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Abstract
Wetland soil types, which can be distinguished based on calcium carbonate content, vary in their effect on ecosystem func-

tions like phosphorus retention, salinity contributions, and greenhouse gas forcing. These soil types may be predictively
mapped with machine learning models that use terrain derivatives calculated from high-resolution digital elevation models.
Soil profiles from three Saskatchewan study sites were classified into three functional categories——upland, calcareous wetland,
or noncalcareous wetland——and used to train random forest models for predictive soil mapping. Multiple terrain derivatives
were included as predictor variables to capture local- and landscape-scale morphometry and hydrology influences, including
five derivatives developed for this study. Models were developed at three spatial resolutions: 2, 5, and 10 m, and tested via
internal cross-validation and independent validation with datasets from previous studies. Predictive accuracies were highest
when mapping at 2 m resolution (independent validation accuracy range = 64%–100%) but also successful when mapping at
5 and 10 m resolutions (independent validation accuracy range = 63%–100%); however, visual inspection determined that the
maps generated at 10 m resolution were less detailed and occasionally featured questionable discontinuous soil distributions.
Three of the five terrain derivatives developed for this study were among the most important predictor variables (first, second,
and 10th most important). Models trained using only data from a specific site had slightly better performance than models
trained using data from all sites, except in regions where training data were lacking.

Key words: Predictive soil mapping, wetlands, Prairie Pothole Region, hydropedology, calcium carbonate

Résumé
On différencie les sols des terres humides d’après leur teneur en carbonate de calcium et ces sols influent de diverses manières

sur l’écosystème (rétention du phosphore, hausse de la salinité, forçage des gaz à effet de serre). Il est possible d’en établir une
carte prédictive en recourant aux modèles à apprentissage automatique qui utilisent les dérivées du terrain venant de la
modélisation numérique des hauteurs à haute résolution. Les auteurs ont classé le profil du sol de trois sites expérimentaux
de la Saskatchewan en trois groupes fonctionnels – hautes terres, terres humides calcaires ou terres humides non calcaires
–, puis ils s’en sont servis pour former les modèles à forêt aléatoire servant à tracer les cartes prédictives. Ils ont ajouté au
modèle de nombreuses dérivées du terrain comme variables explicatives afin de saisir les influences morphométriques et
hydrologiques locales ou propres au terrain. En faisaient partie les cinq dérivées élaborées dans le cadre de la présente étude.
Les modèles ont été développés à trois résolutions spatiales : deux, cinq et dix mètres. Ensuite, les auteurs ont testé les modèles
par validation croisée interne et par validation indépendante avec les jeux de données d’études antérieures. L’exactitude des
prévisions atteint un maximum à la résolution de deux mètres (exactitude de la validation indépendante de 64 à 100 %), mais
les prévisions étaient également correctes pour les cartes de la résolution de cinq ou de dix mètres (exactitude de la validation
indépendante de 63 à 100 %). Une inspection visuelle a toutefois révélé que les cartes produites à la résolution de dix mètres
sont moins détaillées et présentent parfois une distribution discontinue des sols douteuse. Trois des cinq dérivées du terrain
développées dans le cadre de l’étude figuraient parmi les principales variables explicatives (la première, la deuxième et la
dixième en importance). Les modèles formés avec les données d’un seul site fonctionnent légèrement mieux que ceux formés
avec les données émanant de tous les sites, sauf dans les régions pour lesquelles on ne possède aucune donnée pour former le
modèle. [Traduit par la Rédaction]

Mots-clés : carte prédictive des sols, terres humides, région des fondrières des Prairies, hydropédologie, carbonate de calcium
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Introduction
Wetlands are recognized as a key element of the landscape

for maintaining ecological integrity through the myriad of
ecosystem services they provide. The degree to which wet-
lands provide certain ecosystem services depends in part on
their biogeochemical characteristics. A key distinction in the
biogeochemical characteristics for wetland soils in the Prairie
Pothole Region (PPR) is their calcium carbonate (CaCO3) con-
tent, which is controlled by their hydropedological devel-
opment (Pennock et al. 2014). Calcareous and noncalcare-
ous wetland soils are likely to vary in many functional re-
spects, including their ability to reduce phosphorus (P) mo-
bility, their effect as sources of salinization, and their contri-
butions to greenhouse gas emissions.

In terms of watershed nutrient loading, wetlands are
known to work as filters to reduce P mobility within the PPR
(Badiou et al. 2018) and CaCO3 content has been identified as
an important control on the availability of P in wetland soils.
In a study by Brown et al. (2017b), calcareous and noncalcare-
ous wetland soils had similar total P contents, but the calcare-
ous soils had six times less available P than the noncalcareous
soils. Interactions between wetland soil CaCO3 content and P
mobility are highly complex (McFarlan 2021) and require fur-
ther study to be quantified. With respect to soil salinization,
wetland soil CaCO3 accumulation and general soil salinity ac-
cumulation develop through the same hydrological mecha-
nisms, so where calcareous wetland soils are found, saline
soils are also typically found (Pennock et al. 2014). In terms
of greenhouse gas forcing, wetlands with soils enriched with
CaCO3 often have increased sulfate content in the wetland
pond water (Pennock et al. 2014), which can decrease the
methane emitted by a wetland by providing an alternative
electron acceptor to carbon dioxide during anaerobic oxida-
tion of organic matter (Segers 1998).

Successful predictive mapping of calcareous and noncal-
careous wetland soils would enable targeted sampling for
projects focused on studying the differences in characteristics
and services between these wetland soil types. Once relation-
ships between these wetland soil types and ecosystem func-
tions are established, predictive mapping of these soil types
would help focus conservation and restoration efforts to man-
age ecosystem functions most effectively and could be used
to establish broad-scale estimates of such functions. Develop-
ing successful methodology for detailed mapping of wetland
soil extents is useful for other purposes, including establish-
ing wetland buffer zones to inform cultivation boundaries,
assessing the proportion of arable crop per quarter section
for land valuation assessments, and estimating wetland soil
areas for upscaled estimates of carbon stocks.

A model was proposed in Kiss and Bedard-Haughn (2021)
for predicting the spatial distributions of PPR wetlands that
are expected to have the greatest accumulations of CaCO3.
The modelling in that study predicts solute-richness classes
for individual wetlands but does not attempt to map the dis-
tribution of CaCO3 within the wetland soils. It is important
to note that calcareous soils are not evenly distributed within
PPR wetlands (Pennock et al. 2014). The hydropedologic in-
fluences on the distributions of wetland soil types are highly
complex; they include soil forming processes occurring over

landscape scales as well as within individual wetlands and
are largely dependent on the wetland’s relative position in
the landscape and its relationship with groundwater (Fig. 1).

Wetlands are often classified as recharge, discharge, or
flow-through (Arndt and Richardson 1988), where the dom-
inant groundwater movement in recharge wetlands is down-
wards, causing CaCO3 to be leached out of the wetland
soils and contrastingly, groundwater moves into discharge
wetland soils, causing CaCO3 to accumulate within them
(Pennock et al. 2014). Flow-through wetlands may recharge
groundwater or receive groundwater discharge depending on
water table levels (Winter and Rosenberry 1998) and often
contain soils with reduced solute accumulations in the upper
depths of their profile due to leaching during periods of dom-
inantly downward movement of water (Arndt and Richardson
1989). In addition to deep groundwater controls, wetlands
can receive significant inputs of solutes from fill and spill
and shallow groundwater flow from upslope wetlands (Fig. 1)
(Cook and Hauer 2007; Nachshon et al. 2013). This can result
in fully calcareous wetlands that are characterized by CaCO3-
enriched soils throughout the wetland basin regardless of the
wetland’s relationship with groundwater (see Appendix A).

Regardless of wetland type (recharge, discharge, or flow
through), a ring of calcareous discharge soils forms at the
wetland fringe; this phenomenon has been observed at mul-
tiple sites across the climate gradient of the Saskatchewan
region of the PPR (Pennock et al. 2014). Due to the increased
hydraulic conductivity of the near-surface glaciolacustrine
and oxidized tills compared to the deeper glacial tills, wa-
ter within the wetland soil moves laterally outward from
the wetland and then upward towards the soil surface at the
wetland fringe through capillary rise (Fig. 1) (Knuteson et al.
1989; Hayashi et al. 1998; Heagle et al. 2013). Evaporation and
evapotranspiration from plants in the wetland fringe con-
tribute to this phenomenon (Hayashi et al. 1998). The up-
ward movement of water to the wetland fringe redistributes
CaCO3 to these positions causing the development of a ring
of calcareous wetland soils surrounding the wetlands (Fig. 1)
(Pennock et al. 2014).

These various hydropedologic processes may be approx-
imated using terrain derivatives calculated from high-
resolution light detection and ranging (LiDAR) derived dig-
ital elevation models (DEM) as relationships between such
processes and local- and landscape-scale topographic charac-
teristics have been observed (Pennock et al. 2014; Kiss and
Bedard-Haughn 2021). Methodologies for calculating numer-
ous terrain derivatives from DEMs have been developed in
the last 30 years (Hengl and Reuter 2008); these have proven
to be critical for predictive soil mapping (PSM) of a wide range
of soil types and properties (McBratney et al. 2003). Pennock
et al. (2014) and Bedard-Haughn and Pennock (2002) suggest
a few terrain attributes that relate specifically to the distri-
bution of PPR wetland soil types, such as specific dispersal
area, elevation from wetland basin minimum, and position
relative to maximum observed wetland water levels.

The spatial distributions of wetland soil types can likely be
related to many terrain attributes and random forest mod-
els are well suited to determine relationships between soil
types and large numbers of predictor variables, as they can
determine relationships reflecting complex effects and inter-
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Fig. 1. Schematic diagram of soil type distributions, depth to CaCO3, groundwater table, and direction of groundwater and
fill and spill flow based on diagrams from Van der Kamp and Hayashi (2009), Pennock et al. (2011), and Pennock et al. (2014).
Soil types are indicated by the uppercase letters: U, upland; CW, calcareous wetland; NCW, noncalcareous wetland. Calcareous
wetland and noncalcareous wetland soils are distinguished based on the presence of CaCO3 in the surficial depth of the profile.
[Colour online.]

actions of the terrain derivatives as soil forming factors. Ran-
dom forest models have been found to be excellent perform-
ers for mapping soil classes when compared to other model
approaches (Brungard et al. 2015; Heung et al. 2016; Jeune
et al. 2018; Assami and Hamdi-Aїssa 2019) and additionally
have been successful in predictively mapping wetlands when
using numerous predictor variables (Millard and Richardson
2014; Reschke and Hüttich 2014; Mahdianpari et al. 2017;
Berhane et al. 2018; Jahncke et al. 2018; Goldman et al. 2020).
No study has yet attempted to use terrain attributes as pre-
dictor variables in random forest models for the purpose of
mapping wetland soil types in the PPR.

The objective of this study was to assess the suitability
of PSM methodologies that incorporate terrain derivatives
from high-resolution DEMs to predict the spatial distribu-
tions of wetland soil types in PPR landscapes. Soil types at-
tempted for mapping include calcareous and noncalcareous
wetland soil classes and a generalized upland soil class. This
study was an attempt to quantitatively model the concepts
established in the synthesis study by Pennock et al. (2014)
through use of random forest models. This expands on the
Kiss and Bedard-Haughn (2021) study on mapping wetland
solute-richness classes by specifically mapping the distribu-
tion of soil types within wetlands. This study aimed to de-
termine what existing terrain derivatives are most useful for
predictively mapping wetland soil types and additionally test
newly developed terrain derivatives created to better charac-
terize the unique morphology of PPR landscapes. A secondary
objective of this study was to assess the effectiveness of map-
ping wetland soil types using terrain attributes derived from
DEMs of varying spatial resolution.

Materials and methods

Study areas
Soil profiles were described and sampled from three

Saskatchewan study areas near Swift Current, St. Denis, and
Smith Creek (Fig. 2). General characteristics for the study ar-
eas are summarized in Kiss and Bedard-Haughn (2021). The
climate gradient spanned by the Swift Current, St. Denis,
and Smith Creek study areas corresponds to the Brown, Dark
Brown, and Black soil zones, respectively, which reflect gen-
eral soil organic carbon storage trends influenced by the cli-
matic gradient (Pennock et al. 2011). Similar soil catenas are
found at the three sites, where Regosols and thinner Cher-
nozems are commonly found in the eroded hillslope shoul-
der positions, Chernozems with thicker solums develop in
mid-slope positions, and eluviated and gleyed Chernozems
and Gleysols form in the depressional positions (Pennock
et al. 2011). Soils in the Smith Creek area are commonly
strongly enriched with CaCO3 due to the limestone-rich par-
ent materials (Saskatchewan Soil Survey Staff 1991). LiDAR-
derived DEMs were available for all three sites (meta-data
for these are described in the supplemental material of Kiss
and Bedard-Haughn (2021)). Data collection was conducted
in fall 2015 and 2016 for the Swift Current study area; fall
2015 for the St. Denis study area; and fall 2016 for the
Smith Creek study area. By fall, water levels within the wet-
lands were at their lowest. Data collection and predictive
mapping were restricted to areas mapped in the soil survey
(Saskatchewan Land Resource Unit 2009) as containing glacial
till parent material as it is most representative of the PPR
landscape.
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Fig. 2. Study area locations within approximate extents of the Prairie Pothole Region (Ducks Unlimited 2005) and the Lake
Winnipeg Watershed Basin (Government of Canada 2008). Training and testing sample point locations shown within each
study area. Satellite RGB imagery for Swift Current from Agriculture and Agri-Food Canada (2009), satellite RGB imagery
for St. Denis from Saskatchewan Geospatial Imagery Collaborative (2016), and satellite RGB imagery for Smith Creek from
Copernicus (2017). [Colour online.]

Sampling design
Wetland discharge rings represent a small portion of the

overall landscape; randomly placed sampling points within
a PPR landscape are likely to miss these features, so alterna-
tive sampling approaches were required. Wetland soil charac-
teristics only develop within depressions, but not all depres-
sions develop wetland soil characteristics. Individual wet-
lands could be interpreted from water and vegetative extents
present in aerial imagery to inform the sampling design, but
those can change drastically over short periods of time as a
function of climate and management. Instead, the focus of
this study was on the topographic characteristics that influ-
ence the development of wetland soil characteristics. By bas-
ing the sampling design on depressions rather than only on
confirmed wetlands, the data could provide information on
the differences between depressions that form wetland soil
characteristics and those that do not.

Individual depression boundaries were based on closed to-
pographic depressions determined from the DEM, which are
groups of raster grid cells sharing internal drainage (Lindsay
2016). Depressions were selected for sampling using a strat-
ified random sampling design. Depressions were stratified
based on size (area and depth) and relative elevation in the
watershed (upper and lower) (Table 1). Size classes were based
on Millar’s (1976) size classifications for wetlands in the Cana-
dian PPR. The smallest depressions (≤4047 m2) were further
stratified based on depth of the closed topographic depres-

sion to capture very small depressions in the sampling de-
sign. Relative elevation was defined by two categories, upper
and lower halves of the watershed, which were determined
using Jenks natural breaks classification method (Jenks
1967).

Sampled depressions were located in sites with a range of
land uses including cultivated, pasture, and native prairie.
Some of the smaller depressions within the cultivated sites
were tilled. The wetland soil characteristics of gleying and
discharge rings are expected to persist regardless of land use.
Tillage erosion can result in redistribution of CaCO3 to wet-
land positions, but this effect can be differentiated from natu-
ral, hydrologically influenced CaCO3 distributions with field
inspections by determining if the CaCO3 distributions have
abrupt horizontal boundaries that indicate they were redis-
tributed through tillage. Wetland vegetation has been found
to contribute to the formation of the discharge ring (Hayashi
et al. 1998). However, the discharge rings developed over long
periods of time (Knuteson et al. 1989), so the current vege-
tative characteristics do not necessarily reflect the long-term
vegetative regimes for a depression. Wetlands that had under-
gone obvious mechanical drainage were avoided because the
soils can be substantially disturbed through such processes.
There has been extensive drainage of wetlands throughout
the lower portion of the Smith Creek watershed and so sam-
pling was done only in the upper half of that watershed
(Table 1).
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Table 1. Criteria for depression size classes and number of depressions sampled per study area per relative position in water-
shed and size stratifications.

Size class criteria Study area (n)

Relative elevation in watershed Size class Area∗ (m2) Depth (m) Swift Current St. Denis Smith Creek

Upper 1 0–4047 0.1–0.3 3 3 3

2 0–4047 >0.3 2 2 2

3 4047–40 470 >0.1 2 2 3

4 >40 470 >0.1 2 1 3

Lower 1 0–4047 0.1–0.3 3 3 ——

2 0–4047 >0.3 2 2 ——

3 4047–40 470 >0.1 2 2 ——

4 >40 470 >0.1 2 2 ——

∗Area criterion were based on Millar’s (1976) wetland size classes described in acres.

Each depression was sampled with a single transect with
points spaced according to specified changes in elevation (de-
pendent on the depth of the depression) with an average
of five points per depression. Refer to Appendix A for a de-
tailed description of the transect sampling design. Transect
points were sampled with a truck-mounted hydraulic corer
(Giddings Machine Company Ltd., Windsor, CO) where possi-
ble. Otherwise, transect points were sampled by hand auger.
Sample point locations were collected with a Trimble Geo-
Explorer 2005 Series GeoXT GPS (Trimble, California, USA).
At each point, sample cores were taken to at least 50 cm to
facilitate classification and to 90 cm when possible. The pro-
files at each point were described and classified according to
the Canadian System of Soil Classification (CSSC) (Soil Clas-
sification Working Group 1998) and were additionally clas-
sified as either calcareous wetland, noncalcareous wetland,
upland, or buried/depositional soil types according to the cri-
teria defined in Table 2, as the CSSC does not include classi-
fications that reflect these soil types. Appendix A includes a
detailed description and justification of the criteria that de-
fine the classifications used in this study.

Model training datasets
The data collection took place over a period of relatively

high precipitation for these areas (Brown et al. 2017a), which
meant that the larger, more permanent ponds were often in-
undated with water. This limited sampling access to the wet-
land basin centers. An additional dataset from the St. Denis
study area was used as supplementary training data to bet-
ter reflect the soil class distributions in these landscape posi-
tions. This dataset was collected between 2000 and 2002 dur-
ing a period of relative drought when many of the larger wet-
lands had dried out. A description of this dataset and the cri-
teria used to classify its soil point observations according to
the soil types of this study is provided in Appendix A.

Table 3 shows the number of observations per wetland soil
type classification from each study area. These observations
were used to train the predictive models. Buried/depositional
soils were not considered in the models because it would not
be possible to accurately predict their distribution based on
the current elevation surface (Bedard-Haughn and Pennock
2002). There were fewer calcareous wetland soil type obser-

vations as compared to noncalcareous wetland soil type ob-
servations, which is representative as they are less abundant
within a typical PPR landscape.

Models were trained using two training data approaches——
a generalized approach and a site-specific approach. For the
generalized approach, training data from all three sites were
used to train a predictive model and the same model was ap-
plied to predictively map the soil types at the three sites. For
the site-specific approach, models were trained only using the
data from the site to be mapped.

Independent validation datasets
Two datasets of soil point observations from previous stud-

ies were used as independent validation datasets to test
model predictive accuracy. Independent validation soil point
observations were sampled from wetland depressions that
were not sampled as part of the model training datasets of
this study. These included data from the BIOCAP study at St.
Denis (Pennock et al. 2014) and the Brown et al. (2017a) study
at Smith Creek. The BIOCAP dataset consisted of three wet-
lands sampled with two transects, each with 10–12 points
per transect. The three sampled wetlands consisted of two
recharge wetlands and a discharge wetland. This sample set
was considered a rigorous test for the predictive models due
to the high density of samples per wetland and the inclusion
of a fully discharge wetland, which contained calcareous wet-
land soils throughout its basin.

The Brown dataset consisted of samples from 42 wet-
lands; however, 32 of those wetlands had been mechani-
cally drained at some point. The data from the undrained
and drained wetlands were separated into two validation
sets. Each of the 42 wetlands was sampled with two points,
one at the wetland toe-slope and one in a mid-slope posi-
tion just above the discharge ring. The Undrained dataset did
not include any calcareous wetland soil observations and the
Drained dataset included only four. These datasets effectively
tested the boundary surrounding the discharge ring. The
number of observations per independent validation dataset
are shown in Table 4. The point observations of the indepen-
dent validation datasets included CSSC classifications (Soil
Classification Working Group 1998) and profile descriptions
that enabled their classifications into the target soil types
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Table 2. Soil type classification criteria.

Soil type CaCO3 distribution CSSC classification Other criteria

Noncalcareous
wetland

Weak or no CaCO3
observed in top 15 cm
of profile

• Gleysols OR ——

• Gleyed soils

Calcareous wetland Moderate to strong
CaCO3 throughout
the profile

• Gleysols OR • Form in a continuous sequence from the
wetland edge, that is, once an upland soil is
encountered, no calcareous wetland soils
should be found upslope along the transect

• Gleyed soils OR

• Rego Chernozems that do not occur in
shoulder or summit positions of a hillslope.
Adjacent upland profiles along transect
must either have a B horizon or have weak
or no CaCO3 in their 0–15 cm increment OR

• Calcareous Chernozems that do not occur
in shoulder or summit positions of a
hillslope. The B horizon must have a
chroma of less than 5 and a chroma 1 less
than the B horizon of the adjacent upland
profile along the transect

Buried/depositional Any distribution • Any • Soil profiles with more than 30 cm of
depositional material on top of them

Upland Any distribution • Any • Soils that do not meet criteria of other
soil types

CSSC, Canadian System of Soil Classification.

Table 3. Number of observations per soil type in the train-
ing dataset.

Study area (n)

Soil type Swift Current St. Denis Smith Creek Total

Noncalcareous
wetland

24 39 27 90

Calcareous
wetland

6 30 13 49

Upland 37 47 27 111

Total 67 116 67 250

Table 4. Number of soil type observations per independent
validation set.

Independent validation sets (n)

Brown–Smith Creek

Soil type BIOCAP–St. Denis Undrained Drained

Noncalcareous
wetland

20 10 28

Calcareous wetland 28 0 4

Upland 13 10 31

Total 61 20 63

of this study, except there were six observations that were
left unclassified as the data required to distinguish them
as either calcareous wetland or upland soil types were not
available.

Spatial resolution
The PPR landscape is characterized by topographic varia-

tion at scales where hilltops and depressions can occur within

5–10 m of each other and very different soils develop in
these positions (Pennock et al. 1987). These features would
be smoothed out and lost in low-resolution DEMs and so the
DEMs were kept at resolutions that correspond to the scale
of variation for terrain derivative calculation. Separate mod-
els were tested using terrain derivatives generated at 2, 5,
and 10 m to assess differences in predictive accuracy at vary-
ing spatial resolutions. Mapping was tested at 5 m spatial
resolution to stay consistent with Bedard-Haughn and Pen-
nock’s (2002) PSM study on the distribution of PPR wetland
soil types. Due to the specific sampling design used in our
study, at a resolution of 5 m, many adjacent sampled point
pairs shared the same pixel. Based on recommendations in
Hengl (2006), a spatial resolution of 2 m was also tested be-
cause at this resolution, less than 5% of closest point pairs
shared pixels. The 2 m DEMs provide a more detailed rep-
resentation of the land surface and may capture features
that would be smoothed out at 5 m resolution. Ten metre
DEMs were also tested to assess if similar predictive per-
formance could be achieved at coarser spatial resolution,
which is typically easier to obtain and reduces computational
workloads.

DEM processing
LiDAR collection for the three sites occurred either late

summer or fall when water levels are lowest; however, at St.
Denis and Smith Creek sites, standing water was still present
in the largest wetlands. This caused the DEM surface in these
positions to reflect the water surface and not the underlying
sediment. The water surface causes a noisy DEM in these po-
sitions. A method for identifying and reinterpolating water
surfaces in the DEM is described in Appendix A, as are the
methods used to smooth and resample the DEM to the target
spatial resolutions following reinterpolation.
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Predictor variables
As the focus of this study was to determine the effective-

ness of using terrain derivatives derived from high-resolution
DEMs as predictor variables for predictively mapping wetland
soil types and to determine which terrain derivatives were
most useful, predictor variables were limited primarily to ter-
rain derivatives. It is likely that the predictive mapping of
wetland soil types would be improved by including predictor
variables derived from other remote and proximal sensing
data, like synthetic aperture radar (SAR), optical remote sens-
ing data, band indices, electromagnetic surveys, etc. but they
were not included to enable more straightforward evaluation
of terrain derivatives as predictor variables.

A total of 35 predictor variables were calculated at each
DEM resolution (2, 5, and 10 m) (Table 5). Most of these were
calculated using the System for Automated Geoscientific
Analysis (SAGA) (Conrad et al. 2015) or Whitebox Geospatial
tools (Lindsay 2014). Measures of Euclidean distance were in-
cluded based on Behrens et al. (2018) and were calculated us-
ing R code published by Saurette (2021). Cartographic depth-
to-water (Murphy et al. 2009) was calculated with GRASS GIS
(GRASS Development Team 2017) using R code published by
Schönauer and Maack (2021).

Several terrain derivatives were specifically developed to
better represent the unique morphological characteristics of
the PPR that were expected to relate to wetland soil type dis-
tributions (Fig. 3). Three of these derivatives were based on a
grid cell’s position relative to a local depression. These were
developed to capture relationships identified by Pennock
et al. (2014) between soil type distribution and topographic
position relative to depression bottoms and maximum water
levels.

The contributing watersheds were determined for each
closed topographic depression within the DEM. Grid cells
were related to their local depression based on the contribut-
ing basin they fell within. Values were calculated for a grid
cell’s elevation above the associated depression’s basin min-
imum (elevation from depression minimum derivative) and
elevation above or below the depression’s spillover elevation
(elevation from depression spillover derivative). The spillover
elevation reflects the maximum elevation of a closed depres-
sion before water would spill externally from it. For the de-
pression depth derivative, the depression depth value was
ascribed to all pixels within the depression’s contributing
basin. The measure of elevation from depression minimum
per depth was included to potentially capture differences in
relationships of soil distribution for wetlands of varying sizes.
The watershed max catchment area derivative ascribes the
maximum catchment area for a depression’s contributing
area to all pixels within that contributing area.

Wetland Strahler order minimum and maximum were cal-
culated for each depression following the methodologies de-
scribed in Kiss and Bedard-Haughn (2021). For these variables,
the characteristics were quantified for each closed depres-
sion; all pixels within the depression were ascribed the same
value and all pixels not included in closed topographic de-
pressions were given values of zero. R scripts for calculating
the terrain derivatives developed in this study and param-
eters used to calculate existing derivatives are available on

GitHub (Kiss 2022). Both the newly developed terrain deriva-
tives and existing derivatives were calculated using a suite of
Whitebox Geospatial (Lindsay 2014) and SAGA GIS (Conrad
et al. 2015) tools.

Prior to model training, recursive feature elimination was
conducted to reduce the number of predictor variables used
in the final models to reduce the risk of model overfit-
ting. Feature reduction has been found to improve model
performance in PSM studies focused on soil class mapping
(Brungard et al. 2015; Hounkpatin et al. 2018). The recursive
feature elimination was implemented using the caret pack-
age (Kuhn 2008) in R (R Core Team 2020), using a random
forest model as the classifier and 5-fold cross validation with
five iterations using Kappa score as the evaluation metric to
determine the optimal predictor variables to include in the
final models. Importance of each predictor variable in the fi-
nal models was determined using the Gini index (Wright and
Ziegler 2017). Overall variable importance was determined by
summing the Gini index of each variable within the final ran-
dom forest models.

Model training, tuning, and validation
The objective of this study was to assess the performance

of various terrain derivatives as predictor variables for map-
ping wetland soil types and not to determine the optimal
machine learning model type for this problem. Random for-
est is a tree-based machine learning model capable of mod-
elling complex nonlinear relationships between numerous
predictor variables and categories (Strobl et al. 2009). In ad-
dition to its frequently cited success in the PSM literature
(Brungard et al. 2015; Heung et al. 2016; Jeune et al. 2018;
Assami and Hamdi-Aїssa 2019), random forest models pro-
vide an intuitive evaluation of predictor variable importance,
which makes it an ideal candidate for this study.

Following the recursive feature elimination step, the caret
package (Kuhn 2008) was used again to optimize model pa-
rameters and train the final random forest models through K-
folds cross-validation. Each model was trained with the train-
ing dataset using 5-fold cross-validation with 20 iterations us-
ing Kappa score as the evaluation metric. From this, cross-
validation accuracy and Kappa scores were determined as
well as the optimal mtry parameter setting per model, which
is the number of predictor variables available for each split in
a random forest model. Each random forest was grown with
1000 trees (ntree).

Model performance was assessed based on overall accuracy,
Kappa score, producer’s accuracy, and user’s accuracy as de-
termined from the cross-validation and independent valida-
tion tests. Cross-validation performance was assessed in ad-
dition to independent validation tests because independent
validation data were not available for the Swift Current study
area, so cross-validation performance allowed for a fairer as-
sessment of model performance across all three sites. Over-
all accuracy refers to the total number of correct classifica-
tion predictions per the total number of observations. Kappa
score corrects the overall accuracy by accounting for the pos-
sibility of a correct prediction based on chance alone (Landis
and Koch 1977). Producer’s accuracy, which is reported per
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Table 5. List of predictor variables and their source.

Terrain derivative Reference

Euclidean distance from site corners Behrens et al. (2018)

SAGA wetness index Boehner et al. (2002)

Slope height Boehner and Selige (2006)

Normalized height (t = 10, t = 1000) Boehner and Selige (2006)

Valley depth Boehner and Selige (2006)

Mid-slope position Boehner and Selige (2006)

Specific dispersal area Costa-Cabral and Burges (1994)

Multi-resolution ridge top flatness index Gallant and Dowling (2003)

Multi-resolution valley bottom flatness index Gallant and Dowling (2003)

Wetland Strahler order minimum Kiss and Bedard-Haughn (2021)

Wetland Strahler order maximum Kiss and Bedard-Haughn (2021)

Max elevation deviation (local, meso, and broad) Lindsay et al. (2015)

Stochastic depression analysis Lindsay and Creed (2005)

Slope length and steepness factor Moore et al. (1991)

Cartographic depth-to-water Murphy et al. (2009)

Catchment area (multiple flow direction) Quinn et al. (1991)

Specific catchment area Quinn et al. (1991)

Terrain ruggedness index Riley et al. (1999)

Aspect (northness) Zevenbergen and Thorne (1987)

Slope Zevenbergen and Thorne (1987)

Plan curvature Zevenbergen and Thorne (1987)

Profile curvature Zevenbergen and Thorne (1987)

Tangential curvature Zevenbergen and Thorne (1987)

Elevation ——

Elevation from depression spillover Kiss (2022)

Elevation from depression minimum Kiss (2022)

Elevation from depression minimum per depth Kiss (2022)

Depression depth Kiss (2022)

Watershed max catchment area Kiss (2022)

Note: SAGA, System for Automated Geoscientific Analysis.

soil type class (Table 8), refers to the number of correctly pre-
dicted soil classifications of a particular soil type per the total
number of observations of that soil type (Malone et al. 2017).
User’s accuracy, also reported per soil type, refers to the num-
ber of correctly predicted soil classifications of a soil type per
the total number of predictions of that soil type.

Visual assessment of model performance
The predictive accuracies based on the internal and inde-

pendent validations provide an excellent performance sum-
mary of the predictive models. However, it is crucial to
ensure that in addition to achieving acceptable accuracy
scores, model predictions of soil distributions make concep-
tual sense. Maps were generated for each site from each of the
models and were visually inspected using expert knowledge
to determine if the distribution of soils matched the concepts
described in the introduction. This involved inspecting areas
at each site where wetland types were known either from pre-
vious studies or from the sampling conducted in this study.

For most wetlands, inspection was conducted to determine
if noncalcareous wetland soil types were predicted to be dis-
tributed throughout the wetland basin floor with calcareous
wetland soils formed in a discharge ring pattern in the foot

to mid slope positions surrounding the wetland basin. At the
St. Denis study area, there were numerous wetlands known
to have calcareous wetland soils distributed not only in dis-
charge rings surrounding the basin, but throughout their
wetland basins; these were inspected to determine if calcare-
ous wetland soils were predictively mapped throughout these
wetland basins. Distributions of upland soils mapped within
known wetlands or wetland soils mapped in locations well
beyond the boundaries of discernable wetlands were deemed
erroneous. Soil types are expected to be distributed continu-
ously and therefore single pixel or small clusters of soil types
were typically considered erroneous artefacts, except for the
models generated based on predictor variables of 10 m res-
olution, as wetland depressions may be small enough to be
represented by a single 10 m pixel.

Results

Tuned model parameters and internal
cross-validation results

Table 6 shows the optimized model parameters and cross-
validation accuracy per model. Based on the cross-validation
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Fig. 3. 3D scene for an example area in the Swift Current study site (3× vertical exaggeration based on DEM) showing an air
photo and the terrain derivatives developed for this study. [Colour online.]

results, the models developed on predictor variables of 2 m
resolution had the highest predictive accuracies, but cross-
validation accuracy was generally similar between the mod-
els based on different resolutions (ranging from 75% to
82% accurate) (Table 6). According to the cross-validation re-
sults, the site-specific models performed slightly better than
the generalized models; the average Kappa scores across
all three sites (All (mean)) for the site-specific models were
slightly higher than the generalized models at all resolutions
(Table 6). Overall, there were only minor differences in per-
formance across all models shown in Table 6 based on the
cross-validation evaluation. The models vary widely in the to-
tal number of predictor variables used (from 7 to all 35). There
were no noticeable trends in the difference of performance of
models that incorporated many or few predictor variables.

Independent validation results
The models were tested for predicting the soil types of the

independent datasets from the St. Denis and Smith Creek

study areas. Table 7 shows the overall accuracy and Kappa
scores based on the independent validation tests for the mod-
els. Table 8 shows the producer’s and user’s accuracy for each
soil type classification for the BIOCAP–St. Denis and Brown–
Smith Creek–Undrained independent validation tests for the
models.

Independent validation results——BIOCAP–St.
Denis

The best-performing model for the BIOCAP–St. Denis
dataset was the 2 m site-specific model, which was built us-
ing predictor variables with a spatial resolution of 2 m and
used only training data from the St. Denis study site. This
model achieved an overall accuracy of 76% and a Kappa score
of 0.63. The site-specific models consistently performed bet-
ter than the generalized models for the St. Denis independent
validation test.

The models consistently had low producer’s accuracy and
high user’s accuracy for calcareous wetland soil types. This
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Table 6. Model parameters, cross-validation overall accuracy, and Kappa score per model
per site.

Model Optimized parameters Cross-validation

Resolution Training data Site n pred var∗ mtry Acc.† (%) Kappa

2 m Generalized All 35 5 80 0.67

Site-specific All (mean)‡ —— —— 80 0.68

Smith Creek 12 2 80 0.68

St. Denis 33 3 82 0.72

Swift Current 24 11 79 0.62

5 m Generalized All 32 5 78 0.64

Site-specific All (mean) —— —— 79 0.66

Smith Creek 8 2 79 0.67

St. Denis 30 6 79 0.68

Swift Current 35 10 78 0.61

10 m Generalized All 34 4 75 0.59

Site-specific All (mean) —— —— 78 0.64

Smith Creek 8 4 75 0.61

St. Denis 32 2 79 0.67

Swift Current 7 3 80 0.64

∗Number of predictor variables included in the model training.
†Overall accuracy.
‡While "All" for the generalized models includes cross-validation accuracy and Kappa scores for models trained with
training data from all sites, "All (mean)" provides mean summaries of the cross-validation accuracy and Kappa scores
for the three site-specific models.

Table 7. Overall accuracy and Kappa score per model per independent validation test sets.

Independent validation

Brown–Smith Creek

Model BIOCAP–St. Denis Undrained Drained

Resolution Training data Acc.∗ (%) Kappa Acc. (%) Kappa Acc. (%) Kappa

2 m Generalized 64 0.48 90 0.80 85 0.70

2 m Site-specific 76 0.63 100 1.00 80 0.66

5 m Generalized 63 0.45 100 1.00 93 0.85

5 m Site-specific 69 0.54 90 0.80 75 0.55

10 m Generalized 64 0.45 85 0.70 85 0.70

10 m Site-specific 76 0.62 84 0.67 66 0.40

∗Overall accuracy.

communicates that this soil type is underestimated but
where it is predicted, the map user can have confidence they
will find that soil type there. The 2 and 10 m site-specific mod-
els achieved the most balanced results for the calcareous wet-
land soil types with producer’s accuracies of 54% and 65% and
use’s accuracy of 94% and 90%, respectively. Conversely, the
models had very high producer’s accuracy and low user’s ac-
curacy for noncalcareous wetland soil types. This means that
all noncalcareous wetland observations were correctly pre-
dicted as such, but that they were overpredicted elsewhere.

Independent validation results——Brown–Smith
Creek

The models generally had high accuracies and Kappa scores
for predicting the soil types of the Undrained indepen-
dent validation set; some achieving perfect (100% accurate,
Kappa score = 1.0) and near perfect (90% accurate, Kappa

score = 0.80) results (Table 7). The 10 m resolution models
had the lowest accuracies for this validation test (ranging
from 84% to 85% accurate). Site-specific and generalized mod-
els performed relatively similar for the Undrained dataset,
but for the Drained test set, the generalized models consis-
tently performed better, with some Kappa scores 0.30 greater.
Predictions for the Drained validation set were generally less
successful than for the Undrained validation set but still typ-
ically had high levels of agreement. This indicates that de-
spite the impact drainage may have on the landscape (and
the derived DEM), the distribution of wetland soils may still
be predictable in landscapes that have undergone mechan-
ical drainage, meaning these methods could potentially be
used in restoration projects in drained landscapes to identify
historic wetland extents.

The Brown–Smith Creek–Undrained validation dataset did
not contain any calcareous wetland soil type observations
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Table 8. Producer and user accuracy per soil type classification per model per independent validation test set (Brown–Smith
Creek–Drained not included).

Independent validation (%)

Brown–Smith Creek

BIOCAP–St. Denis Undrained

Model Calc. wetland∗ Noncalc. wetland† Upland Noncalc. wetland Upland

Resolution Training data Prod.‡ User§ Prod. User Prod. User Prod. User Prod. User

2 m Generalized 25 100 100 53 93 75 80 100 100 84

2 m Site-specific 54 94 95 66 93 75 100 100 100 100

5 m Generalized 22 100 100 50 93 80 100 100 100 100

5 m Site-specific 40 100 100 55 85 85 100 84 80 100

10 m Generalized 40 79 100 55 62 80 80 89 90 82

10 m Site-specific 65 90 100 65 62 80 100 73 70 100

∗Calcareous wetland soil type.
†Noncalcareous wetland soil type.
‡Producer’s accuracy.
§User’s accuracy.

due to the sampling design. Therefore, models that underpre-
dicted the extent of calcareous wetland soil types were likely
to perform well for this dataset. The 2 and 5 m resolution-
based models performed similarly, sometimes overpredicting
noncalcareous wetland soil types and sometimes overpredict-
ing upland soil types (as indicated by high producer’s accu-
racy and lower user’s accuracy (Table 8)).

Predicted soil type maps——visual assessments
Predicted soil maps for the full study areas from each

model for St. Denis and Smith Creek are shown in Figs. 6
and 8. The full map of the Swift Current study area is not
included as differences in soil distributions between the mod-
els are not obvious at coarse scale. Full-sized maps for each
study area from each model are provided in the Supplemen-
tary file. Figures 4, 5, and 7 show predicted maps for example
areas from each site.

Generally, the predicted maps generated by the models
were acceptable; wetland soils (calcareous and noncalcareous
soil types) were typically mapped within or directly adjacent
to depressional positions and upland soils were mapped in
upslope positions. Wetland basin centers were often mapped
with noncalcareous wetland soils with rings of calcareous
wetland soils mapped surrounding the wetlands reflecting
the discharge ring phenomenon. Wetland soils were most
frequent at the Smith Creek study area and least frequent
at the Swift Current study area, which coincides with the
general climatic moisture trends for these sites. The St. De-
nis study area had the most wetlands predicted to have cal-
careous wetland soils throughout their basins, which is con-
sistent with historic site observations (Pennock et al. 2014).
Calcareous wetland soil types were much less frequently pre-
dicted within the Swift Current study area, which is consis-
tent with the small amount of calcareous wetland soils en-
countered in the field data collection (Table 3).

At the Swift Current study area, with exception to the 10
m based models, all models generated relatively consistent
maps (Fig. 4). The largest wetlands were mapped to have cal-
careous wetland soils surrounding the wetland basin, but

most other wetlands were mapped with only noncalcareous
wetland soil types. The generalized models predicted more
occurrences of calcareous wetland soil types than the site-
specific models. The maps generated by the 10 m based mod-
els typically had more single-cell and small cluster distribu-
tions of soil types compared to those of the finer-scale reso-
lutions. These scattered soil type predictions were often wet-
land soil types erroneously mapped in upland positions.

The predicted maps generated for the St. Denis study area
were relatively consistent across all models, except that the
site-specific models predicted more frequent occurrences of
wetland soils generally and more frequent occurrences of cal-
careous wetland soils (Fig. 6). This contributed to its better
performance when predicting for the BIOCAP validation test
set. When mapping at 10 m, the rings of calcareous wetland
soils surrounding the wetlands become blocky and less de-
tailed as a result of the pixel size. As discussed, larger depres-
sions were more frequently predicted to have calcareous wet-
land soils within their basin floors at the St. Denis study area.
All models predicted Pond 90 (the largest wetland in the top
right of the example area scene (Fig. 5)) to be predominantly
covered with calcareous wetland soils, which is appropriate
as the largest low-lying wetlands in this portion of the St. De-
nis watershed are known to have calcareous wetland soils
throughout their basins (Pennock et al. 2014). However, re-
sulting maps often include irregular distributions of noncal-
careous soils within these basins (as seen in ponds adjacent
to Pond 90 in Fig. 5), which is not expected to occur. Addition-
ally, not all wetlands at St. Denis known to have calcareous
wetland soils throughout their basins were consistently pre-
dicted as such.

Compared to the other sites, the resulting maps for the
Smith Creek study area differed substantially between some
models, especially in the eastern portion of the study area
where training data were lacking (Fig. 8). The site-specific
models predicted greater occurrences of calcareous wetland
soil types and wetland soils generally (Figs. 7 and 8). Noncal-
careous wetland soils appear to extend beyond the wetland
boundaries observable in the air photo in the maps generated
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Fig. 4. 3D scene (3× vertical exaggeration based on DEM) of predicted soil type maps and air photo for an example area at
the Swift Current study site based on the generalized and site-specific models built at each spatial resolution. Satellite RGB
imagery from Agriculture and Agri-Food Canada (2009). [Colour online.]

by the site-specific models (Fig. 7) and may be overestimated.
It is possible that this is appropriate in an area as dense with
wetlands as shown in the example area in Fig. 7; however, in
the eastern portion of the study area where wetland drainage
is more common, it is likely that wetland soils are being over-
estimated. This explains the poorer performance of the site-
specific models for predicting the classes for the Drained val-
idation test set.

The general high accuracies of each model based on the
independent validation tests despite the apparent differences
in resulting maps is likely due to the nature of the validation
test sets from the area. Point observations in these datasets

were collected from distinctly different slope positions and
were likely easier to predict than if the points spanned the
gradient between these positions. The questionable results
generated by the site-specific models for the eastern portion
of the study area became apparent only through the visual
assessment, as they achieved acceptable predictive accuracies
based on the validation datasets.

The map generated by the 10 m based generalized model
for Smith Creek contains many instances of single pixel and
small clusters of the soil types which results in a speckled
pixelated-looking output as seen in Fig. 7e. The map gener-
ated by the 10 m based site-specific model follows generally

Downloaded From: https://bioone.org/journals/Canadian-Journal-of-Soil-Science on 11 Nov 2024
Terms of Use: https://bioone.org/terms-of-use

http://dx.doi.org/10.1139/CJSS-2022-0034


Canadian Science Publishing

Can. J. Soil Sci. 103: 21–46 (2023) | dx.doi.org/10.1139/CJSS-2022-0034 33

Fig. 5. 3D scene (3× vertical exaggeration based on DEM) of predicted soil type maps and air photo for an example area at the
St. Denis study site based on the generalized and site-specific models built at each spatial resolution. Satellite RGB imagery
from Saskatchewan Geospatial Imagery Collaborative (2010). [Colour online.]

the same trends mapped by the 2 m site-specific model but
because of its coarseness, the mapped soil type distributions
do not follow the contours of the wetlands and depressions
with the same level of precision (Figs. 7b and 7f).

Variable importance
Figure 9 shows a plot of the overall importance of ev-

ery predictor variable within the random forest models. Of
the top 10 most important variables, three were developed
specifically for this study (elevation from depression min-
imum per depth, elevation from depression spillover, and
elevation from depression minimum) and two were devel-

oped for the related study focused on predicting wetland
solute-richness classes in PPR landscapes (Wetland Strahler
order minimum and maximum) (Kiss and Bedard-Haughn
2021). Elevation from depression minimum per depth and
elevation from depression spillover were the most impor-
tant predictor variables overall. Four of the top 10 predictor
variables were calculated using Whitebox Geospatial tools,
including stochastic depression analysis (Lindsay and Creed
2005) and maximum elevation deviation (local, meso, and
broad scales) (Lindsay et al. 2015). SAGA-calculated terrain
derivatives slope height and normalized height (t = 1000)
(Böhner and Selige 2006) were the seventh and 11th most
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Fig. 6. Predicted soil type maps for the full St. Denis study site based on the generalized and site-specific models built at each
spatial resolution. Full-sized versions of each map are provided in supp1a. Satellite RGB imagery from Saskatchewan Geospatial
Imagery Collaborative (2016). [Colour online.]

important predictor variables, respectively. Euclidean dis-
tance from NE site corner, Watershed max catchment area,
and Aspect (northness) had the lowest Gini index scores,
indicating that they were the least important predictor
variables.

Discussion

Overall model performance
The relatively high overall accuracies and Kappa scores ac-

cording to the cross-validation and independent validation
tests, and additionally the acceptable map outputs as de-
termined through visual assessment for many of the mod-

els indicate their success in predictively mapping wetland
soil types at the PPR study sites. Based on all model eval-
uation criteria, the best-performing model overall was the
2 m site-specific model, which achieved overall accuracies
and Kappa scores ranging from 80%–82% and 0.62–0.72, re-
spectively, based on cross-validation (Table 6) and 76%–100%
and 0.63–1.0, respectively, based on independent validation
tests (Table 7). The related study focused on predictively map-
ping wetland solute-richness classes at the same PPR study
sites achieved similar accuracies: independent validation ac-
curacy of 69%–80% and Kappa scores of 0.40–0.41 (Kiss and
Bedard-Haughn 2021). The model developed for that study
was simpler and based on only a few terrain-derived predic-
tor variables and its objective was only to predict a single
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Fig. 7. 3D scene (3× vertical exaggeration based on DEM) of predicted soil type maps and air photo for an example area at the
Smith Creek study site based on the generalized and site-specific models built at each spatial resolution. Satellite RGB imagery
from Saskatchewan Geospatial Imagery Collaborative (2014). [Colour online.]

solute-richness class for each wetland, whereas in this study,
detailed mapping of soil types within and surrounding indi-
vidual wetlands was accomplished.

Recent studies focused on predictively mapping wetland
classes achieved similar or higher overall accuracies based
on independent validation tests: Mahdianpari et al. (2017)
achieved 94% overall accuracy predictively mapping land
cover types (primarily wetland classes) in the Avalon Penin-
sula of Newfoundland using remote sensed multispectral im-
agery; Jahncke et al. (2018) achieved overall accuracy of 89.2%
mapping wetland classes in an area south of Halifax, Nova
Scotia by using various remote sensed data, including LiDAR

data; and Millard and Richardson (2014) achieved overall ac-
curacy of 72.8% predictively mapping land cover classes in
a peatland region near Ottawa, Ontario using SAR and Li-
DAR data. These studies focused on mapping wetland classes
that were typically defined by their vegetative characteristics,
which can be closely correlated to spectral reflectance bands
and vegetative indices, making them more easily predicted.
Achieving similar overall accuracies when predictively map-
ping soil classes, particularly in agricultural landscapes, is of-
ten more difficult.

Other studies focused on soil class mapping in North Amer-
ica achieved similar or poorer overall accuracies based on in-
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Fig. 8. Predicted soil type maps for the full Smith Creek study site based on the generalized and site-specific models built at
each spatial resolution. Full-sized versions of each map are provided in supp1a. Satellite RGB imagery from Copernicus (2017).
[Colour online.]

dependent validation tests to those achieved in this study:
Goldman et al. (2020) achieved overall accuracies of 77.1%
and 70.6% mapping soil drainage groups and texture groups,
respectively, in a low-relief wetland-rich landscape in the
Choptank River Watershed in Maryland and Delaware, USA;
Heung et al. (2016) achieved overall accuracies of 70% and
58% mapping soil taxonomic great groups and soil orders, re-
spectively, in the Lower Fraser Valley, British Colombia; and
Brungard et al. (2015) achieved Kappa scores of 0.53, 0.32,
and 0.19 mapping soil taxonomic subgroups at study sites in
Wyoming, New Mexico, and Utah, USA, respectively.

The success of the predictive models of this study indicates
that it is possible to accurately predict the spatial distribu-
tion of the targeted wetland soil types using primarily terrain

derivatives. This corresponds to the findings of Pennock et al.
(2014) who were able to relate key hydropedological features
to terrain and elevation-based characteristics due to the sub-
stantial influences of topography and hydrology on wetland
soil formation in this region. This is not to discount the im-
portance of the SCORPAN model (soil as a function of soil,
climate, organisms, relief, parent material, and spatial posi-
tion) (McBratney et al. 2003), which has proven to be a guiding
principle for predictive digital soil mapping throughout the
world. The predictive models built in this study would likely
improve by incorporating predictor variables that more di-
rectly reflect the other elements of SCORPAN like remote
sensing multispectral imagery, climate data, and parent ma-
terial information. The success of the discussed wetland class
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Fig. 9. Predictor variable importance based on Gini index summed across random forest models.
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studies that included remote sensed data beyond terrain data
highlights their importance for mapping wetland resources;
studying the effects of incorporating these types of features
as predictor variables is a crucial next step for research on
mapping wetland soils and wetlands more generally in the
Canadian PPR.

Predictor variable importance
Terrain derivatives generated for this study were some of

the most important predictor variables for accurately map-
ping wetland soil types, specifically the elevation from de-
pression minimum per depth and elevation from depression
spillover derivatives, which were the first and second most
important predictor variables, respectively. Pennock et al.
(2014) found that the boundary between the distribution of
recharge (noncalcareous) wetland soils within wetland cen-
ters and the surrounding discharge ring of calcareous wet-
land soils closely matched the extent of maximum recorded
water levels. Their finding was determined at St. Denis where
pond water levels have been recorded annually since 1968.
This information does not exist for most locations but eleva-
tion from depression spillover works as a proxy for this in-
formation because the depression spillover elevation reflects
the maximum possible water level for a wetland. The eleva-
tion from depression minimum per depth derivative modi-
fied the elevation from depression minimum derivative to re-
flect different relationships between depression size and soil
distributions. A gleysolic soil may form on the edge of a large
wetland at an elevation of 1 m above the depression bottom
because a large wetland is likely to store enough water to in-
undate that position, whereas at a position of 1 m along a hill-

slope above a small depression, it is less likely that a gleysolic
or wetland-related soil will form (Fig. 10).

Wetland Strahler order calculations were developed and
successfully used to map the distributions of solute-rich wet-
lands in the same regions of the Canadian PPR (Kiss and
Bedard-Haughn 2021). Solute-rich wetlands typically corre-
spond to those with calcareous wetland soils throughout
their basin, so these derivatives were likely important in the
random forest models for differentiating between wetlands
that would and would not form such soil distributions.

The maximum elevation deviation derivatives and the nor-
malized height and slope height derivatives aim to quan-
tify a grid cell’s positions in relation to the local and (or)
broader landscape. These can reflect similar characteristics to
the depression-focused terrain derivatives developed for this
study like the elevation from depression minimum derivative
but do not limit the calculating window to the watershed of
each depression, which helps to better reflect nuanced pedo-
logical relationships at the watershed edges. Additionally, hy-
dropedological forces occur over a range of scales (Pennock
et al. 2014) and features that capture characteristics reflec-
tive of varying scales, like these, are clearly important for hy-
dropedological mapping.

Other studies focused on mapping wetland soils and wet-
land classes incorporated similar terrain derivatives that
quantify a grid cell’s position in relation to its surrounding
landscape and found them to be important predictor vari-
ables. Goldman et al. (2020) incorporated the deviation from
mean elevation derivative, which calculates the difference in
a grid cell’s elevation compared to the mean elevation from
its 200 m radius divided by standard deviation. This was con-
sistently one of the top two most important predictor vari-
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Fig. 10. Schematic diagram showing varying values for the elevation from depression minimum per depth given a point
that is 1 m above the depression minimum for a shallow depression (left) and a deep depression (right). Different soils are
expected to form in these two positions. The elevation from depression minimum per depth derivative modifies the elevation
from depression minimum derivative by dividing by the depression’s overall depth, which helps to quantify the relationships
between these two characteristics for depressions of varying sizes. [Colour online.]

ables in their study on mapping soil drainage groups and
texture classes in a wetland-rich landscape in the Atlantic
Coastal Plain of the USA. This derivative is similar to the max-
imum elevation deviation derivatives used in this study, ex-
cept that it only considers the deviation compared to the sin-
gle spatial scale of 200 m rather than across multiple spatial
scales. Jahncke et al. (2018) found that, in addition to slope,
topographic position index was an important predictor vari-
able for mapping wetland classes in Nova Scotia. Topographic
position index assigns an index to a grid cell according to
its relative position compared to local valleys and hilltops.
The normalized height and slope height derivatives similarly
quantify a grid cell’s position compared to local valleys and
hilltops but can account for that relationship across various
neighbourhood scales.

Whitebox Geospatial’s stochastic depression analysis
(Lindsay and Creed 2005) derivative (fourth most important
variable) estimates the likelihood that a position belongs
to a closed topographic depression. Depressions were accu-
rately captured in the outputs generated by this tool, which
were likely useful for in distinguishing the distributions of
wetland and upland soils in the random forest models. This
terrain derivative is recommended for depression or wetland
landscape studies in this region.

Spatial resolution
Predicted maps generated based on predictor variables de-

rived at the highest tested resolution (2 m) generally had
the highest predictive accuracies based on cross and inde-
pendent validation. The resulting soil maps generated at this
resolution were acceptable and matched the established un-
derstanding of the distribution of these soil types without
excessive errors or artefacts. Calculating terrain derivatives
and applying predictive models to stacks of predictor vari-
able rasters at this resolution is computationally intensive,
which is an important consideration. Predictive mapping at
5 and 10 m resolution is exponentially less computationally
intensive. Model performance at these resolutions was only
slightly poorer than mapping at 2 m resolution. Predictive ac-
curacy for cross and independent validation tests were simi-
lar between the 5 and 10 m based models, but visual inspec-
tion determined that the maps generated at 10 m resolution
typically lacked the detail achieved at higher resolutions and

soil types were often distributed in blocky and discontinuous
patterns. Maps generated at 10 m resolution were still consid-
ered successful but working at higher resolutions produced
better outputs generally.

Generalized versus site-specific models
The site-specific models performed slightly better overall

compared to the generalized models. They had higher cross-
validation Kappa scores on average at all resolutions and gen-
erally achieved higher or similar accuracy based on inde-
pendent validation tests, with the exception for the Brown–
Smith Creek–Drained independent validation test, in which
the generalized models consistently had higher accuracy.

A notable outcome of the generalized models is that the
resulting maps were more consistent across sites than the
site-specific models. In this case, this effect may be not desir-
able because the distribution and frequency of wetland soils
at each study area varies substantially. Wetland soils and cal-
careous wetland soils occur less frequently at the Swift Cur-
rent study site, which causes the generalized models to un-
derpredict these soil types at the other study sites. The gen-
eralized models did, however, achieve higher predictive ac-
curacy according to the Smith Creek–Drained validation test
and produced output maps considered more appropriate in
the eastern portion of the Smith Creek study area because
they predicted fewer occurrences of wetland soils there. The
poorer performance of the site-specific models in this in-
stance is likely due to the lack of training data in that re-
gion of the study area, as training data were only collected in
the western and northern portions (Fig. 2). With better dis-
tribution of training data across the entire study area, it is
expected that the site-specific models would perform better.
This highlights an advantage of the generalized models: be-
cause they were built based on more generalizable patterns,
they were more generally applicable and are less variable
based on local training data.

Most of the terrain derivatives used as predictor variables
are relative measures and cannot be used to differentiate be-
tween sites in the generalized models. The exception to this
is the elevation variable, as each site falls within nearly en-
tirely separate bands of elevation values (Swift Current: 706–
832 m; St. Denis: 540–600 m; Smith Creek: 520–545 m). Eleva-
tion was a relatively useful predictor variable (Fig. 9), which
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was likely due to its ability to split the training data based on
study area within the random forest models. Incorporating
more predictor variables that can be used to distinguish sites
may improve generalized model performance. Incorporating
climatic data would provide a variable that directly relates to
a key difference between these sites: their moisture regimes.

In the case where predictive mapping models can be
trained using either only local or local and global training
data, it is recommended to test both and determine on a
case-by-case basis which performs better. Extrapolating pre-
dictive models to areas where no training data were collected
should be done so cautiously. In the case of this study, a model
trained using only data from Swift Current is very likely to
underpredict the extent of wetland soils at Smith Creek and
vice versa. Although St. Denis represents something of a mid-
point in terms of frequency of wetland soils, models trained
at the other two sites would not be capable of predicting the
fully calcareous wetlands at this site.

Conclusion
Based on the results of this study, mapping of calcareous

and noncalcareous wetland soil types in the Saskatchewan
PPR is possible using terrain derivatives without additional
remote sensing data. This success is partly due to the inclu-
sion of terrain derivatives that were specifically designed to
reflect unique morphological characteristics of the PPR that
are key to distinguishing the distributions of wetland soil
types. Optimal results were obtained using 2 m resolution
DEMs. However, acceptable results were still obtained using
5 and 10 m resolution DEMs, which require significantly less
computational resources. The techniques developed in this
study could help with (i) targeting sampling for studies fo-
cused on testing relationships between wetland soil types and
ecosystem functions, (ii) guiding wetland conservation and
restoration efforts to maximize wetland ecosystem services,
and (iii) establishing broad-scale wetland ecosystem function
estimates. Future work is needed to evaluate the value of ad-
ditional covariates beyond the terrain derivatives used in this
study.
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Appendix A

Formation of fully calcareous wetlands via fill
and spill and shallow groundwater flow

The importance of fill and spill flow and shallow groundwa-
ter flow on wetland hydrology within Prairie Pothole Region
(PPR) landscapes has been recognized over the past decade
(Nachshon et al. 2013; Brannen et al. 2015). Wetlands can
receive significant inputs of solutes from shallow ground-
water flow and fill and spill from upslope wetlands (Cook
and Hauer, 2007; Nachshon et al. 2013), which can result in
CaCO3-enriched soils throughout the wetland basin regard-
less of the wetland’s relationship with groundwater.

Miller et al. (1985), inter-alia, provide a detailed soil profile
description for a soil located within wetland 125S at the St.
Denis National Wildlife Area (referred to as wetland 14 within
that study). This soil profile had high total carbonates and
electrical conductivity throughout its profile. They observed
a shallow groundwater table beneath this wetland that expe-
rienced both recharge and discharge movement of ground-
water. Wetland 125S is notably located within a sequence of
wetlands where fill and spill flow has been observed during
wetter periods (Shaw et al. 2012). The dynamic water levels
of the wetlands within this sequence can only be attributed
to surface hydrology as deep groundwater movement is too
slow to cause such dynamic changes. The high accumulation
of solutes within this wetland is likely the result of the same
fill and spill processes that cause its large variation in wa-
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Fig. A1. Comparison photos of B horizon color for a nongleyed calcareous wetland soil (left) and the upland soil adjacent to it
along the sampling transect (right). [Colour online.]

ter levels rather than the slow recharge and discharge of its
groundwater movement. Wetlands that do not necessarily re-
ceive groundwater discharge but do receive substantial solute
contributions through fill and spill and shallow groundwater
flow can also develop strongly calcareous soils throughout
their basins.

Transect sampling design
Sample points were placed along a single transect per de-

pression and transect placement was determined in the field.
Transects were placed away from potential spill channels and
ran in straight lines with the origins at the basin centers. The
first transect point was placed in the wetland center if the

wetland was not inundated and at the water’s edge if the wet-
land was inundated. Samples were taken upslope along the
transect until soils that were certain to be classified as upland
soils were observed.

In a study on PPR wetlands in similar regions, Pennock
et al. (2014) found recharge (noncalcareous) soils distributed
throughout the 0–0.95 m elevation above the wetland
basin minimum and discharge (calcareous wetland) soils dis-
tributed throughout the 0.95–2 m elevation above the wet-
land basin minimum. They also found that the boundary be-
tween recharge and discharge ring soils within PPR wetlands
roughly matched the maximum observed water level. For
smaller wetlands, the maximum water level is expected to
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Fig. A2. Scatterplot of EC and SIC values for the surficial sample depths (either 0–10 or 0–15 cm) for the profiles sampled
from the wetland basin centers at the SDNWA between 2000 and 2002. EC, electrical conductivity; SDNWA, St. Denis National
Wildlife Area; SIC, soil inorganic carbon. [Colour online.]

match the depression spillover elevation. The sample point
spacing was designed to ensure the points would capture any
changes in soil types that may occur over these boundaries.

Sample point placement along the transect was based on
changes in elevation and spacing between sample points de-
pended on the depth of the depression. For depressions with
depths less than 0.3 m, sample points were spaced at eleva-
tion increments of 0.1 m until 0.5 m and in 0.25 m incre-
ments after 0.5 m. For depressions with depths between 0.3
to 0.5 m, sample points were spaced at elevation increments
of 0.25 m. For depressions with depths greater than 0.5 m,
sample points were spaced at elevation increments of 0.5 m.
Changes in elevation were determined using a Suunto PM-5
clinometer (Suunto, Vantaa, Finland). This method was tested
at a transect with seven sample points using a Sokkisha Set5
Total Station (Sokkia, Kanagawa Prefecture, Japan) and was
found to have a root mean squared error of 0.02 m.

Wetland soil type classification
The discharge ring surrounding wetlands is expected to

have a gradational effect where some soils accumulate sub-
stantial contributions of CaCO3 and soils in adjacent posi-
tions will accumulate CaCO3 through the same processes, but
not to the same degree. The calcareous wetland soil class was
restricted to profiles with moderate to strong CaCO3 through-
out their profile. The distribution of CaCO3 within soil pro-
files was determined through application of 10% hydrochloric
(HCl) acid during the field assessment. Soils were considered
to have moderate to strong presence of CaCO3 when moder-
ate to strong effervescence was observed with HCl application
(bubbles form either thick or low foam (Watson and Pennock,
2016)).

Gleyed soils are the most characteristic feature of wetland
soils. They are characterized by a reduction of iron in the soil
through anaerobic conditions due to excessive moisture caus-
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Fig. A3. 3D scene for an example area in the St. Denis study
site showing the boundary of the flat-water surface present in
the LiDAR-derived DEM as estimated by using the standard
deviation of convergence index. LiDAR, light detection and
ranging. [Colour online.]

ing the iron to be redistributed either into oxidized pockets,
which have a reddish color, or out of the soil causing grey
or even blue soil colors (Bedard-Haughn, 2011). Gleysols and
gleyed soils were determined based on the criteria outlined in
the Canadian System of Soil Classification (CSSC) (Soil Classi-
fication Working Group, 1998). Some of the soils in the Swift
Current area had very dark colors due to the incorporation
of shale within the glacial till parent material (Ayres et al.
1985). This made it difficult to classify soil gleying based on
color because the dark parent material had colors with chro-
mas of one according to the Munsell Soil Color Chart (Mun-
sell, Michigan, USA), which can indicate a gleyed horizon (Soil
Classification Working Group, 1998). The magnetic suscepti-
bility for the samples from these profiles was analyzed using
a Bartington MS-2D meter (Bartington, Oxfordshire, UK) fol-
lowing the protocol described in de Jong et al. (2000). Profiles
with horizons having potentially gleyed soil color and mag-
netic susceptibility less than 150 × 10−9 m3 kg−1 were de-
termined to be Gleysols according to the findings of de Jong
et al. (2005).

The dominant movement of water within gleyed soil pro-
files is expected to be downward to cause the leaching of
iron out of the profile (Bedard-Haughn and Pennock, 2002).
Therefore, discharge ring soils with both gleyed profiles and
accumulations of CaCO3 throughout their profile likely re-
flect changes in the dominant direction of water movement
within the soil over time. The capillary rise of water to the
discharge ring is through unsaturated flow (Knuteson et al.
1989), which is unlikely to cause the development of gleyed
soils. Therefore, discharge rings and, by extension, calcareous
wetland soils are not always gleyed to the extent required to
be classified as such according to the CSSC. Due to the grada-
tional effect of the discharge ring and the ubiquity of CaCO3

in PPR soils, it was difficult to develop class criteria to dis-
tinguish nongleyed calcareous wetland soils from adjacent
upland soils that had moderate to strong CaCO3 throughout
their profile. Several soil criteria were explored to distinguish

nongleyed calcareous wetland soils from upland soils to dif-
ferentiate where CaCO3 accumulations were likely the result
of wetland hydropedological forces.

The upward movement of water to the discharge ring posi-
tions often results in a lack of B horizon development, which
can be used to distinguish calcareous wetland soils from adja-
cent upland soils with B horizons (Pennock et al. 2014). How-
ever, this characteristic is not always present. Soil organic
carbon (SOC) content and A horizon depth thresholds were
explored to distinguish the soil classes. Discharge ring po-
sitions would be expected to have greater moisture causing
greater accumulations of SOC. However, SOC and A horizon
depth can reflect many other influences and can be substan-
tially altered with tillage erosion and deposition. Instead, cri-
teria were established to distinguish the soil classes based
on soil color of the B horizon, when present. Upland soils
have greater color chroma due to the oxidation of iron in the
soils, this gives the soil a more reddish color (Fig. A1) (Smith
et al. 2011). The presence of moisture within the wetland soils
causes the iron to be reduced. In profiles with excessive mois-
ture, the soil forms the gleyed characteristics of grey colors or
mottling. The nongleyed calcareous wetland soils would not
have had the moisture conditions to form those qualities, but
enough moisture to cause a reduced soil color compared to
the adjacent oxidized upland soils. The following color cri-
teria for B horizons was incorporated into the classification:
for nongleyed Calcareous Chernozems to be classified as a
calcareous wetland soil, the B horizon must have a chroma
<5 and a chroma at least one chroma less than an adjacent
upland soil B horizon found in the same sampling transect.

Soils with greater than 30 cm of depositional material at
the top of their profile were classified as buried/depositional.
For soil profiles with less than 30 cm of depositional material,
the difference between the soil surface represented by the el-
evation model and the historic soil surface under which the
soil developed is not expected to be substantially different.
The depth of 30 cm was selected because it was less than the
maximum vertical error considering both the vertical error
of the DEM and the potential vertical error caused by the po-
sitional error of the GPS. The maximum vertical error of the
DEMs used in this study was 22 cm for wetland areas in the
St. Denis DEM (Töyrä et al. 2008). There was a 95% probabil-
ity that the sampled points were within 2 m of the GPS point
(Trimble, 2005). Based on the 2 m DEM, the average RMSE of
the elevation of the adjacent eight cells for each soil-sampled
cell was 13.8 cm. Therefore, the discrepancy between the his-
toric soil surface and the current soil surface with less than
30 cm of depositional material is within the possible range
of error between the soil surface and the elevation model
(35.8 cm).

Supplemental training dataset from St. Denis
Due to the lack of training data points from wetland

basin centers, a dataset collected from the St. Denis National
Wildlife Area (SDNWA) between 2000 and 2002 was used as
a supplemental training dataset. This dataset consists of core
samples taken from multiple large wetlands at the SDNWA
that had dried out during a drought period. A single point was
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sampled from the center of the dried-out basin of each wet-
land and analyzed for SOC, soil inorganic carbon (SIC), electri-
cal conductivity (EC), and pH. Point location coordinates were
not recorded for the samples, only the wetland identifier, so
for use in this study, sample locations were estimated. The
Modified Normalized Difference Water Index (Xu, 2007) was
calculated for the study area using Landsat-7 imagery from
August 2001 with Google Earth Engine (Gorelick et al. 2017).
Pixels with a value greater than 0 were classified as standing
water and sample locations were placed as close to the wet-
land basin center as possible outside of the location classified
as standing water.

There were no profile descriptions or classifications for this
dataset, only soil samples were collected. Points were sam-
pled at increments following one of two designs: (i) 0–10,
50–60, and 100–110 cm (and occasionally deeper) or (ii) 0–
15, 15–30, and in 30 cm increments until at least 120 cm
was reached. Each sample was tested for SOC and SIC using a
LECO C632 Carbon analyzer (LECO Corp, St. Joseph, MI) and
measured for EC and pH using a PC 700 conductivity meter
(Oakton Instruments, Vernon Hills, Illinois, USA) and a 1:20
soil to water extract. Because all soil samples were taken from
wetland basins, it is assumed that they are not upland soil
types. Measured values of soil inorganic carbon and EC were
used to determine whether soils were calcareous or noncal-
careous wetland soil types. If the surface horizon (0–10 cm
depth increment) had a SIC content greater than 1% and an
EC greater than 2000 μs cm, the profile was classified as cal-
careous wetland and otherwise was classified as noncalcare-
ous wetland. Figure A2 shows that these values reflect a no-
ticeable split in the distributions of EC and SIC of these soils.

DEM processing——water surface identification
and reinterpolation

A method similar to that used in Li et al. (2011) to reinter-
polate the water surfaces within DEMs was used to reduce
noise in the positions and better reflect the shape of the un-
derlying sediment. Li et al. (2011) describe a simple method
for determining these surfaces by using the light detection
and ranging (LiDAR) intensity data to determine where water
was present during the time of collection. However, LiDAR
intensity data were not available for these study areas, so wa-
ter surfaces were estimated from the DEM based on closed
topographic depressions and standard deviation of the con-
vergence index terrain derivative (Conrad et al. 2015). Due to
the noisy DEM surface in water surface locations, the conver-
gence index exhibited visible patterns of high localized varia-
tion in these positions (Fig. A3). The original LiDAR-derived 1
m DEMs were resampled to 2 m using bilinear resampling
with GDAL (GDAL/OGR contributors, 2011) and a standard
deviation filter with a window of 19 × 19 cells was calcu-
lated. Pixels with a standard deviation of convergence index
greater than 30 that were within closed topographic depres-
sions were classified as water surfaces, as this threshold best
corresponded to the water surface boundary as determined
through visual assessment (Fig. A3).

The water surface was masked out of the 1 m DEM, which
was then resampled to 5 m, and filled using System for Au-

tomated Geoscientific Analysis’s Close Gaps with Spline tool
(Conrad et al. 2015). The filled 5 m DEM was then resampled
back to 1 m, smoothed using a 9 × 9 mean filter, and used to
fill in the water surface areas masked out of the original 1 m
DEM. The R script for this method has been made available
on GitHub (Kiss, 2022).

The 1 m DEM with water surfaces reinterpolated was re-
sampled to either 2, or 10 m using GDAL’s bilinear resam-
pling. Noise present in the DEM was smoothed over three
iterations using Whitebox Geospatial’s Feature Preserving
Smoothing tool (Lindsay et al. 2019) with a filter size of 11
and maximum difference in vectors of 15 degrees, followed
by a 3 × 3 mean filter, and filling of single-cell pits.
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