnor-
malities in endothelial cell (EC) function result in abnormal
blood vessel oscillatory activity and subsequent reduced
perfusion of a range of vascular beds; this may account for
the increased vascular resistance observed in PE [27] and
prevalence of peripheral vascular disease in diabetic patients
[28, 29]. Endothelial dysfunction is associated with obesity but
whether tone oscillations are altered in obese pregnancy is
unknown. This study aimed to determine whether there is a
relationship between BMI and myometrial artery (MA)
function in pregnancy and tested the hypothesis that obese
pregnant women would have altered myometrial vascular
function compared to normal weight pregnant women.

MATERIALS AND METHODS

Ethical Information

This study was approved by the NRES North West Haydock Ethics
Committee (08/H1010/55), and written informed consent was obtained from all
participants prior to delivery. This investigation conformed to the principles
outlined in the Declaration of Helsinki.

Participants and Tissue Collection

Myometrial biopsies were collected from women (N ¼ 56, where N ¼
number of tissue samples and n ¼ number of vessels) with uncomplicated
singleton pregnancies undergoing elective Cesarean sections at term (37–42 wk
gestation). Women with preexisting medical disorders (e.g., diabetes) or
pregnancy complications (e.g., PE, gestational diabetes, or small or large for
gestational age infants) were excluded. Maternal BMI was recorded prior to 12
wk gestation, and women were categorized as normal weight (BMI 18.5–24.9
kg/m2), overweight (BMI 25–29.9 kg/m2), or obese (BMI �30 kg/m2). An
individualized birthweight ratio (IBR) was calculated for each infant using the
Gestation-Related Optimal Weight software (Customized Weight Centile
Calculator version 5.12/6.2 2009 downloaded from www.gestation.net); only
biopsies from mothers who delivered appropriate for gestational age infants
(IBR 11–89) were included. Maternal demographics as biophysical and
obstetric data are presented in Table 1.

General Chemicals

Chemicals were purchased from Sigma-Aldrich (Poole, Dorset, U.K.)
unless stated otherwise.

Wire Myography

Myometrial biopsies, taken from the upper lip of the uterine incision, were
transferred to ice cold tissue collection buffer [30] (154 mM NaCl, 5.4 mM
KCl, 1.2 mM MgSO

4
, 1.6 mM CaCl

2
, 10 mM MOPS, and 5.5 mM glucose, pH

7.4), and arteries (�500 lm diameter) were carefully dissected away from the
adjacent connective tissue. Arterial sections (2 mm) were mounted on a Danish
Myotechnology M610 wire myograph (Danish Myotech, Aarhus, Denmark),
normalized to an internal diameter of 0.9 of L

13.3 kPa
(luminal pressure ;45

mmHg) and left to equilibrate (378C; gassed with air containing 5% CO
2
) in 6

ml physiological salt solution [31] (PSS: 119 mM NaCl, 25 mM NaHCO
3
, 4.69

mM KCl, 2.4 mM MgSO
4
, 1.6 mM CaCl

2
, 1.18 mM KH

2
PO

4
, 6.05 mM

glucose, and 0.034 mM ethylenediaminetetraacetic acid, pH 7.4) as previously
described [32]. Vessel viability was assessed using a high potassium solution
[31] (KPSS: 11 mM NaCl, 25 mM NaHCO

3
, 120 mM KCl, 2.4 mM MgSO

4
,

1.6 mM CaCl
2
, 1.18 mM KH

2
PO

4
, 6.05 mM glucose, and 0.034 mM

ethylenediaminetetraacetic acid, pH 7.4). Protocol 1 was used to assess vascular
function in MAs from all three BMI groups. During the period of this study,
more overweight women than normal weight women were delivered by elective
Cesarean section, thus myometrial biopsies were more frequently available
from this BMI group. It was also apparent from protocol 1 that MAs from
overweight women have similar functional characteristics to those from normal
weight women. For these reasons, only MAs from overweight women were
used in protocol 2 to determine whether indomethacin altered vascular function.

Protocol 1: Effect of Maternal BMI on Vasoconstriction and
Vasodilatation in MAs

Arteries were exposed to incremental doses of the thromboxane A
2

(TXA
2
)

mimetic U46619 (10�10–10�5.7 M; 6 3 2min intervals; Merck Chemicals,
Nottingham, U.K.) or arginine vasopressin (AVP) (10�10–10�8 M; 5 3 2 min
intervals). Following washing, arteries were precontracted for 15min with an
EC

80
concentration of U46619 or AVP (an effective concentration to induce

80% of the maximum contraction observed in the previous dose-response
curve) and then exposed to the endothelial-dependent vasodilator bradykinin
(BK) (10�10–10�5 M; 6 3 2 min intervals) or nitric oxide (NO) donor sodium
nitroprusside (SNP) (10�11–10�6 M; 6 3 2 min intervals). Following PSS
washout, KPSS was applied to confirm vessel viability.

Protocol 2: Effect of Indomethacin on MA Function

Tone oscillations were observed in a high proportion of MAs when exposed
to EC

80
concentrations of either agonist (predominantly AVP) and incremental

doses of BK and SNP, but what mediated these oscillations was unclear. A
previous study observed similar oscillatory activity in MAs and ruled out NO as
a potential modulator [27]; another study indicated prostaglandins might
contribute to vascular oscillations [33]. Thus, the current study used
indomethacin, an inhibitor of prostaglandin biosynthesis [34], to investigate
whether prostaglandins regulated these oscillations.

Paired arteries were treated with indomethacin (10�5 M) or an equivalent
concentration of dimethyl sulfoxide (DMSO), the drug diluent for the control.
After 30 min incubation, incremental doses of AVP (10�10–10�8 M; 5 3 2 min
intervals) were added. Arteries were washed to baseline with PSS containing
indomethacin or DMSO (as appropriate). Arteries were precontracted with an

TABLE 1. Demographic, biophysical, and obstetric data for the participants.a

Category Normal weight (n ¼ 18) Overweight (n ¼ 18) Obese (n ¼ 20) P valueb

Age (yr) 32.0 (22.0–39.0) 32.5 (26.0–42.0) 31.0 (24.0–47.0) ns
Ethnicity: Caucasian no. (%) 16 (88.9%) 17 (94.4%) 16 (80.0%) ns
Parity 1 (0–8) 1 (0–3) 1 (0–7) ns
Smoker no. (%) 1 (5.6%) 2 (11.1%)* 4 (20.0%)***,þ *P , 0.05 (N vs. Ov)

***P , 0.0001 (N vs. Ob)
þP , 0.05 (Ov vs. Ob)

BMI at booking (kg/m2) 22.8 (19.0–24.9) 28.1 (25.3–29.9)** 32.9 (30.0–42.3)***,þþþ **P , 0.01 (N vs. Ov)
***P , 0.0001 (N vs. Ob)
þþþP , 0.0001 (Ov vs. Ob)

Gestation (wkþdays) 39þ2 (38þ6–41þ2) 39þ1 (37þ3–40þ2) 39þ0 (37þ1–40þ3) ns
Birthweight (g) 3400 (2900–3710) 3380 (2650–3990) 3520 (3170–4100) ns
IBR 50 (16–89) 43 (11–84) 59 (17–89) ns
Male infant no. (%) 10 (55.6%) 10 (55.6%) 15 (75.0%)*,þ *P , 0.05 (N vs. Ob)

þP , 0.05 (Ov vs. Ob)

a Median (range) unless stated otherwise.
b N, normal weight; Ov, overweight; Ob, obese; ns, nonsignificant.
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EC
80

concentration of AVP for 15 min and then exposed to BK (10�10–10�5

M; 6 3 2 min intervals) or SNP (10�11–10�6 M; 6 3 2 min intervals). Following
PSS washout, KPSS was used to confirm vessel viability.

Immunohistochemistry

Myometrial tissue from normal weight (N¼ 6) and obese (N¼ 6) pregnant
women was fixed in 10% neutral buffered formalin at 48C overnight and wax
embedded. Immunohistochemistry was performed as previously described [35]
on serial tissue sections (5 lm) using the following primary antibodies:
polyclonal rabbit anti-human thromboxane-prostanoid (TBXA2R) receptor (3
lg/ml; Cayman Chemicals, Cambridge Bioscience Ltd., Cambridge, U.K.);
monoclonal mouse anti-human smooth muscle a-actin (15.25 lg/ml); and
endothelium markers CD31 (2 lg/ml; Dako U.K. Ltd., Ely, U.K.) and von
Willebrand factor (VWF) (4 lg/ml; Dako U.K. Ltd.). For negative controls, the
primary antibody was substituted with an equivalent concentration of
nonimmunized immunoglobulin G (containing all the immunoglobulin G
isotypes) derived from animal serum corresponding to the animal of primary
antibody origin. Negative controls were included in every staining run.

Immunohistochemical Analyses

Images of stained tissue were obtained using an Olympus BX41
microscope with a QI Cam Fast 1394 camera and Image Pro Plus software
(Media Cybernetics U.K., Marlow, U.K.). Smooth muscle a-actin and
endothelial markers CD31 and VWF were used to confirm the presence of
arteries in the myometrial tissue. A scoring system was established to allow
semiquantitative analysis of TBXA2R staining intensity in the endothelium and
smooth muscle of all the arteries present in the sample; n ¼ 17 6 1 (mean 6
SEM). There was no difference in the number of arteries scored per sample in
the normal weight compared to the obese cohort. Staining scores were 0¼ no
staining, 1 ¼ faint/patchy, 2 ¼ moderate, 3 ¼ strong, 4 ¼ very strong. Four
independent scorers were given the same example photos for each score and
blinded to sample identity. Median scores for endothelium and smooth muscle
were calculated for each myometrium.

Statistics

Data were analyzed using GraphPad Prism (GraphPad Software, San
Diego, CA). Demographic data (median and range) were analyzed by chi
square and Kruskal-Wallis tests (Dunn posttest used when appropriate). Vessel
tone (mN/mm) was converted into active effective pressure (kPa) by
normalizing for vessel diameter. Dose-response curves (mean 6 SEM) were
analyzed by two-way ANOVA (Bonferroni posttest used when appropriate).
Area under the curve (AUC, in arbitrary units), maximum response (contraction
or relaxation; V

max
, in kPa or percentage), and sensitivity (EC

50
, in nM) for

each artery and agonist are presented as median and interquartile range and
analyzed using Mann Whitney, Kruskal-Wallis, or Wilcoxon matched-pairs
signed rank tests as appropriate. Median TBXA2R staining scores were
analyzed using a Kruskal-Wallis test.

Changes in vascular tone were defined as oscillations if the amplitude (peak
to trough) was .10% of the maximum AVP-induced contraction. Oscillation
amplitude and frequency (number per min) were recorded for the last 10 min of
the precontraction in each artery. P , 0.05 was considered significant.

RESULTS

Effect of Maternal BMI on MA Vasoconstriction

Artery diameters were comparable between normal weight
(N¼ 13; n¼ 25; mean 6 SEM, 317 6 15 lm), overweight (N
¼ 12; n¼ 47; 333 6 20 lm), and obese (N¼ 20; n¼ 33; 332 6
15 lm) cohorts. Maximum contraction to KPSS was not
affected by maternal BMI (8.1 kPa [6.9–12.0 kPa], 9.9 kPa
[7.2–11.8 kPa], and 10.2 kPa [6.1–12.4 kPa]).

Concentration-dependent vasoconstriction to U46619 was
significantly shifted to the right in the obese subgroup,
demonstrating that a higher concentration of U46619 was
required to induce a similar level of contraction in MAs from
obese compared to normal weight pregnant women (P , 0.05;
two-way ANOVA; Fig. 1A). Myometrial arteries from
overweight women had a similar response to increasing
concentrations of U46619 to that in MAs from normal weight
women, but this was not significantly different from the obese

subgroup. AUC (median 18.8 [interquartile range: 14.8–30.5],
17.4 [12.8–23.3], and 15.3 [12.7–25.3]), maximal contraction
(11.1 kPa [9.4–15.4 kPa], 12.5 kPa [8.3–16.4 kPa], and 9.6 kPa
[8.5–16.0 kPa]), and sensitivity (41.9 nM [10.5–59.3 nM], 54.2
nM [38.0–119.2 nM], and 61.0 nM [20.7–109.6 nM]) to
U46619 were comparable between normal weight, overweight,
and obese groups.

AVP-induced vasoconstriction was not different between
BMI cohorts (Fig. 1B). AUC (7.6 [4.8–11.3], 10.6 [7.1–17.2],
and 9.8 [4.8–14.3]), maximal contraction (11.4 kPa [8.1–14.6
kPa], 12.0 kPa [9.9–19.6 kPa], and 13.5 kPa [8.3–15.7 kPa]),
and sensitivity (2.6 nM [0.8–5.0 nM], 1.1 nM [0.6–4.4 nM],
and 2.5 nM [1.0–5.6 nM]) to AVP were comparable between
the normal weight, overweight, and obese groups.

Effect of Maternal BMI on Endothelial-Dependent
Vasodilatation

There was no difference in U46619 or AVP precontraction
between BMI groups (data not shown). Bradykinin exposure
induced marked relaxation in precontracted (U46619 and AVP)
MAs from normal weight (residual contraction in U46619-
precontracted arteries; N¼ 13, n¼ 15: 6.6% [4.1%–18.8%]; in
AVP-precontracted arteries; N ¼ 13, n ¼ 14: 6.8% [2.3%–
12.7%]), overweight (U46619 arteries; N ¼ 11, n ¼ 15: 6.4%
[3.6%–12.6%]; AVP arteries; N ¼ 9, n ¼ 13: 4.5% [0.2%–
8.1%]), and obese women (U46619 arteries; N ¼ 18, n ¼ 20:
14.0% [6.6%–31.4%]; AVP arteries; N ¼ 20, n ¼ 21: 6.9%
[2.3%–12.0%]). Bradykinin-induced relaxation in U46619-
precontracted MAs (Fig. 2A) was not affected by maternal
BMI. However, there was an upward shift in BK-induced
relaxation in AVP-precontracted arteries from obese compared

FIG. 1. Vasoconstriction of MAs from normal weight and obese pregnant
women in response to U46619 (A) and AVP (B). Data are mean 6 SEM. P
, 0.05; two-way ANOVA.
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to normal weight subgroups (P , 0.05; Fig. 2B); AUC was
higher in MAs from obese (307.1 [202.1–344.0]) compared to
normal weight (218.0 [133.4–250.3]) women (P , 0.05).
Maximum relaxation (as above) and sensitivity (EC

50
; normal

weight 10.5 nM [1.0–37.1 nM] vs. obese 22.9 nM [7.4–150.4
nM]) to BK were unaffected by maternal BMI. Bradykinin-
induced vasodilatation in U46619 and AVP-precontracted
MAs from overweight women resembled that measured in
MAs from the normal weight cohort, but there was no
difference in relaxation compared to MAs from the obese
cohort (data not shown).

Effect of Maternal BMI on Endothelial-Independent
Vasodilatation

Precontraction (U46619 or AVP) was unaffected by
maternal BMI (data not shown). There was no difference in
maximum relaxation, AUC, and sensitivity to SNP in U46619-
precontracted arteries between normal weight (N¼ 10; n¼ 20)
and obese (N¼ 15, n¼ 24) cohorts (Fig. 2C). In contrast, SNP-
induced vasodilatation was shifted upward in AVP-precon-
tracted arteries in obese (N¼ 15, n¼ 24) compared to normal
weight women (N¼ 13, n¼ 19; P , 0.01; Fig. 2D). AUC was
greater in arteries from obese (419.8 [313.9–475.8]) compared
to normal weight (277.7 [243.1–392.7]) women (P , 0.05);
however, maximum relaxation (residual contraction; normal
weight 11.3% [7.7%–19.9%], overweight 11.4% [8.6%–
20.3%], and obese 15.3% [6.7%–48.7%]), and sensitivity
(8.0 nM [2.4–86.1 nM], 26.2 nM [4.9–54.7 nM], and 39.7 nM
[4.6–140.6 nM]) to SNP in AVP arteries were unaffected by
maternal BMI. SNP-induced relaxation in both U46619- and

AVP-precontracted MAs from overweight women (N¼ 11; n¼
19) was similar to that in MAs from normal weight women, but
there was no difference compared to MAs from obese women
(data not shown).

Effect of Indomethacin on MA Function

Although marked relaxation was induced in MAs, the
characteristic sigmoid curve relationship to increasing concen-
trations of SNP was disrupted by oscillations in the vascular
tone. Tone oscillations were observed in 65% of MAs in
response to precontraction (both U46619 and AVP) and
concentration-dependent relaxation curves (both BK and
SNP). There was no difference in the incidence of MA
oscillations between BMI groups. Approximately 66% of
oscillations occurred in AVP-precontracted arteries; therefore,
further experiments to examine oscillations were performed
using AVP according to protocol 2. In Figure 3, there are
examples of original traces illustrating the absence (Fig. 3A)
and presence (Fig. 3B) of tone oscillations and the effect of
DMSO (Fig. 3C) and indomethacin (Fig. 3D) in MAs.

Indomethacin did not affect MA responses to AVP (Fig.
3E); AUC (9.0 [4.0–11.1] vs. 7.5 [7.1–17.2]), maximum
contraction (11.9 kPa [9.3–17.0 kPa] vs. 13.8 kPa [9.7–15.5
kPa]), and sensitivity (2.5 nM [2.4-3.2 nM] vs. 2.4 nM [2.1–
13.5 nM]) to AVP were comparable in MAs exposed to DMSO
and indomethacin, respectively. There was no difference in the
response to AVP in arteries used for protocol 2 and arteries
from overweight women used in protocol 1.

Maximum response to AVP precontraction was similar
between MAs exposed to DMSO (13.4 kPa [8.6–17.2 kPa])

FIG. 2. Endothelial-dependent and -independent vasodilatation in MAs isolated from normal weight and obese pregnant women. Vasodilatation to
bradykinin (BK) in MAs preconstricted to U46619 (A) and AVP (B); and vasodilatation to sodium nitroprusside (SNP) in arteries preconstricted to U46619
(C) and AVP (D). Data are mean 6 SEM. P , 0.05; two-way ANOVA.
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and indomethacin (16.8 kPa [10.9–19.1 kPa]). There was no
difference in BK-induced (Fig. 3F) or SNP-induced (Fig. 3G)
vasodilatation between arteries exposed to DMSO and
indomethacin. AUC, maximum response and sensitivity to
AVP, BK, and SNP were similar in the DMSO and
indomethacin groups compared to the overweight cohort.

The oscillation amplitude during AVP precontraction was
reduced in MAs exposed to indomethacin (1.2 kPa [1.2–3.9
kPa]) compared to those exposed to DMSO (7.0 kPa [2.6–11.5
kPa]; P , 0.05), but the frequency of oscillations was
unaffected (0.15 [0.10–0.76] vs. 0.15 [0.10–0.34]).

TBXA2R Protein Expression

Positive staining for TBXA2R (Fig. 4A) was observed in
MA smooth muscle cells (SMCs) and ECs in both normal

weight and obese samples. Endothelial cells and SMCs were
identified using serial tissue sections immunostained with
endothelial markers CD31 (Fig. 4B) and VWF (picture not
shown) and smooth muscle a-actin (Fig. 4C). There was a
trend for higher TBXA2R expression in ECs than SMCs (P¼
0.06), but there was no difference in staining intensity between
normal weight and obese subgroups (Fig. 4E).

DISCUSSION

Obese women with otherwise uncomplicated pregnancies
had impaired MA function linked to specific vascular
regulatory pathways. Contraction to the TXA

2
mimetic

U46619 was reduced in MAs from obese compared to normal
weight pregnant women; however, AVP-induced contraction
was unaffected by maternal BMI. U46619 and AVP were both

FIG. 3. Tone oscillations in MAs. A, B) Original traces of arteries contracted to arginine vasopressin (AVP) for 15 min before incremental doses (from
dotted line) of either bradykinin (BK) or sodium nitroprusside (SNP) were added at 2 min intervals (arrows). Changes in vascular tone were defined as
oscillations if the amplitude (peak to trough) was .10% of the maximum AVP-induced contraction. Oscillation amplitude and frequency (number per
min) were recorded for the last 10 min of the precontraction in each artery. Example traces presented are of an artery, which was exposed to BK but did not
oscillate (A), and AVP-induced tone oscillations in an artery exposed to SNP (B). C, D) AVP-induced tone oscillations developed in two sections of the
same artery, one exposed to DMSO (drug diluent control; C) and the other to indomethacin (10�5 M; D) prior to a BK concentration response curve.
Amplitude, but not frequency, of these oscillations was reduced in arteries exposed to indomethacin. The effect of indomethacin was also assessed on
arterial responses to AVP (E), BK (F), and SNP (G). Data are mean 6 SEM.
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used to assess vasoconstriction in this study because they
induce vascular function via distinct receptor-mediated pro-
cesses that directly and indirectly affect intracellular Ca2þ

levels [36–38]. Disparate responses to U46619 and AVP
indicate that MA function is not globally impaired in obese
women, but disruptions may be specific to the TXA

2
pathway.

TXA
2
-induced contraction results from numerous steps

mediated by ECs and SMCs [37, 39, 40], any one of which
might be disrupted in obesity.

Aberrant TXA
2

production is associated with obesity; in the
nonpregnant state, serum TXB

2
(a stable metabolite of TXA

2
)

levels are higher in obese, and lower in morbidly obese,
women than their normal weight counterparts [41]. Abnormal
artery function in obese pregnancies may thus arise from
aberrant levels of and/or altered responses to TXA

2
. The

location and distribution of TBXA2R was assessed in
myometrial tissue from normal weight and obese pregnant
women because receptor expression or density could be a
limiting factor in TXA

2
-induced contraction. However,

TBXA2R expression on ECs and SMCs was not affected by
maternal BMI, indicating that other stages and/or metabolites
of the TXA

2
pathway are altered in obese pregnancies.

Unfortunately, it is unknown if TXA
2

levels change in human
obese pregnancies.

The origin of vascular dysfunction in obesity might arise
from increased visceral adipose tissue mass. Adipose tissue

produces numerous signaling factors (often referred to as
adipokines) [42, 43] that mediate a range of physiological
processes, including vascular function. In obesity, there are
increased systemic circulating concentrations of prothrombotic,
proinflammatory and vasoactive factors, for example, leptin,
tumor necrosis factor, interleukin 6 (IL6) and IL8, and
decreased levels of vasoprotective adipokines, such as
adiponectin [43, 44]. Women with PE have a similarly altered
endocrine profile [45, 46]. Aberrant vasoactive adipokines may
stimulate the systemic, utero- and fetoplacental vascular
dysfunction evident in obese mothers. In support of this,
hyperleptinemia, as observed in systemic and umbilical
circulations in obesity, potentially promotes endothelial
dysfunction via an imbalance in NO bioavailability and
increasing oxidative stress [47]. Also, exposure to adipokines
(e.g., leptin or IL6), produced from cultured human adipocytes,
alters human umbilical venous EC function by up-regulating
monocyte adhesion (a mechanism associated with vascular
disease) [48]. Increased central adiposity has been linked to an
impaired ability to process fatty acids, which results in
excessive fatty acids in the maternal circulation and oxidative
stress [49, 50]. These lead to oxidized lipids and lipotoxicity,
which have been hypothesized to promote vascular dysfunction
and impair placental development in obese mothers [51, 52].
An imbalanced hormonal milieu and/or altered lipid metabo-
lism may therefore link maternal obesity with circulatory
disorders during pregnancy and in later life by promoting
chronic inflammation and vascular dysfunction.

Our findings cannot be directly extrapolated to PE as
preeclamptic women were not included in the current study.
However, it is interesting to note that there are similarities in
the vascular function observed in obesity and PE. Reduced MA
vasodilatation in obese compared to normal weight pregnant
women was consistent with that demonstrated in previous
studies of obesity [53] and PE [16]. However, impaired
relaxation was only identified in MAs from obese women
precontracted to AVP and not U46619. Similar results have
been observed in some studies of MAs from PE pregnancies
[16, 54] but not in all; BK-induced vasodilation was attenuated
in U46619-precontracted vessels from PE pregnancies [55]. No
published studies of obesity or PE have assessed vasodilatation
in both AVP- and U46619-precontracted arteries dissected
from the same biopsy, thus, no direct comparisons can be made
with the current study. Differential vasodilatation mechanisms
indicate that specific vasoregulatory pathways may be altered
by maternal obesity, but this requires further study.

Endothelial cells initiate vasodilatation by releasing factors,
such as NO. Normally, EC activation (e.g., by shear stress or
agonist) induces Ca2þ-calmodulin binding that stimulates NO
synthase (NOS) to produce NO [56]. NOS activity is regulated
by binding to caveolin. Endothelium-dependent agonists (e.g.,
BK) dissociate the NOS/caveolin complex and initiate NO
production; endothelium-independent agonists (e.g., SNP)
circumvent this pathway by directly donating NO to SMCs.
NO permeation into SMCs activates a cascade of phosphor-
ylation events resulting in reduced intracellular Ca2þ (via
sarcoplasmic reticulum reuptake or extrusion from the cell),
cellular hyperpolarization, and attenuated Ca2þ sensitivity,
which lead to vasodilatation. Blunted endothelial-dependent
(BK-induced) and NO-dependent (SNP-induced) vasodilata-
tion in obese pregnant women suggest there may be
abnormalities 1) in the ability of ECs to synthesize or release
vasodilators and/or 2) in the capacity of the smooth muscle to
respond (e.g., desensitization) to vasodilators and elicit
downstream signaling pathways. These data are comparable
to studies that have examined the potential role of perivascular

FIG. 4. Thromboxane-prostanoid (TBXA2R) receptor immunostaining in
MAs from normal weight and obese women. Representative photomicro-
graphs of serial immunostaining: TBXA2R (A), CD31 (B), smooth muscle
a-actin (C), and negative control (D). Positive 3,30-diaminobenzidine
staining (brown) and hematoxylin counterstain (blue). Bars ¼ 50 lm. L,
lumen. E) Semiquantitative analysis of TBXA2R immunostaining in the
endothelium (EC) and smooth muscle (SMC) of MAs from normal weight
and obese pregnant women. Horizontal lines¼median.
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adipose tissue (PVAT; adipocytes surrounding blood vessels)
in regulating vascular function. PVAT, similar to visceral fat,
releases factors that exert an anticontractile effect on the
adjacent blood vessel through endothelial-dependent (NO
release and Ca2þ-dependent potassium channel activation)
and/or endothelial-independent mechanisms (e.g., hydrogen
peroxide production) [57, 58]. In obesity, this anticontractile
phenotype is attenuated [58], but how this is achieved is
unknown. It may be that larger perivascular adipocytes
observed in obesity release altered levels of cytokines, which
promote localized hypoxia, oxidative stress, and inflammation,
or reduce NO bioavailability, and result in impaired vasodila-
tation [58]. Altered PVAT function might therefore underpin
reduced relaxation in MAs from obese mothers. Alternatively,
MAs from obese women may be less responsive than those
from normal weight women due to high amounts of PVAT
mass increasing vascular stiffness [59]. Further investigations
are required to confirm these suggestions.

Bradykinin is commonly used as a potent vasodilator when
assessing vascular function, particularly using myography [16,
17, 27, 32]. However, previous data demonstrate that BK has
direct and indirect effects on the vasculature and can induce
vasodilatation, via NO and endothelium-derived relaxing factor
(EDRF)-based mechanisms [60, 61], but can have more of a
contractile effect on vascular SMCs mediated by prostaglan-
dins (including TXA

2
) when the endothelium is damaged [62,

63]. As endothelial dysregulation has been linked to obesity
[15], these properties might explain the impaired ability of
MAs from obese pregnant women to relax to BK; either the
endothelial-dependent mechanisms are unable to overcome
AVP-induced contraction or prostaglandins impede relaxation.
Previous studies have demonstrated that BK-induced contrac-
tion can be inhibited by blocking TBXA2R [64], potentially
suggesting that when U46619 is present, it occupies the
receptor enabling the BK to initiate relaxation via other
pathways. More detailed experiments would be required to
confirm or deny the interactions that occur between U46619,
AVP, and BK in MAs.

Large-amplitude, long-duration (.2min) oscillations were
observed in a high proportion of MAs when exposed to
precontraction concentrations of U46619, but more often to
AVP. Oscillations were also occasionally triggered by the
addition of BK or SNP. An initial examination of the potential
mechanisms that underpin these agonist-induced oscillations
was made but was not the main focus of the current study.
There were no differences in oscillations between BMI cohorts,
indicating that vascular pathways (e.g., TXA

2
or NO), which

are disrupted by maternal obesity, do not mediate local
oscillatory activity. However, it is important to study MA
tone oscillations further as they are altered in pregnancies
complicated by PE and fetal growth restriction [27], suggestive
of increased vascular resistance and subsequent changes in
blood flow. Endothelial cell and SMC interactions mediate
oscillatory activity but if disrupted, for example, by the altered
hormonal environment in obesity, could prime blood vessels to
be more susceptible to stimuli that promote vascular dysfunc-
tion as observed in pregnancy complications, for example, PE.
Tone oscillations, which acutely regulate blood flow to ensure
optimal oxygen and nutrient supply to the tissue, may have a
different stimuli, for example, prostaglandins [33, 34]. Here
indomethacin, an irreversible inhibitor of cyclooxygenases that
participate in prostaglandin biosynthesis [34], reduced MA
oscillation amplitude but not incidence, indicating that
cyclooxygenase/prostaglandin-dependent [34] and -indepen-
dent [65] mechanisms contribute to AVP-induced oscillations.
A previous study investigated whether NO contributed to tone

oscillations but demonstrated that MA oscillations were
unaffected by the administration of L-NNA, a NOS inhibitor,
indicating that there are other mechanisms that must contribute
to oscillatory activity [27].

It is important to note that despite aberrant MA function, the
obese pregnant women studied here had uncomplicated
pregnancies and delivered appropriate for gestational age
babies. This indicates there are mechanisms that can compen-
sate for an adverse intrauterine environment, enabling these
women to overcome impaired vascular function and deliver a
normal-sized baby. However, this compensation appears to be
short-term because reports suggest that irrespective of
birthweight, being born to an obese mother confers an
increased risk of ill health in later life [66]; children of obese
mothers are already clinically categorized as obese by 4 yr of
age [67]. Childhood obesity is associated with chronic
metabolic and cardiovascular disorders in adulthood [68]. This
emphasizes the need to reduce maternal obesity and its
associated pathologies to prevent adverse fetal programming
and improve the health of subsequent generations. However, as
obesity rates are currently escalating, it is important that future
research should concentrate on determining the underlying
mechanisms of impaired vascular function as well as
identifying how some obese women are able to compensate
for this and have a good pregnancy outcome whilst others do
not. Future studies are needed to elucidate whether central
adiposity results in an altered endocrine milieu that may
promote vascular dysfunction potentially by altering the
function of PVAT.
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