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Introduction
The potential effects of mineral aerosols on the Earth’s energy 
balance and hydrological cycle have been recognized since the 
early 1990s. Dust particles can absorb and scatter shortwave and 
longwave radiation,1,2 interact with cloud microphysical pro-
cesses, influence the snow albedo,3 and modify precipitation pro-
cesses.4,5 However, a large concern is to quantify variability in the 
dust emission rate in response to the ever-changing global cli-
mate system, land-cover, and land-use states, especially in desert 
landscape regions with lower resistances and high resilience.6

Taking advantage of its wide spectral range and strong spec-
tral contrast in response to aerosol properties, the launch of the 
Moderate Resolution Imaging Spectroradiometer (MODIS) on 
the Earth Observing System (EOS) satellite makes a consistent, 
reliable data set for monitoring dust aerosol available.7 Dust aero-
sol data sets derived from the MODIS have promoted a series 
of studies on dust transport8–11 and dust aerosol properties12–14 
and the aerosol’s interaction with clouds15 and precipitation 
processes.16 Based on MODIS aerosol products, several papers 
have documented the aerosol climatology on a global scale.17

However, the current satellite observation for the dust emis-
sion is still limited in the time span of the available satellite aero-
sol products. Besides, current satellite sensors are incapable of 
accurately quantifying the dust emission due to technique issues 
such as the cloud contamination. Thus, we turn to a fully coupled 
regional Weather Research and Forecasting coupled with 
Chemistry (WRF-Chem)-DuMo model to construct a dust 
emission in Central Asia. The WRF-Chem model is widely used 
to simulate trace gases and particulates with the meteorological 
fields. The DuMo is a dust module that includes 3 dust emission 
schemes and an integrated system in preprocessing the land sur-
face and dealing with the initial injection issue and the particle 
size distribution. This climatology data set is expected to serve as 

a model-data-comparison median with the satellite observation 
and in situ measurement and as a candidate for a comparison 
with results from other models or dust schemes.

Furthermore, Central Asia is one of the largest semi-dry 
regions and is strongly affected by both the warming climate 
trend18 and various human activities19 (eg, massive land and water 
management projects). In Kazakhstan, the land degradation has 
begun in the 1950s for the grain production, a shift in an animal 
(cattle, sheep, and goats) number from 80 million in 1992 down 
to 44 million in 1999 and up to 63 million in 2005,18 and changes 
in grazing practices. Biogenic crusts in the Kara Kum and Kyzyl 
Kum deserts of Turkmenistan and Uzbekistan have experienced 
an accelerated growth18 due to a decrease in the grazing pressure 
on desert rangelands during the past 40 to 50 years.

Changes in the land surface state can enhance or suppress 
the dust emission through aeolian roughness and soil moisture 
dynamics on a daily/seasonally/annually timescale. To our 
knowledge, there are few published papers which document the 
dust emission in Central Asia, accounting for Land-Cover and 
Land-Use Change (LCLUC) and regional climate changes.20 
The main goals of this article are to quantify the dust source 
strength in Central Asia and to construct a dust emission inven-
tory. To fulfil these goals, we incorporated the DuMo, which is 
developed by our group,20,21 into the WRF-Chem and then 
performed a simulation in April for the period 1950-2015.

Data Preparation and Model Design
Brief description of a physics-based dust scheme in 
DuMo

The DuMo system includes 2 different physically based dust 
emission schemes and 1 simple empirically based scheme. It 
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contains a complex land surface component dealing with sur-
face dynamics, a variation of the surface roughness length and 
density, for Central Asia. Here, we employed a physics-based 
scheme, originally developed by Marticorena et al,22 to calcu-
late the size-dependent dust emission flux ( ( ))dF D , which is 
estimated to be proportional to the size-dependent horizontal 
flux by an empirical efficiency β  (equation 1) where 
β = −16300cm s 2 . Integrating equation 2 over the total diam-
eter range of soil particles yields the aggregate horizontal flux:

dF D dG D( ) = ( )β 	 (1)
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Here, U *  denotes the friction velocity; U t*  is the threshold 
friction velocity at which erosion initiates; ρa  represents the 
air density, a prognostic variable in the WRF-Chem-DuMo 
model; g  is the gravitational acceleration parameter; dS Drel ( )  
is the relative surface area covered by a particle of diameter D; 
and E is a ratio of the erodible to total surface area. We set this 
ratio to 1, based on an analysis of extensive sets of artificial soil 
size distributions.23,24

The dust emission scheme calculates U *  using a logarith-
mic wind profile and employing a static aeolian roughness map 
from the POLDER (POLarization and Directionality of the 
Earth’s Reflectances) instrument data. The threshold friction 
velocity is calculated by applying a soil moisture correction and 
a surface roughness correction due to the presence of non-
erodible elements such as peddles and rocks to the smooth fric-
tion velocity ( )*U ts . The soil moisture correction is only 
introduced when the soil moisture exceeds the minimal soil 
moisture (the so-called soil residual moisture) that the soil can 
hold. The roughness correction is made when the aeolian 
roughness exceeds a local roughness length of the uncovered 
smooth surface. Therefore, both corrections are tightly associ-
ated with the soil texture and, thus, the land surface state.

Input data for the coupled model

Many global land surface maps, eg, the US Geological Survey 
(USGS), International Geosphere-Biosphere Program 
(IGBP) at 1-km spatial resolution,25 and GLC2000,26 have 
been developed using remote sensing imagery from the 
Advanced Very High Resolution Radiometer (AVHRR) or/
and the MODIS. However, currently no land-cover data were 
available for a regional application (eg, the regional environ-
ment modelling). Furthermore, the 24-category USGS data 
(Figure 1) used in the WRF-Chem model by default cannot 
represent LCLUC state of periods other than 1992-1993 
because it was derived from AVHRR data during the period 
1992-1993 only. To better reflect the surface state variation, 
we modified the default land surface categories in the model 

based on the Land-Use Harmonization (LUH) data set, lit-
erature record, and satellite imagery data.

The LUH data set was initially prepared for assessing the 
effect of the human activity on the carbon-climate system in 
the Earth System Models. It provides the first set of a consist-
ent land-use change record for the period 1500-2100 at a 
0 5 0 5. .°× °  resolution.27 We modified the USGS categories in 
the model to reflect the shrinking of the Aral Sea, the back and 
forth between drying and refilling of the Kara-Bogaz-Gol 
(KBG) bay, the fluctuation of the Caspian Sea water level, and 
the Kazakh Steppe. The Aral Sea surface area had shrunk from 
approximately 67 100 to 7000 km2 by the year 2009, which 
converts the exposed eastern lakebeds to a new active desert, 
the Aral Kum. Accordingly, we replaced the original water 
mask with the land mask #19 (barren or sparsely vegetated cat-
egory). The KBG bay situates on the eastern coast of the 
Caspian Sea and extends into the hinterland. A dam built 
between the Caspian Sea and the bay28 in March 1980 caused 
the groundwater level to drop significantly during the 1980s. 
The nearly dried out bay became a salt flat prone to wind ero-
sion. Correspondingly, for the modelling in the 1980s, we 
assigned the bay to a ‘barren or sparsely vegetated’ type (Figure 
2: 1980s) but restored the water mask for the 1990s after the 
bay was refilled in June 1992 (Figure 2: 1990s).

We then reconstructed the cropland and pasture distribu-
tions. Arable cropped lands occupied only approximately 8% of 
the total geographic area. Of those croplands, 36% are fed up 
with from inland seas or rivers, eg, the Amu Darya and the Syr 
Darya. The amount of irrigated cropland expanded from 
4.5 Ma in 1960 to 7.9 Ma in 2009. Pasture and grass cover most 
of the lands in Central Asia. In Kyrgyzstan, nearly 90% of the 
agriculture lands belong to pasture. To reconstruct the cropland 

Figure 1.  The default land-cover and land-use map in the WRF-Chem for 
Central Asia. The red boxes denote different dust source regions in 
Central Asia. These regions are located over the Ustyurt Plateau (I), 
eastern shore of the Caspian Sea (II), Kara Kum desert (III), Kyzyl Kum 
desert (IV), Aral Kum desert (V), and Muyun Kum desert (VI).
Classification of the USGS categories (1-24): 1. urban and built-up land, 2. 
dryland cropland and pasture, 3. irrigated cropland and pasture, 4. mixed 
dryland/irrigated cropland and pasture, 5. cropland/grassland mosaic, 6. 
cropland/woodland mosaic, 7. grassland, 8. shrubland, 9. mixed shrubland/
grassland, 10. savanna, 11. deciduous broadleaf, 12. deciduous needleleaf, 
13. evergreen broadleaf, 14. evergreen needleleaf, 15. mixed forest, 16. water 
bodies, 17. herbaceous wetland, 18. wooden wetland, 19. barren or sparsely 
vegetated, 20. herbaceous tundra, 21. wooded tundra, 22. mixed tundra, 23. bare 
ground tundra, and 24. snow or ice.
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and pasture distributions, we split the LUH cropland fractions 
into 2 components: rainfed and irrigated croplands, corre-
sponding to the category 2 and the category 3 in the default 
USGS category, respectively. Similarly, we used the LUH pas-
ture fraction to replace the category 7 (grassland) and the cat-
egory 8 (shrubland) based on their pixel locations. To the north 
of 45° , we attributed the LUH pasture to the category 7 and 
category 8 and vice versa.

Model configuration

The WRF-Chem model was configured to cover Central 
Asia ( ,50 90 37 55° − ° ° − °E E N N)  with a 10 10× km  horizon-
tal resolution, centred at (65 46° °E, N) . To better simulate 
the near-surface wind velocities, we set 42 vertical layers (10 
layers below and 32 layers above 1 km) and set the top layer 
pressure to 10hPa.29 The meteorological fields with lateral 
boundary and initial conditions took from the National 
Centers for Environmental Prediction/National Center for 
Atmospheric Research Reanalysis (R1) data because of its 
longtime coverage. The chemical lateral boundary condition 
was provided by the default profile in the WRF-Chem, based 
on an average of mid-latitude aircraft profiles from several 
field studies over the Eastern Pacific Ocean.30 We used a 
binned method to represent the size distribution in the model, 

representing the dust particles by 20 bins (Table 1). The cli-
matology data set consists of 2 sub-products, representing 
fine and coarse dust particles; a sum of column-integrated 
mass (CIM) from bin 1 to bin 3, CIM for particles in the fine 
mode (CIM_fine) and a sum of CIM from bin 4 to bin 20, 
and CIM for particles in the coarse mode (CIM_coarse). 
Note that CIM is an integration of the mass concentration 
over the atmosphere column (formula 3):

CIM = ( )∫M h dhc

H

0

	 (3)

where M hc ( )  is the mass concentration with a unit of g m−3 , 
H is the height in metre at the top model layer.

A non-parametric test, Mann-Kendall, is used to detect 
whether a linear trend is present in the CIM time series. The 
Mann-Kendall test was constructed based on a relative ranking 
of the data values. It analysed the difference in signs between 
early and later data points. An increase (decrease) trend pre-
sents when the sign values tend to increase (decrease) con-
stantly. This test allowed the existence of autocorrelations 
among the data values. The Theil-Sen estimation method used 
here is insensitive to outliers and, thus, it can be significantly 
more accurate than the simple linear regression.31 We applied 

Figure 2.  Reconstructions of the historical LCLUC in Central Asia during the 1950-2010 decades. Land classification categories are shown in Figure 1.

Table 1.  Size bin information in the coupled model.

Bin 1 to bin 5 Bin 6 to bin 10 Bin 11 to bin 15 Bin 16 to bin 20

0.10–0.22 1.44–1.73 3.30–3.79 7.07–8.41

0.22–0.46 1.73–2.08 3.79–4.35 8.41–10.00

0.46–1.00 2.08–2.50 4.35–5.00 10.00–15.18

1.00–1.20 2.50–2.87 5.00–5.95 15.18–23.05

1.20–1.44 2.87–3.30 5.95–7.07 23.05–35.00

The values represent particle diameters with a unit of micrometre.
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the trend analysis directly to the CIM series, after proving that 
there were no annual or seasonal cycles.

Simulations were restricted to April for the 1950-2015 
period to demonstrate the ‘inter-annual’ dust climatology vari-
ability and trends owing to the very expensive run time. The 
month April was selected because of the best match of the 
land-cover states between the Normalized Difference 
Vegetation Index (NDVI) (Figure 3) and the LUH data set.

Satellite data

We employed 2 sets of aerosol products, Collection 5.1 (Level 
2) and Collection 6 (Level 1) (hereafter referred to as C5 and 
C6, separately), from the MODIS aboard the Terra to evaluate 
the modelled dust emission. Aerosol Optical Depth (AOD) is 
a measure of the ability of scattering and/or absorbing the radi-
ation by aerosols (formula 4). Over a bright desert area, AOD 
from C5 (Level 2) was retrieved using Deep Blue algorithm 
(DBA),32 taking advantage of the smaller surface reflectance in 
the blue spectral region than in the red and near-infrared chan-
nels. The time coverage of the C5 data set (Level 2) is from 
2000 to 2007. After 2007, this collection was terminated 
because of the calibration degradation of the blue channel33:

AOD = ( )∫α z dz
l

0

	 (4)

where l is the path length that the light travels and α( )z  is the 
attenuation coefficient.

Recently, Hsu et al34 further developed an enhanced DBA 
by combining a surface reflectance database method and a 
dynamical surface reflectance method based on the NDVI. The 
NDVI-based reflectance method for vegetated and transitional 
regions extends the spatial coverage of the retrievals from arid 
and semiarid regions to the entire land area. In particular, the 
enhanced DBA added MODIS infrared channels (8.6 and 
11 µm) to the aerosol model selection procedure making the 
retrieval of mineral dust in C6 more accurate than in C5.

Despite those improvements, there are still many missing 
values over the sub-regions of interest. Therefore, a merged 
AOD parameter in C6 (a combination of both DBA-based 
AOD and C6 AOD, referred as C6 hereafter for simplicity) 
was used instead rather than AOD directly from the enhanced 
DBA itself. The merged AOD data have fewer spatial gaps and 
are more continuous during the period 2000-2014. We rema-
pped the best-quality pixels with quality assurance flag 2 or 3 

Figure 3.  Monthly NDVI (MOD13C2) derived from the MODIS/Terra Land Products distributed from the LP DAAC (https://lpdaac.usgs.gov/data_access/

data_pool), with a spatial resolution of 0.05° (around 5600 m) for individual months in 2001 over Central Asia.
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from the original 5-minute ‘Swath’ granules of both collections 
into a 0 25 0 25. .°× °  grid and then processed the remapped grid 
data set into a daily one.

Absorbing Aerosol Index (AAI), derived from sensors on 
different platform (the Total Ozone Monitoring Satellite 
[TOMS], Nimbus-7/TOMS, Earth Probe/TOMS, and 
Aura/Ozone Monitoring Instrument [OMI]), measures to 
what extent the wavelength dependence of the backward 
radiation from an atmosphere containing aerosols departures 
from that of a pure molecular atmosphere in the UV band 
(formula 5). It is suitable for distinguishing UV-absorbing 
aerosols,35 such as dust and biomass burning (larger positive 
AAI), from weakly absorbing aerosols, the cloud (almost 
zero AAI), and non-absorbing aerosols (eg, sulphate aerosols 
and sea-salt particles: negative AAI):

AAI =












100 10
360

360

log
I
I

Meas

Calc 	 (5)

where I Meas
360  is the measured radiance and I Calc

360  is the calcu-
lated radiance at 360 nm.

Results and Discussions
Comparisons with MODIS AOD

C5 and C6 AODs are available from 2000 to 2007 and 2000 to 
2014, respectively. We performed a comparison between the mod-
elling result and the satellite observation for the 6 desert regions.

Figure 4 shows C5 (red lines) and C6 (purple lines) AOD 
series for the 6 sub-regions. The mean values shown in the plot 

Figure 4.  Time series of daily averaged C5 (red lines) AOD at 550 nm from 2000 to 2007, merged C6 (purple lines) AOD of MODIS aerosol products from 

2000 to 2014, and normalized dust CIM (blue), with units of g m−2, at the 6 dust sources in April from 2000 to 2014. The regression line (orange) is also 

shown. The numbers in each panel show the regression equation for CIM and the monthly mean values ± standard deviations for C5 and C6 AOD and 

CIM. In addition, the CIM correlation coefficient with C5 and C6 AOD is shown in the parentheses immediately after the standard deviation. The double 

asterisks (single asterisk) denote that the correlation was significant by Student t test at a confidence level of 95% (90%). In this figure, CIM was 

normalized to a dimensionless variable ranging from 0 to 1. The vertical dashed lines are used to separate months in different years. (A) Ustyurt Plateau, 

(B) Eastern Shore of the Caspian Sea, (C) Kara Kum desert, (D) Kyzyl Kum desert, (E) Aral Kum desert, and (F) Myun Kum desert. AOD indicates Aerosol 

Optical Depth; CIM, column-integrated mass; MODIS, Moderate Resolution Imaging Spectroradiometer.
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for C5 were for the period 2000-2007. The C6 was averaged 
during the period 2000-2014, ignoring all missing values in 
both time series. The Muyun Kum desert is the dustiest region, 
as indicated by the largest averaged AOD (0.29) in C6. The 
standard deviation over this sub-region was also the largest 
(0.15). The newly formed Aral Kum desert has become the 
second dustiest area with 15-year averaged C6 AOD of 0.22. 
AOD in C5, however, identified the Ustyurt Plateau (0.36), 
Muyun Kum (0.34), and the eastern shore of the Caspian Sea 
(0.33) as the first 3 intensive dust sources. To compare C5 
AOD with C6 AOD, we also calculated the C6 AOD mean 
for the 2000-2007 period. During the calculation, we consider 
C5 and C6 AOD series in pairs. If either series contained a 
missing value for a day, we set the data point corresponding to 
that day in the other series to the missing value too. Results 
suggested that C5 AOD was higher over the eastern shore  
of the Caspian Sea, the Kyzyl Kum, and the Aral Kum  
but smaller over the Muyun Kum and the Ustyurt Plateau 
(Table 2). Table 2 also gives the absolute relative error for C6 
AOD. C5 and C6 AODs have large differences over the Kyzyl 
Kum (31%), the Kara Kum (22%), and the Muyun Kum (38%) 
for the period 2000-2007.

Dust CIM is an integration of the dust concentrations 
over the model vertical layers. We normalized it into 0 and 1 
(blue lines in Figure 4) to make a readier comparison with 
AOD. CIM positively correlates with both C5 and C6 AOD. 
In particular, the correlations between CIM and C6 AOD 
over the eastern Caspian Sea and the Ustyurt Plateau reached 
0.48 and 0.42, respectively. For all sites on April 9, normal-
ized CIM exceeded the corresponding mean values by at least 
1 standard deviation, suggesting that the coupled model suc-
cessfully reproduced a strong dust event occurred on that day.

All 6 sub-regions show negative trends in the daily CIM 
series during the 2000-2014 period. However, only the trend 
over the Ustyurt Plateau was significant at the 95% confidence 
level. The decreasing trend over the eastern shore of the 
Caspian Sea and the Kara Kum desert was statistically signifi-
cant at a confidence level of 90%. The decreasing rate was 
approximately − × − − −9 53 10 6 2 1. g m d  for the Ustyurt Plateau. 

We analysed the trend in the dust amount using CIM instead 
of MODIS AOD because randomly distributed missing values 
in the C5 and C6 time series make the trend estimation from 
the MODIS difficult.

The contribution (Con) of sub-region i  to the total CIM 
was obtained from formula 6:

Con
CIM

CIM
i

ij ijj

n
S

T

i

= ×
⋅

=∑ ∆
1 100% 	 (6)

where TCIM  is the total CIM, j  denotes each pixel of the ith 
sub-regions in the model output files, ni  is the pixel number of 
the ith  sub-region in the simulation data, CIMi  represents 
the CIM for an individual pixel, and ∆Sij  is the area of each 
pixel. We calculated ∆Sij  using formula 7:

∆S dx dyij ij ij= ⋅ 	 (7)

where dxij  and dyij  are the ground projection distances of 
each pixel along the longitude and latitude, respectively.

Total dust CIM was obtained from formula 8:

T Sij ij
j

n

i

m i

CIM CIM= ⋅
==
∑∑ ∆

11

	 (8)

where m  denotes the sub-region number and ni  is the pixel 
number of the ith  sub-region.

Table 2 shows the contributions of the sub-averaged to 
domain-integrated CIM and AOD (C5 and C6). The Kara 
Kum is the largest contributor to dust CIM in Central Asia, 
with contributions of 27.05% and 25.42% during the 2000-
2007 and 2000-2014 periods, respectively. The eastern shore of 
the Caspian Sea was another strong dust source only second to 
the Kara Kum. In contract, the Muyun Kum region was the 
weakest source with its contribution of only 11.27% and 
11.11% for the 2000-2007 and 2000-2014 periods, respec-
tively. From formula 8, dust CIM in the 6 dust regions was 
estimated to be 242.2 Mton per month in April during the 
2000-2007 period and 207.9 Mton per month for the 

Table 2.  Mean values of C5 and C6 Aerosol Optical Depth (unitless) and the dust mass per month (unit: Mton) for the 6 dust sources as well as 
dust mass percentages of the sub-region in the entirety of the 6 desert regions during 2 different periods.

2000–2007 2000–2014

  C5 C6 Mass Contribution (%) C6 Mass Contribution (%)

I 0.36 0.33 30.196 12.47 0.36 26.492 12.75

II 0.33 0.33 49.319 20.36 0.35 48.249 23.21

III 0.27 0.21 65.522 27.05 0.23 52.825 25.42

IV 0.29 0.20 39.239 16.20 0.23 33.715 16.22

V 0.32 0.28 30.631 12.65 0.32 23.468 11.29

VI 0.34 0.21 27.298 11.27 0.21 23.101 11.11
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2000-2014 period. The atmosphere over the dustiest region, 
the Kara Kum, contained 65.5 Mton (averaged value) and 
52.8 Mton dust CIM for the period 2000-2007 and 2000-
2014, respectively.

Figure 5 shows the dust event numbers, calculated using 
CIM and MODIS AOD. We take averaged AOD and CIM 
for all 6 regions as our threshold value, as shown in Table 3, to 
detect a dust event. Because the missing values in C5 and C6 
AOD do not appear in the same days, the threshold of CIM 
differs slightly during the 2000-2007 period, making a slight 
difference in the dust event numbers detected by CIM. Dust 
event numbers from C6 AOD are very different among the 6 
sub-regions, identifying the Ustyurt Plateau, the eastern shore 
of the Caspian Sea, and the Aral Kum as very active dust 
sources during the 2 periods. Of these regions, the latter 2 
belong to dry unconsolidated lakes, demonstrating the geo-
morphological signature of MODIS-defined dust sources.36 In 
contrast, C5 AOD shows more evenly distributed and less fre-
quent dust events over these sub-regions. Over the Muyun 
Kum, these 2 collections have the largest discrepancy (Figure 4 
and Table 2).

Over the Kara Kum, the Kyzyl Kum, and the Muyun Kum, 
the dust event numbers from our simulation are comparable 
with those from C6 AOD. Over the Ustyurt Plateau and the 
Aral Kum, however, our model significantly underestimates the 
dust event number. The most frequent dust event from our 
simulation occurs on the eastern shore of the Caspian Sea with 
a frequency approximately of 0.4 during both periods. The dust 
event number from the model in this region is comparable with 
that from C5 AOD but underestimated by 0.2 (~6 days) in 
comparison with that from C6 AOD. The evident underesti-
mation of our simulation over the Ustyurt Plateau and the Aral 
Kum most probably resides in an imperfect dealing with the 

soil properties, which in turn reflects the importance of includ-
ing the surface dynamics in dust emission schemes.

Comparison with AAI and CIM at the daily scale

The TOMS sensors, operated for a much longer time than the 
MODIS does, can provide a rough estimation of the model 
results before the year 2000. We compared the dust events 
detected using CIM with those using AAI averaged over all 
the sub-regions rather than performing a site-to-site compari-
son (Supplementary Figure 1) because of the low spatial reso-
lution of the AAI data. We separated CIM into 3 periods 
(1981-1993, 1997-2005, and 2005-2015) to form pairs with 
AAI from different platforms (corresponding to Nimbus-7/
TOMS, Earth Probe/TOMS, and Aura/OMI, respectively). 
The data are displayed for April only to be consistent with the 
modelled date.

AAI has the relative variability (defined as the ratio of 
the standard deviation to the time-series mean) almost 86% 
less than that of modelled CIM for all the 3 periods. The 
following factors partially explain the large discrepancy 
between the relative variability of AAI, 23.0%, 21.9%, and 
19.4% and that of CIM, 141.7%, 170.0%, and 138.5% 
(Supplementary Figure 1) for the 3 periods (1981-1993, 
1997-2005, and 2005-2015). First, the averaging of the 
modelled CIM was over a larger number of grid points than 
that of MODIS AOD over the sub-regions. Second, AAI 
contained aerosol information not only for mineral particles 
but also for smoke and other UV-absorbing anthropogenic 
aerosols. Third, very small values (less than 0.537) were 
removed from the AAI data to retain precise retrievals. 
Finally, AAI reflects the absorbing aerosol loading only at 
the overpass time. In contrast, averaged CIM from the 
hourly model output files may contain extremely strong epi-
sodes which are not captured by AAI. The large discrepancy 
in the relative variability also presents between CIM and 
MODIS AOD (Figure 4). In fact, AAI in the Central Asia 
poorly correlated with MODIS AOD during 2000-2014 
periods (not shown). Very limited amount of AERONET 
(Aerosol Robotic Network) stations in this region makes an 
inter-comparison among different satellite retrievals diffi-
cult because satellite retrievals require validations by the 
ground-based observation.

Figure 5.  The dust event numbers detected by MODIS aerosol products and simulations over the 6 sub-regions. (A) C6 and CIM: 2000-2007, (B) C6 and 

CIM: 2000–2014, and (C) C5 and CIM: 2000–2007. CIM indicates column-integrated mass; MODIS, Moderate Resolution Imaging Spectroradiometer.

Table 3.  Threshold values used for detecting dust events during the 
2000-2007 and 2000-2014 periods.

Period C5 AOD/CIM (g m−2) C6 AOD/CIM (g m−2)

2000–2007 0.32/0.15 0.26/0.16

2000-2014 — 0.28/0.15

Abbreviations: AOD, Aerosol Optical Depth; CIM, column-integrated mass.
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In April, averaged AAI was slightly larger during the period 
1997-2005 (1.05) and 2005-2015 (1.08) than during the 
period 1981-1993 (0.87). We used constant threshold AAI, 
1.0, the same as Prospero et al35 used over the North Atlantic 
Ocean and Africa, to detect dust events. During the 3 periods, 
we applied the same threshold CIM to the dust event detection 

because the model is consistent. The dust event number begin-
ning from 1981 is shown in Figure 6 where very frequent dust 
events registered in April of 2000 (25 days/month by the Earth 
Probe/TOMS), 2001 (26 days/month by the Earth Probe/
TOMS), 2008 (24 days/month by the by the Aura/OMI), and 
2011 (24 days/month by the by the Aura/OMI). In contrast, 
the model underestimates the event frequency for the recent 
decade and overestimates it for the decade before 1990.

The dust emission and a contribution estimation of 
each source region in April

To our knowledge, this is the first time anyone has attempted 
to use a regional coupled model to investigate ‘inter-annual’ 
dust variability in Central Asia (although this study was lim-
ited to a single month). Figure 7 shows the mean CIM map for 
CIM_fine, CIM_coarse, and their sum over the entire period 
1950-2015. Column-integrated mass for particles in the coarse 
mode, which dominates long-term averaged CIM because of 
the larger particle size, had 2 separate high centres. One centre 
with a higher dust loading appeared on the eastern shore of the 

Figure 7.  Averaged CIM (A for CIM_fine, C for CIM_coarse, and E for their sum) for 1950–2015 period and their standard deviation (B, D, and F for 

CIM_fine, CIM_coarse, and their sum, respectively). Note that values for fine-mode panels (A and B) have been divided by 100.

Figure 6.  Dust event numbers, detected using CIM (red bars) and AAI 

(blue bars) over all 6 sub-regions for the 1981-2015 period. AAI indicates 

Absorbing Aerosol Index; CIM, column-integrated mass.
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Caspian Sea (Figure 7). The other centre located near the 
boundary of the Ustyurt Plateau and the eastern shore of the 
Caspian Sea. Fine-mode CIM had only 1 centre on the eastern 
shore of the Caspian Sea. Ranging from 0.1 to 0.3, CIM over 
the dust belt decreased both northward and southward away 
from the belt. The distribution of the CIM variability was very 
similar to that of CIM, where regions with larger dust CIM 
tend to have larger variability.

Figure 8 shows the inter-annual variability for the 6 sub-
regions. The inter-annual variability was very large in April 
during the past 66 years. Comparisons among different sub-
regions show that the active dust ‘hot spot’ continued locating 
on the Ustyurt Plateau and the eastern shore of the Caspian 
Sea. The amount of the dust aerosol in Central Asia had sig-
nificantly decreased by the end of the 1980s but rapidly 
increased in 2001. Extremely large CIM appeared in 1979, 
1995, and 2001.

In Central Asia, the major dynamic driving forces for the 
dust lifting and transport result from cyclonic activities and a 
seasonal shift of the polar front in century timescale.38 Cyclonic 
storms can cause severe dust storms when arid conditions pre-
vail, which may explain large CIM in the year of 1979. All 
causes – meteorological conditions and LCLUC states – must 
work together to produce mineral dust. As a result of the rapid 
retreat of the Aral Sea from 1989 to 2009,39,40 CIM almost 
exceeded 0.65 in 2001 when the largest CIM registered during 
the simulation period. However, CIM over that source region 
remained small in previous 2 decades, until 2001, which is con-
sistent with a previous study.40

Figure 9 shows the contribution of each sub-region (averaged 
over 10 adjacent April months, eg, 10 April months from 1950 

to 1959) in dust CIM. The approaches used here illustrate the 
decade wide variability seen in region dust predictions. In the 
1950s, approximately 166.4 Mton of dust particles entered into 
the atmosphere per month. This value increased to 242.4 Mton 
in the 1960s and continued increasing to 270.9 Mton in the 
1970s. Subsequently, the dust amount in this region dropped 
greatly to 186.2 and 191.6 Mton in the 1980s and 1990s, respec-
tively. In the 2000s, the total dust amount was estimated to be 
224.2 Mton, indicating that Central Asia became very active 
again. The Caspian Sea, the Kara Kum, and the Kyzyl Kum con-
tributed most of the dust aerosols, comprising nearly 72% of the 
total dust production in Central Asia.

Figure 8.  The long-term inter-annual variability of CIM (red: CIM_coarse, left y-axis; purple: CIM_fine, right y-axis) in April for the period 1950-2015 for 

the 6 sub-regions. The CIM units here are g m−2. Note that all values for CIM-fine should be multiplied by 102 . (A) Ustyurt Plateau, (B) Eastern Shore of 

the Caspian Sea, (C) Kara Kum desert, (D) Kyzyl Kum desert, (E) Aral Kum desert, and (F) Myun Kum desert. CIM indicates column-integrated mass.

Figure 9.  10-April averaged contributions of each sub-region to total 

column-integrated mass over all the dust source regions with values 

shown as a percentage (%). For each 100% column, the bottom to the top 

small columns are for sub-regions I, II, III, IV, V, and VI, respectively.
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Dust emission anomalies from the model

We selected long-term (1950-2015) averaged CIM in April 
as a baseline to calculate the dust anomaly. Figure 10 shows 
the dust anomaly for different times, eg, the 1980s and the 
1990s.

Most water flowing through rivers of the Kara Kum, the 
Kyzyl Kum, and the Muyun Kum was redirected along canals 
for various agricultural uses during the 1970s. Resulting from 
the development of the agricultural irrigation, the desertifica-
tion process (the desiccation of the Aral Sea, drop of the 
groundwater level, and an increase in water salinity) got accel-
erated. This human-related land surface change along with the 
regional warming18 and the precipitation decrease, correspond-
ing to strong La Nina events in 1973-1974 and 1975-1976,41 
induced a severe and continuous aridity.42 The lasting aridity 
led to a significantly enhanced dust storm frequency43 and 
CIM, with the anomaly centre near the Amu Darya and the 
Syr Darya Rivers (Figure 10: 1970s).

In comparison with previous decades, CIM in the 1980s 
and 1990s showed a marked decrease (Figures 8 and 10). In 
those 2 decades, negative anomalies exist over most of Central 
Asia, especially over the western Turkmenistan and regions 
between the Aral Sea and the Balkhash Lake. The major ‘hot 
spots’ were mainly found at the KBG bay and in the southwest-
ern Turkmenistan in the 1980s and 1990s, respectively, which 
coincides with an another study.44

In the 2000s, positive CIM anomalies appeared over the 
dust belt, particularly over the Aral Sea and nearby regions, 
which is consistent with Indoitu et al45 who reported a doubled 
increase in dust storm events over the Aral Sea.

Over the KBG, our simulation successfully reproduced 
enhanced CIM (positive anomalies) in the 1980s. The lower 
water level of the KBG makes this region more prone to the 
wind erosion. In fact, the KBG became well known as one of 
the largest and saltiest bodies of water producing ‘Salt storms’ 
during the period 1980-1983.46 After the dam vanished in the 
1990s, this exposed bay refilled by inflows, which efficiently 
protect the soil from being prone to the dust emission. 
Accordingly, CIM returned to its lower value during this 
period. The fluctuation in the CIM anomalies in response to 
the groundwater-level fluctuation illustrates that the human 
activity can influence the dust emission intensity through 
modifying land surface states.

Summary
We constructed a dust CIM data set for April during the 1950-
2015 period by incorporating a dust module, DuMo, into 
WRF-Chem and modifying the default LCLUC to more real-
istically represent the land surface state. A comparison between 
the model result and MODIS C5 and C6 AOD was made for 
the 6 sub-regions at a daily timescale for the years 2000 to 2007 
and 2000 to 2014, respectively. The correlation between CIM 
and C6 AOD ranges from low to moderate level (0.22-0.48), 

Figure 10.  10-month averaged dust CIM anomalies with respect to a 1950-2015 baseline, as shown in Figure 7E.
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except for the Kara Kum (0.15) and the Aral Kum (0.14) desert 
regions, where low correlations are found. In comparison with 
the correlation with C6 AOD, CIM has a higher correlation 
with C5 AOD over the Kara Kum and Aral Kum deserts but 
had a smaller correlation over other sub-regions. The model 
well reproduced the dust frequency over the Kara Kum, but it 
underestimates the frequency over the Ustyurt Plateau, the 
Aral Kum, the eastern shore of the Caspian Sea, and the Aral 
Sea. The dust frequency derived from CIM is less than that 
from AAI in April during near recent decades but is more 
before 1990. In addition, the coupled model generated a very 
high dust variability on a daily scale, which is almost in the 
same order of the dust.

Simulation results also suggest that the following: (1) the 
total dust loading over all 6 desert regions was 207.9 Mton per 
month for the 2000-2014 period; (2) the Kara Kum 
(52.8 Mton), the eastern shore of the Caspian Sea (48.2 Mton), 
and the Muyun Kum (33.7 Mton) were the first 3 large CIM 
regions during the considering period; and (3) positive anoma-
lies presented in the 1970s (with a larger spatial extension), 
1960s, and 2000s.
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