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ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotro-
pin synthesis and release from the pituitary of birds and
mammals. However, the physiological role of orthologous GnIH
peptides on the reproductive axis of fish is still uncertain, and
their actions on the main neuroendocrine systems controlling
reproduction (i.e., GnRHs, kisspeptins) have received little
attention. In a recent study performed in the European sea bass,
we cloned a cDNA encoding a precursor polypeptide that
contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFa-
mide (sbGnIH-2) peptide sequences, developed a specific
antiserum against sbGnIH-2, and characterized its central and
pituitary GnIH projections in this species. In this study, we
analyzed the effects of intracerebroventricular injection of
sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of
reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2,
gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-
2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh
levels. In addition, we determined the effects of GnIH on
pituitary somatotropin (Gh) expression. The results obtained
revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1,
kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta,
lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only
down-regulated brain gnrh1 expression. However, at different
doses, central administration of both sbGnIH-1 and sbGnIH-2
decreased Lh plasma levels. Our work represents the first study
reporting the effects of centrally administered GnIH in fish and
provides evidence of the differential actions of sbGnIH-1 and
sbGnIH-2 on the reproductive axis of sea bass, the main

inhibitory role being exerted by the sbGnIH-2 peptide.

fish, gonadotropin-releasing hormone (GnRH), gonadotropins,
kisspeptins, LPXRFamide, perciforms, reproduction, sea bass

INTRODUCTION

As in other vertebrates, gonadotropin-releasing hormone
(GnRH) constitutes the main neuroendocrine factor stimulating
the secretion of gonadotropins in fish, its functional antagonist
being represented by dopamine, which inhibits the secretion of
these adenohypophyseal hormones and blocks the reproductive
process [1, 2]. This dopaminergic inhibition has been
demonstrated in representative species of some teleost orders
such as Cypriniformes, Salmoniformes, Siluriformes, Cichli-
formes, and Mugiliformes (for a review, see [2]). However, no
dopaminergic inhibition has been demonstrated at all in
perciform species studied up to date, including the European
sea bass (Dicentrarchus labrax) [3–6]. Whether neuroendo-
crine factors inhibiting reproduction are lacking in these
teleosts or they remain to be identified should be deciphered.

Gonadotropin inhibitory hormone (GnIH) is a hypothalamic
neuropeptide that belongs to the RFamide peptide family and
was first discovered in birds [7]. In the past 15 yr, GnIH
orthologs have been identified not only in other vertebrates,
from lampreys to mammals, but also in protochordates [8–19].
These GnIH genes encode a precursor polypeptide that may
produce two to four C-terminal LPXRFamide peptides [19].
Although most of the reported effects of these GnIH orthologs
are related to reproduction (e.g., regulation of gonadotropin
synthesis and release, reproductive development, seasonal
reproduction, estrous/menstrual cycle, steroidogenesis and
germ cell maturation, sex behavior), GnIH also appears to be
involved in the regulation of feeding, growth, stress response,
and cardiac contractile function [19]. These actions are
mediated via G protein-coupled GnIH receptors (GnIHR), of
which two different subtypes, GPR147 and GPR74, have been
described up to date [20–22].

Following on from pioneer research in avian species [7, 23,
24], subsequent in vivo and in vitro studies performed in
mammals demonstrated that GnIH could also inhibit the
reproductive process in this group of vertebrates [25–28].
RFRP-3, a mammalian GnIH ortholog, reduces gonadotropin
synthesis and release through its inhibitory actions on GnRH
neurons and/or pituitary gonadotropes [26, 27, 29]. Further-
more, immunoreactive (ir) GnIH fibers were found in close
proximity to GnRH cells in the hypothalamus of different
mammalian species [25, 30, 31], and GnIH receptor mRNA or
protein were present in GnRH neurons [28], suggesting that
GnIH may indirectly regulate gonadotropin secretion from the
pituitary via this neuropeptidergic system. In this sense, RFRP-
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3 peptide was also found to inhibit the synthesis and release of
GnRH in pigs [32]. However, in the Siberian hamster, GnIH
peptides (RPFRP-1 and RPFRP-3) inhibited or stimulated Lh
release depending on the photoperiod regimes, suggesting that
GnIH peptides are fine tuning Lh levels in an opposing fashion
across the seasons [28].

In contrast to tetrapods, in which the inhibitory effect of
GnIH on reproduction appears rather conserved, much more
functional diversity was observed between fish species
analyzed up to date. Goldfish GnIHs stimulated the release
of Lh, Fsh, and Gh in sockeye salmon [33]. In tilapia,
LPXRFa-2 peptide increased the release of Lh, Fsh, and Gh
both in vivo and in vitro [15]. In addition, the goldfish
LPXRFa-1 form increased the expression of gonadotropin
mRNA from cultured pituitary of grass puffer [34]. However,
intraperitoneal injection of the zebrafish LPXRFa-3 form
decreased serum Lh levels in goldfish in vivo [35].
Additionally, the administration of goldfish LPXRFa-2 and
LPXRF-3 peptides suppressed the gnrh3, lhb, and fshb mRNA
levels in the same species [36].

The European sea bass is an important species for marine
aquaculture in Europe and has also represented an interesting
fish model for the study of environmental and neuroendocrine
control of reproduction [5, 37–49]. Recently, we cloned a
GnIH ortholog precursor containing two putative GnIH
peptides (sbGnIH-1 and sbGnIH-2) in the European sea bass,
analyzed its expression in central nervous system and
peripheral tissues, and elucidated the immunohistochemical
localization of GnIH cells and their projections in the brain and
pituitary by using an antibody against the endogenous amino-
acid sequence of a teleost GnIH peptide [17]. In this previous
work, we reported the presence of GnIH fibers in neuroendo-
crine areas where GnRH and kisspeptin cells are found as well
as in close proximity to Fsh, Lh, and Gh cells [17]. Therefore,
in order to elucidate the functional role of GnIH in the
regulation of the reproductive axis of the European sea bass, in
the present study we investigated the in vivo effects of
intracerebroventricular (icv) injection of sbGnIH-1 and
sbGnIH-2 on brain and pituitary expression of reproductive
hormones genes as well as the physiological action of both
GnIHs on Fsh and Lh plasma levels in this species.

MATERIALS AND METHODS

Animals

Four-year-old male European sea bass, D. labrax (body length and weight
of 48.65 6 0.46 cm and 1636 6 59 g, respectively) were obtained from
CUPIMAR S.L (San Fernando, Spain), housed in the Laboratorio de Cultivos
Marinos (University of Cádiz, Puerto Real, Spain, 368 310 51.55 00 N, 68 120

38.78 00 W), and maintained under natural conditions at a salinity of 39 parts per
thousand. Fish were fed twice daily with commercial dry pellets using
automatic feeders (1% body weight; L6 Obtibass Skretting España S.A, Burgos
Spain). Spermiating animals were anesthetized at the end of November by
immersion in MS-222 (100–200mg/L of sea water; Sigma, St. Louis, MO). All
animals were treated in agreement with the European Union Regulation (EC.
Directive 86/609/EEC) concerning the protection of experimental animals and
in accordance with the Society for Study of Reproduction’s specific guidelines
and standards. Animal experimental protocols were approved by the Animal
Care and Use Committee of the University of Cádiz. Measures were taken to
avoid suffering of the animals.

Peptide Synthesis

T h e s b G n I H - 1 ( PL H LH A N M PM RF - N H
2

) a n d s b G n I H - 2
(SPNSTPNMPQRF-NH

2
) peptides (GenBank accession no. LN681205) were

synthesized by Thermo Fisher Scientific GmbH (Ulm, Germany). Synthetic
peptides were amidated at the C terminal end and purified by high-performance
liquid chromatography (.95% purity). The peptides were dissolved in PBS 13
according to the manufacturer’s instructions and stored at �208C until use.

Administration Procedure

Peptides were icv administered to the fish according to the procedure
described by Espigares et al. [49]. The sbGnIH-1 and sbGnIH-2 peptides were
injected using a 10-ll Hamilton microsyringe fitted with a 26-gauge needle
(Hamilton, Reno, NV) and driven by a micromanipulator. Each fish was
anesthetized and immobilized with its dorsal side upward and a small hole was
made in the midline, at the caudal apex of the pineal window, with a tiny drill
bit. The needle was then immediately inserted into the drill hole to a depth of 14
mm, to dispense the peptide or the vehicle into the third ventricle. To achieve a
suitable administration, the solution was injected slowly, and the needle was
extracted after 10 sec. The adequate depth and position of the injection were
determined in a preliminary test by injecting a blue dye into a practice subject
and then dissecting the brain to observe its distribution pattern and the
reliability and accuracy of the administration procedure.

Experimental Design and Sampling

The experiment was performed at the beginning of the reproductive period
(end of November). For the analysis of sbGnIH-1 and sbGnIH-2 effects, 40
sexually mature 4-yr-old males were divided into two groups of 20 animals
each. In turn, these animals were divided into four different groups, consisting
of three experimental and one control group of five fish each. The experimental
groups were administered sbGnIH-1 or sbGnIH-2 at 09:00 with doses of 1, 2,
or 4 lg dissolved in 8 ll of vehicle (PBS) per fish, while the control group
received 8 ll of vehicle solution alone per animal.

Based on preliminary time-course analysis, fish from each group (n ¼ 5)
were sampled 6 h postinjection (hpi). The fish were anesthetized by immersion
in MS-222 and euthanized, and the brain and pituitary gland were quickly
dissected, frozen in liquid nitrogen, and stored at �808C for subsequent RNA
extraction. Blood samples were withdrawn from the caudal vein (1 ml of
blood), and the plasma obtained after centrifugation (3000 rpm, 15 min, 48C)
was stored at �808C until use.

RNA Extraction and Reverse Transcription for Real-Time
Quantitative PCR Analysis

Total RNA from sea bass brain and pituitary was extracted with TRIsure
reagent (Bioline, London, United Kingdom), according to the manufacturer’s
protocol. Tissues were homogenized in a mixer mill MM400 (Retsch, Haan,
Germany) using four to five stainless steel beads. Total RNA concentration was
quantified on a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific).
Total RNA (1 lg) was retrotranscribed and DNA removed using a QuantiTec
Reverse Transcription Kit (Qiagen, Hilden, Germany). Primers for the
quantitative PCR assays and their amplicon sizes are shown in the Table 1.
Real-time PCR analysis was performed in a PCR Bio-Rad CFX96 Touch
detection system (Bio-Rad, Richmond, CA), using a SensiFAST SYBR No-
ROX Kit (Bioline). PCR conditions were as follows: initial denaturation 2 min
at 958C and 40 cycles of 15 sec at 958C and 25 sec at the optimal temperature
for each primer pair (details provided in Table 1) for annealing-extension.
Duplicates of each sample were analyzed in the same test. Standard curves were
generated for each gene with 10-fold serial dilutions of cDNA, and all
calibration curves exhibited slopes close to �3.32 and efficiencies around
100%. Melting curves were performed for each sample in order to confirm that
a single product was amplified. The expression of the target genes was
normalized against three different reference genes (18s, L17, and ef1-alpha).
The relative expression of genes analyzed was calculated by the�DDCt method
[50].

Hormone Analysis

Plasmatic levels of Lh and Fsh were determined using two respective
homologous enzyme-linked immunosorbent assays developed for sea bass [51,
52]. The sensitivity for the plasma measurements was 0.10 ng�ml�1 for Lh and
0.33 ng�ml�1 for Fsh.

Statistics

All results are presented as a mean 6 the standard error of the mean (SEM).
One-way ANOVA tests were used to compare gene expression mean values
followed by Student-Newman-Keuls post hoc tests, using Statgraphic Plus 5.1
software (Statpoint Technologies, Warrenton, VA). Prior to analysis, data were
checked for normality and homogeneity of variance, and the values were log-
or square root-transformed when required. When data did not accomplish the
requirements of the parametric ANOVA, they were analyzed using the
nonparametric Kruskal-Wallis ANOVA on ranks followed by Bonferroni test.

PAULLADA-SALMERÓN ET AL.
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Statistical significance was established as P , 0.05. All graphics were created
using PRISM 6 software.

RESULTS

Effects of sbGnIH-1 and sbGnIH-2 Peptides on Brain Gene
Expression

As a first step, we examined the effect of icv injection of
sbGnIH-1 and sbGnIH-2 peptides (1, 2, and 4 lg doses per
fish) on the expression levels of the three sea bass GnRH genes
(gnrh1, gnrh2, and gnrh3) and the main GnRH receptor
(gnrhr-II-2b) expressed in the brain (Fig. 1). The administra-
tion of sbGnIH-1 induced a significant decrease in brain gnrh1
gene expression with the three doses tested when compared to
the control group (P , 0.0045; Fig. 1A). However, no
significant effect was observed on gnrh2 and gnrh3 expression
(Fig. 1, B and C). Treatment with sbGnIH-2 significantly
decreased the expression of gnrh2 at all doses tested (P ,
0.0045; Fig. 1F), but no differences versus the control levels
were observed for both gnrh1 and gnrh3 (Fig. 1, E and G).
Neither sbGnIH-1 nor sbGnIH-2 had significant effects on
brain gnrhr-II-2b expression (Fig. 1, D and H).

In order to elucidate whether the kisspeptin system is a
target for the central action of GnIH in sea bass, the mRNA
levels of kiss1 and kiss2 were also analyzed. No variation was
observed in kiss1 and kiss2 mRNA levels in fish injected with
sbGnIH-1 (Fig. 2, A and B). Nevertheless, injection of
sbGnIH-2 decreased kiss1 mRNA level at a dose of 2 lg (P
, 0.0006; Fig. 2E) and kiss2 expression at doses of 2 and 4 lg
(P , 0.0345; Fig. 2F). We also analyzed the action of sbGnIH-

1 and sbGnIH-2 on the expression levels of the two sea bass
kisspeptin receptor genes (kiss1r and kiss2r). No significant
differences were observed in kiss1r and kiss2r expression in
fish treated with sbGnIH-1 (Fig. 2, C and D). However, the
administration of sbGnIH-2 resulted in a significant decrease of
kiss1r expression at a dose of 2 lg (P , 0.0345), but had no
effect on kiss2r transcript levels when compared to the control
group (Fig. 2, G and H).

To investigate the autoregulation of the GnIH system, we
also analyzed the brain expression levels of the sbgnih and
sbGnIH receptor (sbgnihr) genes after icv injections of
sbGnIH-1 and sbGnIH-2 (Fig. 3). Only the fish treated with
sbGnIH-2 at doses of 1 and 2 lg showed a significant decrease
in brain sbgnih (P , 0.0003) and sbgnihr (P , 0.0042) mRNA
levels (Fig. 3, A–D).

Effects of sbGnIH-1 and sbGnIH-2 Peptides on Pituitary
Gene Expression

Injection of sbGnIH-1 did not elicit significant changes in
the expression of lhb, fshb, and gh (Fig. 4, A–C) nor in mRNA
levels of the main GnRH receptor (gnrhr-II-1a) expressed in
the pituitary (Fig. 4D). In contrast, the administration of
sbGnIH-2 decreased the expression of fshb (P , 0.0017) at
doses of 2 and 4 lg (Fig. 4E), lhb mRNA levels at all doses
tested (P , 0.0049; Fig. 4F), and gh gene expression at the
higher dose tested (4 lg, P , 0.0088; Fig. 4G). Moreover,
sbGnIH-2 also significantly reduced gnrhr-II-1a transcript
levels at doses of 2 and 4 lg (P , 0.026; Fig. 4H).

TABLE 1. Primers used for quantitative real-time PCR.

Gene GenBank accession no. Sequences (50 to 30)a Annealing temperature (8C) Amplicon size (bp)

gnrh1 AF224279 F: GGTCCTATGGACTGAGTCCAGG 61 131
R: TGATTCCTCTGCACAACCTAA

gnrh2 AF224281 F: GTGTGAGGCAGGAGAATGCA 61 81
R: CTGGCTAAGGCATCCAGAATG

gnrh3 AF224280 F: TGTGGGAGAGCTAGAGGCAAC 60 81
R: GTTTGGGCACTCGCCTCTT

gnrhr-II-2b AJ606685 F: AGACTCTGAAGATGACGGTGGT 60 250
R: AGTGAAGCGTCTCTTCTCATCC

gnrhr-II-1a AJ419594 F: CTCTGGCTATCAATAAGGC 60 125
R: CTCGGGATGGATGATGGT

kiss1 FJ008914 F: GCATCAATACTGGCATCAGCAAAGA 63 94
R: TCAACCATTCTGACCTGGGAAACTT

kiss2 FJ008915 F: GGGAGGATTCCAGCCCGTGTTTCT 61 104
R: GAGGCCGAACGGGTTGAAGTTGAA

kiss1r JN202446 F: TGGTGGCTCTGTTCCTCATCT 63 78
R: CGTAACTGCGTAGGCCAAAAG

kiss2r JN202447 F: CGTCACAGTCTACCCCCTGAA 63 69
R: CAGATGCTGACAATCATGGCTACT

lhb AF543315 F: TTGAGCTTCCTGACTGTCCA 60 177
R: GCAGGCTCTCGAAGGTACAG

fshb AF543314 F: ACCAACATCAGCATCCAAGTG 63 127
R: TTCTCTGTTCAGGCCTCTCATAGT

gh X65716 F: GACAAGCACGAGACACAACG 60 206
R: CTGTCAGGGAACATCTCTGC

sbgnih LN681205 F: CCCACCACCAGCAAAATCAGCC 61 176
R: TCCCAAGACCTTCCGAACCTC

sbgnihr LN681208 F: GTACGGAAGCATCGGAGTCAAAC 60 178
R: CCAGGACAGCATGAAAAGCAAAG

l17 AF139590 F: CAGGAGTGGGTGACATGGTC 60,5 97
R: GACTTCCGCTGCCGTATCAC

18s AY831388 F: TCAGACCCAAAACCCATGCG 60 182
R: ACCCTGATTCCCCGTTACCC

elfa AJ866727 F: CTGTGCTGATCGTTGCTGCTGGTGTT 61 75
R: CGTGCTCGCGGGTCTGTCC

a Forward (F) and reverse (R) primers were obtained from Integrated DNA Techonologies.
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Effects of sbGnIH-1 and sbGnIH-2 Peptides on Plasma

Gonadotropin Levels

Finally, we analyzed the effects of icv injection of sbGnIH-1
and sbGnIH-2 on plasma Fsh and Lh levels. Neither of the two
forms had a significant effect on plasma Fsh concentration at
any of the doses tested (Fig. 5, A and C). A significant decrease
in plasma Lh hormone levels was observed in animals injected

with sbGnIH-1 at a dose of 4 lg (P , 0.048; Fig. 5B), while

the effect of sbGnIH-2 in plasma Lh levels was evident at a

dose of 1 lg (P , 0.009; Fig. 5D).

DISCUSSION

The pioneer studies performed in birds and subsequent

work developed in mammals from the beginning of this

FIG. 1. Effect of in vivo intracerebroventricular (icv) injection of different doses (1, 2, and 4 lg) of sbGnIH-1 (A, B, C, D) and sbGnIH-2 (E, F, G, H)
peptides on gnrh1, gnrh2, gnrh3, and gnrhr-II-2b relative expression at 6 hpi in the brain of male sea bass (Ct: control). Values are expressed as mean 6
SEM (n ¼ 5). Different lower case letters indicate significant differences between treatments (ANOVA, Student-Newman-Keuls test, P , 0.05).
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century have clearly established the role of GnIH in the

reproductive axis of tetrapods through its inhibition of GnRH

and gonadotropin secretion [7, 25, 29, 53, 54]. Until recently,

this neurohormonal inhibitory role on fish reproduction was

attributed to dopamine [1, 2, 55], but this dopaminergic

inhibition does not seem to operate in some teleost groups

such as perciforms [3–6].

From the discovery of GnIH, several GnIH orthologs have

been identified in different teleost species, and their effects on

the reproductive axis have been addressed by using pituitary

FIG. 2. Effect of in vivo icv injection of different doses (1, 2, and 4 lg) of sbGnIH-1 (A, B, C, D) and sbGnIH-2 (E, F, G, H) peptides on kiss1, kiss2, kiss1r,
and kiss2r relative expression at 6 hpi in the brain of male sea bass (Ct: control). Values are expressed as mean 6 SEM (n¼ 5). Different lower case letters
indicate significant differences between treatments (ANOVA, Student-Newman-Keuls test, P , 0.05).
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cell cultures and intraperitoneal injections [15, 16, 33, 35, 36,
56, 57]. To the best of our knowledge, this present paper
represents the first study in which the effect of icv
administration of GnIH has been reported in fish. Therefore,
this work provides the first evidence of the inhibitory role of
centrally administered GnIH in the reproductive axis of
teleosts. Our findings revealed that icv administration of
sbGnIH-1 and/or sbGnIH-2 altered the expression levels of
gnrh1, gnrh2, kiss1, kiss2, and kiss1r in the brain as well as
lhb, fshb, and gnrhr-II-1a mRNA levels in the pituitary, which
results in decreased plasma levels of Lh, with sbGnIH-2 effects
being much more evident. In addition, sbGnIH-2 but not
sbGnIH-1 appears to regulate the expression of its own
precursor and receptor genes. Previous studies performed in
fish have shown that the GnIH system plays a significant role
in the regulation of gonadotropin secretion [15, 16, 33, 35, 36].
However, both stimulatory and inhibitory effects have been
reported, and the nature of these effects seems to vary
considerably depending on the species, the physiological
status, and the route of administration of the GnIH peptide.
Considering that GnIH is a neuropeptide, our results suggest
that the central administration could represent the most
accurate way to elucidate the physiological role of cerebral
GnIH on reproductive function.

Our results show that sbGnIH-1 induces a decrease in gnrh1
mRNA levels in the sea bass brain. It is worth mentioning that
GnRH-1 represents the main hypophysiotropic form of GnRH
in sea bass, and its fibers innervate profusely the gonadotropic
and somototropic cells in the pituitary [38, 39]. Our recent
study performed in sea bass has demonstrated that sbGnIH-ir
cell projections reach the ventral telencephalon, the parvocel-
lular preoptic nucleus, and the lateral tuberal nucleus of the

hypothalamus [17], where sea bass GnRH-1 cells are located
[37, 38]. In addition, morphological evidence of GnIH-GnRH
interactions has been reported in rodents [30] and birds [58].
Furthermore, the expression of the GnIH receptor has been
shown in GnRH-1 neurons [28, 59]. It seems therefore
plausible that some of the actions of GnIH on the reproductive
axis to inhibit gonadotropin release might be centrally
mediated through the indirect action of sbGnIH-1 at the level
of the preoptic/hypothalamic GnRH-1 neurons. In accordance
with our results, the intraperitoneal administration of
gLPXRFa1 decreased gnrh1 mRNA levels in the hypothala-
mus of the grouper [16]. As in the case of icv injection of Kiss1
and Kiss2 [49], no effect of centrally administered sbGnIH was
observed on gnrh3 expression, which suggests that this GnRH
form is not relevant in the mediation of Kiss and GnIH actions
on the reproductive axis of sea bass.

On the other hand, the icv injection of sbGnIH-2
suppressed gnrh2 mRNA levels in the brain but had no
effect on gnrh1 or gnrh3 transcript levels. In monkeys and
birds, GnIH neurons send projections to midbrain GnRH-2
neurons, which express the GnIH receptor GPR147 [58, 60,
61]. There are indications showing the role of GnRH-2 in the
modulation of sexual behavior [62, 63]. It is interesting to
note that GnIH participates not only in neuroendocrine
functions but also in behavioral control in birds and
mammals [64]. GnIH inhibits sexual and aggressive behav-
ior, by acting within the brains of birds and mammals, and
some of these effects seem to be related to GnIH-induced
changes in the biosynthesis of neuroestrogens in the preoptic
area [65–67]. In sea bass, both GnIH and GnRH-2 are
expressed in tegmental midbrain cells and profusely inner-
vate sensory-motor areas and the spinal cord [17, 38],

FIG. 3. Effect of in vivo icv injection of different doses (1, 2, and 4 lg) of sbGnIH-1 (A, B) and sbGnIH-2 (C, D) peptides on sbgnih and sbgnihr relative
expression at 6 hpi in the brain of male sea bass (Ct: control). Values are expressed as mean 6 SEM (n¼5). Different lower case letters indicate significant
differences between treatments (ANOVA, Student-Newman-Keuls test, P , 0.05).
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6 Article 121

Downloaded From: https://bioone.org/journals/Biology-of-Reproduction on 15 Sep 2024
Terms of Use: https://bioone.org/terms-of-use



suggesting that both neuropeptides could also modulate
sensory-motor activity and behavior in this species. In
addition, both GnRH-2 and GnIH innervate the pineal organ
of the European sea bass [17, 44]. It should be noted that fish
pineal is a light-sensitive organ that transduces daily and
seasonal photoperiod information into the neuroendocrine

signal melatonin [68]. Previous studies have demonstrated
that GnIH is part of the mechanism driving photoperiodic
information and melatonin-induced seasonal changes to the
reproductive axis of birds and mammals [28, 64, 69–71].
Whether the inhibitory effects of sbGnIH-2 on gnrh2
transcript levels reported here are affecting the sexual

FIG. 4. Effect of in vivo icv injection of different doses (1, 2, and 4 lg) of sbGnIH-1 (A, B, C, D) and sbGnIH-2 (E, F, G, H) peptides on lhb, fshb, gh, and
gnrhr-II-1a relative expression at 6 hpi in the pituitary of male sea bass (Ct: control). Values are expressed as mean 6 SEM (n¼ 5). Different lower case
letters indicate significant differences between treatments (ANOVA, Student-Newman-Keuls test for A to G; Kruskal-Wallis, Bonferroni test for H, P ,
0.05).
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behavior and/or mediating the photoperiodic control of
reproduction in the European sea bass remains to be
elucidated.

Our results provide, for the first time in teleosts,
physiological evidence of the action of GnIH on the kisspeptin
system. We found that central administration of sbGnIH-2, but
not sbGnIH-1, significantly decreased kiss1, kiss2, and kiss1
receptor mRNA levels. In contrast, no significant alteration in
either kiss1 or kiss2 mRNA levels was observed after
intraperitoneal injection with any of the three GnIH peptides
present in the grouper Epinephelus coioides [16]. In sea bass,
both kiss1 and kiss2 mRNAs were detected by RT-PCR in the
brain and gonads, and their stimulatory role in the control of
reproduction has recently been demonstrated [48, 49, 72].
Moreover, recent studies in sea bass have revealed the presence
of a conspicuous population of Kiss2 cells surrounding the
dorsal, ventral, and lateral extents of the hypothalamic nucleus
of the lateral recess [46]. GnIH fibers are in close proximity to
kisspeptin neurons from the hypothalamic arcuate nucleus of
mice, which also contain GnIH receptors [73]. Interestingly,
earlier investigation from our laboratory by using immunohis-
tochemical techniques reported that sbGnIH-ir fibers profusely
innervated the different subdivisions of the nucleus of lateral
recess of sea bass, where kiss2 cells are located [17, 46]. These
results suggest that sbGnIH might be modulating the
reproductive axis of sea bass through its direct central action
not only on GnRH but also on kiss2 neurons. On the other
hand, the habenula of sea bass contains kiss1 neurons [46] as
well as pinealofugal fibers and pinealopetal neurons [74]. This
epithalamic structure linked to the pineal organ also receives
GnIH-ir projections in sea bass [17], which could directly
target habenular kiss1 neurons and might be responsible of the
decrease in kiss1 and kiss1r transcript levels reported in the

present study. Recent studies revealed a strong expression of
kiss1r on habenular kiss1-expressing neurons from sea bass
[47], and an autocrine regulation of Kiss1 through the Kiss1r in
the habenula of zebrafish and other teleost species [75–77].
Whether the observed inhibition of kiss1r expression is the
result of the direct action of sbGnIH-2 on the kiss1r gene or an
indirect consequence of the decrease of kiss1 expression is still
an open question. Interestingly, sea bass specimens exposed to
different photoperiods present significant expression differenc-
es in some clock and brain-pituitary-gonadal axis related genes
well before the first detectable endocrine and morphological
responses of the reproductive axis [78]. In this direction,
further research in progress in our laboratories is being directed
toward elucidating if sbGnIH/Kiss1/pineal interactions could
participate in the process of sea bass sexual maturation in
relation to photoperiod.

In contrast to that reported in birds and mammals, the
physiological action of GnIH in the regulation of gonadotro-
phin synthesis and release in fish is still a matter of controversy
[19, 64]. Our data show that central administration of sbGnIH-
2 elicited a decrease in lhb and fshb mRNA levels in the
pituitary and diminished Lh but not Fsh plasma levels. In a
previous study, we identified the presence of sbGnIH-2-ir
fibers in the proximal pars distalis of the sea bass pituitary, in
close proximity to Fsh and Lh cells [17], suggesting that
sbGnIH-2 could regulate gonadotropin release by acting
directly on these adenohypophyseal cells. In addition, the
administration of sbGnIH-2 peptide also decreased gnrhr-II-1a
mRNA levels in the pituitary of sea bass. We have shown
previously that GnRHR-II-1a is the only GnRH receptor
exhibiting remarkable affinity for hypophysiotropic GnRHs
[44], being highly expressed in the pituitary of sea bass, where
it colocalizes with all Lh and some Fsh cells [40]. Therefore, it

FIG. 5. Effect of in vivo icv injection of different doses (1, 2, and 4 lg) of sbGnIH-1 (A, B) and sbGnIH-2 (C, D) peptides on plasma Fsh (A, C) and plasma
Lh (B, D) levels at 6 hpi (Ct: control). Values are expressed as mean 6 SEM (n¼ 5). Different lower case letters indicate significant differences between
treatments (ANOVA, Student-Newman-Keuls test, P , 0.05).
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is possible that the action of sbGnIH-2 on gonadotropin
synthesis and/or release could be mediated, at least in part, by
its modulation of pituitary GnRH signaling and effects. In turn,
sbGnIH-1 provoked a significant decrease in plasma Lh levels
but not in pituitary lhb, fshb, and GnRH receptor expression or
Fsh plasma levels. This reduction in plasma Lh levels could be
correlated with the inhibition of brain gnrh1 expression
observed in fish treated with sbGnIH-1. The inhibitory effect
of both sbGnIH peptides on Lh but not on Fsh plasma levels
reinforce the consideration that Lh is the most relevant
gonadotropin in spermiating male sea bass, as previously
proposed in this species [79]. According to our results,
intraperitoneal administration of GnIH-2 peptide suppressed
the mRNA levels of both lhb and fshb in late vitellogenic
goldfish [36], and the administration of zebrafish LPXRFa3
also decreased plasma Lh levels in the same species [35].
Furthermore, a recent study performed in grouper showed that
treatment with endogenous GnIH-2 peptide also decreased lhb
mRNA levels in the pituitary gland [16]. However, in vitro
treatment of cultured pituitary cells with goldfish LPXRFa
peptides increased the release of Lh and Fsh in sockeye salmon
and the expression of gonadotropins in grass puffer [33, 34]. In
goldfish, in vivo administration of LPXRFa modulated lhb,
fshb, and lpxrfa-R mRNA levels and serum Lh concentration in
a reproductive stage-dependent manner [56, 57]. Taken
together, these results suggest that inhibitory or stimulatory
roles of GnIH on gonadotropin synthesis and release in teleosts
could be dependent on the species, the reproductive stage of the
animals, and/or the route of administration of the peptide.

In the present study, we also reported the inhibitory effects
of sbGnIH-2 on sea bass gh transcript levels. This result is
consistent with the presence of sbGnIH-2-ir fibers in contact
with Gh cells in the sea bass pituitary [17]. A hypothalamic
LPXRFamide peptide with both in vitro and in vivo Gh-
releasing activities was identified in bullfrog [80], and icv
administration of a GnIH ortholog increased plasma levels of
Gh in rats [30]. In fish, the picture is again much more
uncertain. While stimulatory effects of goldfish GnIH on Gh
release was observed in sockeye salmon using cultured
pituitary cells [33], GnIH exerted complex stimulatory or
inhibitory effects on basal and GnRH-stimulated Gh cell
functions in a seasonal reproductive stage-dependent manner in
goldfish [19, 81]. It should be noted that our experiment was
done in mature males at the beginning of the reproductive
season. Further experiments at other reproductive stages appear
necessary to obtain a clearer picture on putative seasonal
effects of sbGnIH on sea bass Gh cell function.

Finally, our results also showed that sbGnIH-2, but not
sbGnIH-1, down-regulated brain gnih and gnihr mRNA levels,
indicating that the sbGnIH-2 form exerts the main autocrine
regulation (through a negative feedback) on the brain GnIH
system. The C-terminal LPXRFamide (X ¼ L or Q) motif
appears critical for the binding of GnIH orthologs to GnIH
receptors [19, 20]. In sea bass, sbGnIH-1 and sbGnIH-2
peptides exhibit MPMRFamide and MPQRFamide C-terminal
motifs [17], that is, two and one amino acid substitutions in
relation to the canonical LPXRFamide motif, respectively. In
the grouper, the GnIH receptor bound with different affinity to
the three GnIH peptides present in the GnIH precursor from
this species, and the authors suggested that this variation of
activity might be due to their different C-terminal amino acid
sequences [16]. A similar basis of explanation could be used to
explain the differential response to sbGnIH-1 and sbGnIH-2
observed in the present study, the latter being much more
active than the former in the reproductive axis of sea bass.

In summary, in this study performed in male European sea
bass, we report for the first time in fish that centrally
administered GnIH peptides play an inhibitory role in the
reproductive axis, by acting at both brain (on GnRH and
kisspeptin expression) and pituitary (on GnRH receptors and
gonadotropin synthesis and release) levels. As dopaminergic
inhibition does not seem to operate in the reproductive axis of
sea bass [5], GnIH is set to become the leading candidate to
exert this neurohormonal inhibitory role in this species.
However, GnIH-dopamine relationships should be explored
because, at least in mammals, it has been shown that GnIH
interacts with hypothalamic dopaminergic neurons [60, 82].
We also provide evidence of the differential actions of sbGnIH-
1 and sbGnIH-2 on the reproductive axis of male sea bass, the
main inhibitory role being exerted by sbGnIH-2, which
suggests that this peptide is the main biologically active ligand
for the GnIH receptor. The effects of sbGnIH-2 on gnrh2 and
kiss1/kiss1r expression, together with the pattern of innervation
of sbGnIH-2 cells reported in the brain of sea bass [17] suggest
that GnIH might participate not only in neuroendocrine
functions but also in behavioral and photoperiodic control of
reproduction in this species. Whether the actions of GnIH are
similar in female sea bass or in animals at different
reproductive stages remains to be elucidated. Further studies
in female specimens and along the reproductive cycle will
contribute toward a more complete picture of this neuro-
peptidergic system in this species.
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