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Introduction
Calibration is the procedure of adjusting parameter value to 
optimize model performance according to a set of predefined 
criteria. Each model uses a set of one or more parameters 
that are used to determine the basic behavior of a modeled 
system. Many numbers of calibration procedures to find such 
a solution in an iterative style has been tested in 4 decades. 
Generally, they are changeable in details but include 4 ele-
ments, namely, objective function, calibration data, adjust-
ment strategy, and termination criterion.1 The model can be 
calibrated for having determined appropriate measures of 
performance. This may be performed automatically, semiau-
tomatically, or manually.2 Manual calibration needs an expe-
rienced hydrologist who understands the behavior of the 
model. It includes running the model, looking the output, 
and adjusting the parameters until a satisfactory level of 
model behavior is obtained. The process of manual model 
calibration can be very time-consuming. A substitute to the 
manual procedure is automatic optimization. In this case, the 
model is applied to undertake multiple simulations, each 
searching for an optimal set of parameter values. The effec-
tiveness of this depends on the sophistication of the search 
procedure and the utility of the measure of goodness of fit. 
Finally, the other option is semiautomatic calibration which 
combines both methods, with the user control the automatic 

parameterization method, to ensure that unrealistic parame-
ter combinations are excluded from consideration.

Uncertainty can be a supplement part of any hydrological 
modeling undertaken. The uncertainty in the modeling process 
includes 4 major sources. (1) Data uncertainty such as errors 
attributed to the measurement itself, by the temporal and spa-
tial discretization by data preprocessing or measurements. (2) 
Model structural uncertainty such as simplifications or inade-
quacies in the explanation of actual world phenomena. The 
unavoidable deficiencies in the model building often result in 
the problem that different parameter sets fit one mode of sys-
tem response at the expense of other response modes that are 
reproduced less precisely.3 (3) Model specification uncertainty 
such as the inability to converge to single best model using the 
information provided by available data. This uncertainty results 
mainly from data and model structure uncertainties.4 (4) 
Uncertainty due to unknown initial circumstances such as the 
states of the model is usually unknown at the beginning of any 
simulation period. However, this uncertainty can be reduced 
either by adjusting the initial conditions or via using a warming 
up period that allows the internal states to adjust.

Regarding application of Soil and Water Assessment Tool 
(SWAT) in this study, Arnold et al5 reported that several cali-
bration techniques have been developed for SWAT, including 
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manual calibration procedures and automated procedures using 
the shuffled complex evolution method. Recently, SWAT 
Calibration and Uncertainty Program (SWAT-CUP) has been 
developed which provides a decision-making framework that 
incorporates a semiautomated approach Sequential Uncertainty 
Fitting-2 (SUFI-2) using both manual and automated calibra-
tion and incorporating sensitivity and uncertainty analysis.6 
Abbaspour et  al6 applied SWAT model including a general 
calibration for the large area based on data availability by 
European Water Framework Directive. Recently, calibration 
and uncertainty analysis are implemented in an open-source 
cloud platform and generalized likelihood uncertainty estima-
tion method by Zhang et al.7 The result shows that it can be an 
optional method to solve by speeding up the procedure of pro-
cessing the model depending on complexity and flexibility of 
model. Therefore, calibration of SWAT model is still one of the 
progressing issues for researchers.

The SUFI-2 algorithm has been used for several studies in 
large and small scales in Iran.8–11 The main reason of using 
SUFI-2 algorithm for calibration of SWAT model is the availa-
bility of many parameters regarding water balance modeling. 
Indeed, calibration of the semidistributed hydrological model is 
a challenging task due to the inclusion of spatial and temporal 
features. Roodan watershed has been modeled via SWAT in a 
southern part of Iran with objectives those elaborate calibration 
and validation of parameters as a benchmark in one scenario.12,13 
The main objective of this study is a comparison of 3 scenarios 
for calibration of SWAT using SUFI-2 algorithm in an arid cli-
mate. The importance of this study can be reviewing different 
methods for exploring the optimum parameter set, which is 
needed for calibration of SWAT model in a large arid area. It can 
be helpful for similar studies in future that have the same cli-
mate. This study investigates the accuracy of daily flow predic-
tion including uncertainty analysis in an evolution calibration.

Case Study
The study area known as Roodan watershed is located in the 
south of Iran between Hormozgan and Kerman providences. The 
area of the catchment is 10 570 km2. The average annual precipi-
tation of the study area is 215 mm. Esteghlal Dam that has an 
important role in collecting the surface waters for the develop-
ment of downstream areas is located at the outlet of Roodan 
watershed. Field data can be related to the observation of land use 
and recording some soil samples data. Soil type of watershed is 
mixed of clay, silt, and sand heterogeneously in north and central 
part. Moreover, it can be reported that the southern and eastern 
parts of the case study are covered mostly with silt and sand. 
Figure 1 shows location of the watershed in Iran.

Tools
Soil and Water Assessment Tool

Soil and Water Assessment Tool is a semidistributed and con-
tinuous calculation model. As a short overview, Groundwater 

Loading Effects of Agricultural Management Systems 
(GLEAMS) model,14 the Chemicals, Runoff, and Erosion 
from Agricultural Management Systems (CREAMS) model,15 
and the Environmental Policy Integrated Climate model16 are 
the basic part of the Simulator for Water Resources in Rural 
Basins (SWRRB) model. Gradually, the first version of SWAT 
was built based on Routing Outputs to Outlet model by inter-
facing in SWRRB. Then, pollution transport capabilities have 
been embed in SWAT model such as a reservoir, pond, wetland, 
point source, and sediment routing.17 In addition, improved 
representations of conservation and management practices 
have been included in SWAT such as temporal accounting of 
management practice, evaluation of land use changes, plant 
growth, and irrigation plans. The goal of development for 
SWAT model was for the prediction of land use impact and 
management on water, sediment, and agricultural chemical 
yields in ungauged watersheds.

Soil and Water Assessment Tool model has 2 phases for 
simulation of watershed hydrology, namely, land phase and 
routing phase. A complete description of theoretical and input/
output data for SWAT version 2009 can be found in the works 
by Arnold and colleagues.18,19

For those who are interested in SWAT model application 
and development, sufficient information is available at http://
swatmodel.tamu.edu. Moreover, Gassman et  al20 reported a 
review on climatic inputs and pollutant losses and flow routing 
across the globe. Gassman et  al21 presented that innovative 
application and adaptations for SWAT code and simulation 
capabilities. Daniel et al22 focused on popular context for appli-
cation of watershed modeling and related new technologies 
involved with SWAT model. Regarding current development 
and presentation of performance statistics for SWAT model, 
20 types of research have been summarized by Douglas-
Mankin et al.23

Sequential Uncertainty Fitting-2

Clearly, in a direct model, a single valued parameter results 
in a single model signal. However, in an inverse model (IM), 
an observed signal can produce many sets of a different 
parameter. This nonuniqueness is a natural characteristic of 
the IM. In recent years, IM has become an acceptable and 
motivating procedure for calibration.24 Inverse model solves 
the problem of figuring out the physical systems from meas-
uring the output variables of the model. Inverse modeling is 
popular due to its straightforward and direct measurement 
of parameters which opposes the physical system that is 
usually described to be time-consuming, costly, and boring. 
Often, measured outputs have limitations for application, 
and almost all measurements are subjected to some uncer-
tainties. Generally, the derivations are statistical. 
Furthermore, the other reason is that only a limited number 
of (noisy) data can be measured and the physical systems are 
usually modeled by a range of equations; no hydrological 
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inverse problem is uniquely solvable. Therefore, IM is used 
to characterize the set of models, mainly through the trans-
formation of the uncertainties to the parameters that fit the 
data and convincing attributed assumptions as well as other 
initial information.

An example of IM is the SUFI-2, which is developed for 
calibration and uncertainty analysis of SWAT model. In SUFI-
2, parameter uncertainty calculates for the attributed sources of 
uncertainties in a semidistributed hydrological model such as 
the uncertainties in driving variables, the concept of model, 

Figure 1.  Visualization of Roodan watershed in south of Iran.
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parameters, and measured data. The 2 important factors 
(P-factor and R-factor) in this calculation become the index of 
the evaluation of the results. Therefore, the degree, which all 
uncertainties are calculated for uncertainties, is quantified by a 
measurement referred to as the P-factor. P-factor is the percent-
age of measured data bracketed by the 95% prediction uncer-
tainty (95PPU). In SUFI-2, the 95PPU is calculated at 2.5% 
and 97.5% degree of the cumulative distribution of an output 
variable obtained through Latin hypercube sampling, by forbid-
ding 5% of the very bad simulations.25 The R-factor, however, is 
related to the strength of the calibration and uncertainty analy-
sis. It is the average thickness of the 95PPU band divided by the 
standard deviation of the measured data. Sequential Uncertainty 
Fitting-2 tries to bracket most of the measured data with the 
smallest possible uncertainty band. In this research, SWAT-
CUP has been used as a computer program for calibration of 
SWAT model. The SWAT-CUP is a public domain program 
and as such may be used and copied freely. The program links 
SUFI-2 procedures to SWAT. It enables sensitivity analysis, 
calibration, and uncertainty analysis of a SWAT model.

Model Performance
For evaluation of SWAT model calibration, graphical and sta-
tistical regarding streamflow can be sufficient. Nash-Sutcliffe 
(NS) coefficient is used for statistic evaluations mostly. The 
other criteria can be percentage bias (P-bias). Krause et al26 and 
Moriasi et  al27 interpreted comprehensively equations and 
related features of mentioned statistical model performance 
that have been used in this research (ie, NS and P-bias). Nash-
Sutcliffe efficiency values can range between −∞ and 1 and 
provide a measure how well the simulated output matches the 
observed data along a 1:1 line. A perfect fit between the simu-
lated and observed data is indicated by an NS value of 1. Nash-
Sutcliffe efficiency values ≤0 indicate that the observed data 
mean is a more accurate predictor than the simulated output. 
Moriasi et  al27 stated that absolute value of P-bias ranging 
from 15 to 25 shows that the SWAT model is rated as satisfac-
tory, rated good when from 10 to 15, and very good when less 
than 10. Also, it has been used mean squared error which is a 
measure of the quality of an estimator. It is nonnegative and 
should be close to 0.

Performing SWAT Model in Roodan
Soil and Water Assessment Tool has been used for delineation 
of Roodan watershed. In summary, the watershed simulation 
involves major ordinal steps: (1) digital elevation map set-up, (2) 
stream burning, (3) outlet and inlet localized, (4) basin outlets 
selection, and (5) definition and calculation of subbasin param-
eters. For overlying the digital streams, the threshold-based 
stream burning was used by considering the minimum size of 
the subbasin. Next, land use, soil, and slope data sets were 
imported as well overlaid and linked to the SWAT database. 
According to with topographic map (digital elevation model), 
different slope classifications are possible due to the spatial 

distribution of watershed and better identification of spatial 
location hydrological response units (HRUs). This is particu-
larly important if subbasins have a range of slopes occurring 
within HRUs. Therefore, 3 slope classifications have been 
defined for Roodan from 0% to 5%, 5% to 20%, and more than 
20%. After importing the land use, soil data, and slope classifi-
cations, the distribution of HRUs within the watershed must be 
determined. Hydrological response units are the smallest ele-
ments to contribute to increasing the accurate calculation of 
streamflow and other hydrological conditions with various land 
uses, soils, and slopes. Therefore, short amount threshold in 
accordance with the percentage (5%) was identified for land use, 
soil, and slope distribution as suggested by Raneesh et al.28 This 
scheme leads us to avoid generalization as result of the domi-
nant land use, soil, and slope class. The Roodan watershed was 
divided to 513 HRUs for whole catchment and 45 subbasins. 
Weather data were set for the land phase of the hydrological 
cycle. Hargreaves method has been chosen for calculation 
potential evapotranspiration as well as SCS Runoff Curve 
Number (SCS-CN) for calculation of runoff volume. The sur-
face runoff is estimated using a modification of the SCS-CN 
method with daily rainfall amounts. The curve number values 
are based on soil type, land use/land cover, and land manage-
ment conditions and are adjusted according to soil moisture 
conditions. Percolation is estimated applying the combination 
of a storage routing technique and a crack-flow model. The lat-
eral flow is calculated at the same time with percolation with 
the application of a kinematic storage model. The baseflow is 
accounted based on the hydraulic conductivity of shallow aqui-
fer, distance from subbasin to the main channel, and water table 
height.29

In this study, reach evaporation coefficient (EVRCH.bsn) is 
adjusted for Roodan watershed based on the measured value of 
daily streamflow and considering the contribution of baseflow 
for main channels. Reach evaporation adjustment factor in 
original equation tends to overestimate evaporation from riches 
in arid areas. Therefore, it is recommended that adjusting for 
this factor due to the revival of neglected runoff can be helpful 
in channels for the arid area before modeling streamflow.17 
Finally, yet importantly, prepared model was run for 1988 to 
2002 by considering warm-up period for daily streamflow. For 
simulation of 5 years or less, equilibration and warm-up by 
SWAT are recommended; meanwhile, for long simulation, it 
can be optional. Therefore, in this study, 1988 as a starting date 
was used for warm-up, the SWAT due to having a complete 
hydrological cycling.27 The length of the burn-in period 
depends on the availability of longitudinal data and objective of 
the study. Then, SWAT was run for the daily time scale for 
simulation of Roodan watershed.

Calibration Schemes for Roodan
Primary in this research, the sensitivity analysis was performed 
with Latin Hypercube One-factor-At-a-Time (LH-OAT) 
method, which is embedded in SWAT (version 2009) package 
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model. Usually, before the calibration, it has been required sen-
sitivity analysis due to recognizing the sensitive parameters, 
model components, with respect to the model’s performance. 
For Roodan watershed, sensitivity analysis has been done with 
a number of 26 parameters that have high sensitivity on flow 
using SWAT model as suggested by Winchell et al.30 For better 
evaluation due to the final selection of sensitive parameters in 
Roodan watershed, it has been made a decision on sensitive 
parameters regarding LH-OAT analysis, cognition from our 
case study, and literature in Iran.9,31 Then, sensitive parameters 
were applied for calibration and a more in depth sensitivity 
analysis by SUFI-2 algorithm. This procedure helps to boost 
dominant characteristic (eg, land use, soil texture) and relative 
change due to maintaining the spatial variation of parameters.

In our study, only the sensitive parameters were adjusted to 
avoid over-parameterization in calibration scheme, as well as to 
involve spatial variation in the sensitive parameters, which lead 
us to a reasonable calibration and uncertainty analysis. Due to 
approach a confident calibration, 3 schemes for calibration 
have been followed for Roodan watershed modeling by SUFI-
2. These include the following: the global method (scheme 1), 
which is adjusted for sensitive parameters globally for the 
whole watershed, which means that the calibrated parameters 
are considered heterogeneous for the whole watershed; the dis-
cretization method (scheme 2), which is considered for domi-
nant features (eg, land use and soil type) in calibration, which 
means that dominant parameters are calibrated separately for 
watershed and watershed considered with dominant feature; 
the optimum parameters method (scheme 3), which is adjusted 
for only those sensitive parameters by considering effectiveness 
their features according to SUFI-2 algorithm, which means 
that only those parameters which are sensitive are considered 
for watershed based on dominant feature or globally feature. 
Indeed, every scheme leads us to achieve to an optimum 
parameter set calibration and finding the degree of sensitivity 
parameters by their effectiveness features on modeling. In this 
study, the model calibration period is 1989 to 2002, and loca-
tion of data for calibration is the outlet of Roodan watershed.

Results and Discussion
In total, 13 parameters have been identified as sensitive param-
eters for Roodan watershed. They are baseflow alpha factor 
(ALPHA__BF.gw), effective hydraulic conductivity of main 
channel (CH__K2.rte), available water capacity of the soil 
layer (SOL__AWC.sol), SCS-CN for antecedent moisture 
condition type II for whole catchment (CN2.mgt), moist soil 
bulk density(SOL_BD.sol), maximum canopy index 
(CANMX.hru), Manning coefficient for channel (CH_
N2.rte), soil evaporation compensation factor (ESCO.hru), 
surface runoff lag coefficient (SURLAG.bsn), soil conductiv-
ity (SOL_K.sol), plant uptake compensation factor (EPCO.
hru), groundwater recharge to deep aquifer (RCHRG_DP.gw), 
and threshold depth of water in the shallow aquifer required 
for return flow to occur (GWQMN.gw). Then, calibration 

and uncertainty calculation involved with 3 schemes for rec-
ognition of optimum calibration. These are categorized as fol-
lows: (1) global scheme (considering the catchment’s similar 
features), (2) discretization scheme (considering dominant 
features, for example, land use types), and (3) optimum scheme 
(final parameter set based on dominant or global scheme), 
respectively. For calibration and uncertainty evaluation, 500 
simulations have been performed in each iteration in every 
scheme (global, discretization, and optimum). Figures 2 to 4 
show values of NS (vertical axis) versus corresponding values 
of each parameter (horizontal axis). The dotty plots show the 
distribution of the number of simulations in parameter sensi-
tivity analysis after comparing the parameter values with the 
objective function (NS) for the daily calibrations, respectively, 
via SUFI-2.

Figures 2 to 4 are the outputs of the SUFI-2 algorithm, 
which show values of each parameter’s range in every simula-
tion (500 sampling). These were obtained after 500 runs in the 
last iteration of the SUFI-2 algorithm. Figures 2 to 4 (global, 
discretization, and optimum schemes) jointly showed that the 
ALPHA_BF graph has a desirable parameter range which is 
between 0.8 and 1 (horizontal axis); this gives a reasonable 
value for NS (vertical axis). The CH_K2 parameter for all the 
schemes (global, discretization, and optimum schemes) has 
also given better values for the objective function with an 
overall small range of values. The graphs of CH_K2 show that 
by increasing the values of CH_K2, the NS will decrease. This 
is explained as such when all the graphs are being interpreted 
concurrently. A comparison between Figures 2 to 4 shows that 
the optimum scheme (Figure 3) has a better consistency for 
NS (vertical axis) against parameter range (horizontal axis). 
This is because the dispersal (distribution) of selected param-
eter values (green points) have decreased and gradually shifted 
to a better NS from global scheme to optimum scheme. Hence, 
all parameters have narrow dispersal regarding objective func-
tion (vertical axis in Figure 3). This evolution shows that a 
selected parameter set has more stability for uncertainty which 
derived via trial and errors with a combination of scheme 1 
(global) and scheme 2 (discretization). Indeed, it keeps the 
meaning of semiautomatic calibration.

Scheme 3 (optimum parameter set) was chosen based on its 
calibration results because it had better objective functions and 
uncertainty than the other 2 schemes. Table 1 shows the per-
formance of SWAT after calibration between performed 
schemes for Roodan watershed. Scheme 3 had the highest 
value for NS concurrently marked at 75% for calibration. Its 
P-bias was 1.5%. The uncertainty results reported by the 
SUFI-2 algorithm calculations, specifically for the SWAT 
model, show an acceptable range for a large basin modeling. As 
it can be seen from Table 1, the P-factor (measured data brack-
eted by 95% prediction uncertainty) and R-factor (strength of 
calibration) were 50% and 0.18, respectively. Generally, it is 
desirable to seek a larger P-factor and a smaller R-factor in 
SUFI-2; these 2 values are ideally assumed as 100% and 0, 
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Figure 2. (Continued)

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 04 May 2024
Terms of Use: https://bioone.org/terms-of-use



Jajarmizadeh et al	 7

Figure 2.  Sequential Uncertainty Fitting-2 results for the global scheme (vertical axis: value of Nash-Sutcliffe; horizontal axis: value of parameter).
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Figure 3. (Continued)
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Figure 3.  Sequential Uncertainty Fitting-2 results for discretization scheme (vertical axis: value of Nash-Sutcliffe; horizontal axis: value of parameter).
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Figure 4. (Continued)
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Figure 4.  Sequential Uncertainty Fitting-2 results for the optimum scheme (vertical axis: value of Nash-Sutcliffe; horizontal axis: value of parameter).
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Figure 8.  Statistical and graphical illustration of relative error values for 

flows more than 1000 m3/s.

Table 1.  Comparison of different schemes for simulation of streamflow.

Index Scheme 1 Scheme 2 Scheme 3

P-factor % 38 43 50

R-factor 0.24 0.16 0.18

NS coefficient % 71 74 75

P-bias % 6.7 5.2 1.5

MSE 2942 2664 2631

Abbreviations: MSE, mean squared error; NS, Nash-Sutcliffe; P-bias, percentage 
bias.

Figure 5.  Measured and simulated streamflow (CMS) over calibration 

(1989-2002) for global scheme. CMS indicates m3/s.

respectively. Therefore, scheme 3 has been chosen as a more 
promising solution between performed schemes for the Roodan 
watershed by the SWAT model. The mentioned calibration 
procedure has also led us to gradually approach the optimum 
solution (scheme 3) for the Roodan modeling.

Figures 5 to 7 show trend analysis for streamflow modeling 
during the calibration period. All the graphs have logical trend 
for peak flows that shows SWAT has a fairly cognition of peak 
flows as a physically based model. An evaluation has been per-
formed on peak flows more than 1000 m3/s for all schemes. 
Relative errors include overestimation and underestimation. 
Figure 8 reveals that optimum scheme has shorter relative 
errors for flows more than 1000 m3/s. Then, global 

Figure 6.  Measured and simulated streamflow (CMS) over calibration 

(1989-2002) for discretization. CMS indicates m3/s.

Figure 7.  Measured and simulated streamflow (CMS) over calibration 

(1989-2002) for the optimum scheme. CMS indicates m3/s.

scheme calibration has shorter relative errors in comparison 
with discretization only. Figure 8 reveals that for largest flow 
during 1989 to 2002, which is 4209.5 m3/s, the global scheme 
has shortest relative error value. Both optimum and discretiza-
tion methods have a similar error. Generally, all schemes have 
the same trend overestimation and underestimation for flow 
prediction for high flows more than 1000 m3/s. These 3 
schemes show that SWAT has an acceptable prediction for 
flow in the arid region, but the selection and discretization of 
parameters for calibration task have an important role to 
increase the accuracy the results of high flows. Singh et  al32 
have performed sensitivity and uncertainty analyses with 
SUFI-2 in a large catchment (14 429.36 km2) in India. They 
reported that sensitive parameters include curve number, base-
flow alpha factor, threshold depth of water in shallow aquifer 
required for return flow, soil evaporation compensation factor, 
effective hydraulic conductivity in main conductivity, and soil 
available water capacity. It seems that Roodan study has a fair 
agreement with previously published research as large scale. 
Singh et al32 reported that P-factor has been obtained 42% for 
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daily flow simulation; meanwhile, P-factor has been obtained 
38%, 43%, and 50% for global, discretization, and optimum 
schemes, respectively, in Roodan study. This comparison shows 
that type of calibration with considering the type of parameters 
result in shorter uncertainty and better performance. Indeed, 
uncertainties increased with large variations in topography and 
rainfall in the form of land use and soil types. Therefore, step-
by-step calibration can help the modeler to find an optimum 
result for a semidistributed model such as SWAT via SUFI-2 
algorithm when increasing the accuracy is under evaluation 
(Table 2).

Conclusions
This research has been performed in southern part of Iran to 
daily streamflow modeling with SWAT model. Then, cali-
bration and uncertainty analysis are involved with SUFI-2 
algorithm. Three scenarios as evolution have been performed 
for calibration and uncertainty analysis. (1) The global 
method, which is adjusted for sensitive parameters globally 
for whole watershed; (2) discretization method, which is 
considered for dominant features (eg, land use and soil type) 
in calibration; (3) the optimum parameters method, which is 
adjusted for only those sensitive parameters by considering 
effectiveness of their features according to SUFI-2 algo-
rithm. According to NS coefficient, all scenarios (1, 2, and 3) 
are logical and satisfactory and they have a fair tendency with 
observed data. However, optimum scenario outperformed 

regarding calibration and uncertainty indexes (NS, P-factor, 
and R-factor). Sensitivity and uncertainty analyses reveal 
that last scenario (optimum) has more stability in corre-
sponding with NS coefficient. An assessment of scenarios 1, 
2, and 3 shows that the dispersion of parameter values is 
shorter for scenario 3 (optimum). It can be concluded that 
the impact of parameter types’ adjustment (ie, lumped, semi-
distributed, or fully distributed) has considerable significance 
on strength of model performance.
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