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Introduction
For generations, humans have established their cities near 
coastal areas due to the benefits offered by these ecosystems.1 
Fishing is one of the most important economic activities devel-
oped in these areas.

According to Food and Agriculture Organization (FAO)2 
data, fish supply has increased at an average annual rate of 3.2% 
in the last 50 years, outpacing world population growth (1.6%). 
This production is supported by aquatic ecosystems in which 
photosynthetic organisms (eg macrophytes, benthic and plank-
tonic microalgae, and cyanobacteria) conform the base for the 
food web.3 However, the abundance of some taxa can reach 
harmful levels to humans and other organisms. These prolif-
erations are known as Harmful Algal Blooms (HABs) and are 
formed by a variety of microalgae species including dinoflagel-
lates (eg Gambierdiscus, Prorocentrum, Ostreopsis, Coolia, etc) 
and diatoms (eg Coscinodiscus).

Harmful Algal Blooms are a natural phenomenon and occur 
in all aquatic environments (eg freshwater, brackish, and 
marine) and at all latitudes. However, since the 1960s, impacts 
on the economy and public health seem to have increased in 
intensity, frequency, and geographical distribution.4

About 300 harmful microalgae species have been described. 
Of those, more than 100 are able to produce natural toxins 
harmful or even lethal to humans and animals, due to their 
strength and persistency.3,5,6

There are several classes of marine biotoxins, such as saxi-
toxin (STX), domoic acid (DA), ciguatoxin (CTX), brevetoxin 
(BTX), tetrodotoxin (TTX), okadaic acid (OA), azaspiracid 
(AZA), and palytoxin (PLTX).7 Many of these toxins repre-
sent a threat to human health not only in the form of food-
borne illness but also by skin contact with contaminated water 
or by inhalation of toxic aerosols.7

Growth, distribution, and abundance of some HAB species 
are largely temperature driven and expected to shift in response 
to climate-induced changes as ocean temperatures rise.8,9 
Nevertheless, conditions such as salinity, irradiance, turbulence, 
and substrate availability also should be considered.10

The Greater Caribbean Region (GCR) has been an area 
with high incidence of Ciguatera Fish Poisoning (CFP) pro-
duced by dinoflagellates in the genera Gambierdiscus and 
Fukuyoa.11 Ciguatera Fish Poisoning occurs upon consumption 
of fish containing relatively high concentration of CTX. This 
toxin tends to be highest in the Greater Caribbean and Lesser 
Antilles, Bahamas, and Southern Florida, with occasional out-
breaks in the Gulf of Mexico, the Yucatan Peninsula, and 
Central America.11 Another dinoflagellate found in the 
Caribbean is the genus Ostreopsis. Toxins produced by Ostreopsis 
have been suspected to play a role in CFP by some research-
ers.12 Other toxins associated with food-borne poisoning and 
respiratory and cutaneous irritation in Mediterranean beaches 
are PLTX, Ostreocin, and Ovatoxins.13
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In an effort to establish an observation network for ocean 
acidification and its impact on HABs, the International Atomic 
Energy Agency (IAEA) carried out the Regional Project 
RLA/7/020 along with 10 countries in the Caribbean area, 
including Panama to evaluate using nuclear and isotopic tech-
niques for this objective. The work presented in this article was 
developed within the scope of this IAEA project. Therefore, 
this research is aimed to evaluate the influence of different sub-
strata (macroalgae and screens) and environmental factors on 
growth and distribution of potential HAB organisms. We 
expect that the data collected will contribute to increase infor-
mation for the Great Caribbean Region, which does not 
include much information of the Southern part of the 
Caribbean.

Material and Methods
Study area

This research was carried out at the Protected Landscape of 
Galeta Island, Province of Colon, located at the Panamanian 
Caribbean coast. The Protected Landscape of Galeta Island is an 
archipelago integrated by Punta Galeta and the following islands: 
Galeta, Palma Media, Milla, Peña Guapa, and Cocoli. It is located 
near the entrance of the Panama Canal at the Caribbean Sea. The 
sampling area was limited to Punta Galeta (Figure 1).

Sampling sites

Five sampling points were selected and distributed along the 
seagrass field and nearby mangrove forest: PG1 (9° 24′6.88″ N, 
79° 51′39.72″ W), PG2 (9° 24′ 7.08″ N, 79° 51′ 39.65″ W), 
PG3 (9° 24′ 7.47″ N, 79° 51′ 39.52″ W), PG4 (9° 24′ 7.63″ N, 
79° 51′ 39.65″ W), and PG5 (9° 24′ 7.70″ N, 79° 51′ 39.81″ 

W). These coordinates were measured with a Garmin GPS 
model MAP 60CSx.

Field measurements

Meteorological conditions (atmospheric pressure, air tempera-
ture, and relative humidity) were measured using a portable 
meteorological station (Oregon Scientific model BTHR968) 
at the beginning and at the end of each sampling campaign. A 
Beaufort scale was used to determine the theoretical wind 
speed and a Forel-Ule scale to determine the apparent color of 
water.15-17 Physicochemical parameters (pH, water tempera-
ture, salinity, dissolved oxygen) were measured using a multi-
parameter HACH equipment, model HQ40d.

Collection of microalgae samples

Monthly samples of microalgae were collected using 2 types of 
substrates (natural and artificial) from August 2016 until 
November 2017. The artificial substrate consisted of a piece of 
green nylon screen cut into rectangles of 10.2 cm × 15.2 cm. Each 
screen was attached to a monofilament fishing line and was sus-
pended within the water column at depths larger than 20 cm from 
the sea floor using a pyramidal lead weight of 5 kg and a buoy.18 
Submerged buoys were used to limit the length of the monofila-
ment line and avoid disturbances in the screen. In each georefer-
enced site, a screen was placed per sampling campaign. After 
placement, the screens were deployed for at least 24 hours before 
being recovered. To recover the samples, 1-gallon transparent plas-
tic bags with hermetic seals were used, placing the screens inside 
the bags with a little seawater after being removed. This process 
was carried out underwater. Natural substrates (macrophytes) 
were collected individually in transparent plastic bags.18 Five dif-
ferent macrophytes were collected: Thalassia testudinum, Halimeda 
monile, Halimeda tuna, Dictyota sp., and Acanthophora spicifera.

Processing of HAB samples

Approximately 20% of the seawater from each plastic bag was 
poured through a 300-μm pore metal sieve into a 1 L graduated 
cylinder with a variation of ±5 mL. The bag was closed and 
vigorously shaken between 5 and 10 seconds to dislodge the 
microalgae bound to the artificial or natural substrate. The 
remaining homogenate was poured through the sieve into a test 
tube, and the total volume contained in each bag was recorded. 
The specimens of macrophytes were reserved to determine the 
weight with a scale; the screens used in the sampling were dis-
carded and new ones were used for each experiment.18

The sieved seawater sample was re-homogenized and the 
rest of the seawater was filtered by gravity through a piece of 25 
mm diameter nylon with 20 μm pore size to collect the micro-
algae cells. Any particulate material left in the specimen was 
rinsed on the screen with filtered seawater. Then, the 20 μm 
mesh was transferred to a conical 15 mL screw cap centrifuge 

Figure 1.  Aerial view of the Punta Galeta location in the Province of 

Colon in Panama. The red star indicates the sampling area.14
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tube containing 10 mL of filtered seawater in the 300 μm 
mesh and the sample was preserved with 2 drops of a neutral 
iodine lugol solution.19

Cellular abundances of potential HAB (Ostreopsis, 
Prorocentrum, Coscinodiscus, and others) in each sample in 
screens or macrophytes were determined using microscopy. A 
semi motorized vertical fluorescence microscope was used, 
observing the samples in the objectives with magnifications of 
10× and 40×. A 1.3 megapixel Moticam 1000 camera was also 
used, which allows the display of the lens samples on the com-
puter screen. These 2 devices, together with the Motic Image 
Plus software, allowed the images to be projected on a computer 
and made captures of images and videos in microscopy.

Samples were shaken to suspend the cells of the microalgae 
and screens, then an aliquot of 0.1 mL was transferred to a slide 
and each cell found was counted and photographed.20 For the 
screen samples, microalgae concentrations were expressed as 
cells per 100 cm2, calculated using equation (1), surface area of 
each screen (166 cm−2).
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For macrophyte samples, microalgae concentrations were 
determined using a similar method, except that the concentra-
tions were normalized to wet weight of the macrophyte sample 
and expressed as cells g−1 of algae or seagrass.18

Characterization

A taxonomic classification was done to the genus level by 
employing an Olympus fluorescent semi motorized vertical 
microscope model BX53, with 10× and 40× magnification 
objectives. For the last 2 months of sampling, a KONUS trin-
ocular biological microscope model BIOREX-3 was used. 
Microalgae characterization was made by employing images 
from a variety of researches.4,21-24

Statistics

One-way variance analysis (analysis of variance [ANOVA]) 
was used to assess environmental variability among sampling 
points, substrata, and monthly measurements. We also evalu-
ated HAB preference in macrophytes. The abundance data of 
HAB for both substrates were normalized before the analysis 
to obtain an absolute value. The software used was GraphPad 
Prism 6.01 (2012; GraphPad Software, San Diego, CA, USA).

Results
Table 1 shows the descriptive statistics for physicochemical 
parameters measured for water in the field (pH, salinity, Ta
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dissolved oxygen, and temperature). Monthly variations in 
these parameters are shown in Figures 2 to 5. Salinity data were 
obtained from transforming conductivity results. All parame-
ters seem to behave without much apparent variation.

For artificial substrates, organisms from genera Prorocentrum, 
Ostreopsis, and other microalgae were found, with the genus 
Coscinodiscus (other microalgae) being the more abundant 
(Table 2). Abundance of Prorocentrum ranged from 0 to −271.1 
cells 100 cm−2, while Ostreopsis ranged from 0 to 813.3 cells 
100 cm−2. Counts for other microalgae, including Coscinodiscus, 
ranged from 3524 to 9217 cells cm−2 (Figure 6A). For samples 
taken from macrophytes, Prorocentrum counts ranged from 0 to 
818 cells g−1, while Ostreopsis and other microalgae were 
observed at 0 to 25 912 cells g−1 and 0 to 6314 cells g−1, respec-
tively (Figure 6B).

One-way ANOVA results using monthly values as a factor 
showed a significant difference between the microalgae groups 
for each month, F(13) = 2.172, P value = .012. Prorocentrum, 
Ostreopsis, and other microalgae were also found in samples 

from the macrophytes employed (see Table 3). Here, one-way 
ANOVA analysis was also applied, to count for differences 
among macrophytes in the sampling points. Basically, no 
significant differences between the macrophytes specimens in 
the 5 sampling points were found, except for February 2017, 
F(4) = 4, P value = .0343.

Regarding the host preference of the microalgae groups in 
the macrophytes, the total values of the cells counted for each 
group (Prorocentrum, Ostreopsis, and other microalgae) were 
used in all the macrophytes, emphasizing the genera that 
showed the most cells of each group. In this way, the cells of the 
genus Prorocentrum showed a preference of 81.6% in H tuna, 
while the genus Ostreopsis had greater affinity for Dictyota sp. 
with 85.3%. Other microalgae maintained an affinity of 42.7% 
with T testudinum (Figure 7). For the host preference of micro-
algae in macrophytes, there were no significant differences 
between the groups (F = 1.408, degree of freedom [DF] = 2), 
as the data in A spicifera were not taken into account due to the 
absence of organisms in the samples.

Figure 2.  Field pH values corresponding to sampling points at Punta 

Galeta from June 2016 to November 2017.

Figure 3.  Field salinity (ppt) results corresponding to the sampling points 

at Punta Galeta from June 2016 to November 2017.

Figure 4.  Field dissolved oxygen (mg L−1) results corresponding to 

sampling points in Punta Galeta from June 2016 to November 2017.

Figure 5.  Field temperature (°C) results corresponding to sampling 

points in Punta Galeta from June 2016 to November 2017.
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Normalized data from natural and artificial substrates based 
on results shown in Figure 6A and B were compared to deter-
mine possible differences among microalgae host preferences, 
abundances, and substrates. From this analysis, clear differ-
ences between artificial and natural substrates, especially for 
Coscinodiscus, were obtained for the months of November 2016 
and June 2017. Also, a 2-way ANOVA was applied, using as 
factors the type of microalgae and substrates. From this exer-
cise, significant differences were found between the microalgae, 
F(2) = 5.351, P value = .0113, and type substrates, F(1) = 
8.106, P value = .0085, for November 2016. Significant differ-
ences were also found between the microalgae, F(2) = 9.951, P 
value = .0006, and type substrates, F(1) = 5.444, P value = 
.028, for June 2017.

Discussion
This study is the first to detect the presence of potentially 
harmful dinoflagellates from the genera Prorocentrum and 
Ostreopsis and a diatom from the genus Coscinodiscus in Punta 
Galeta, Panama. These findings are important as the OA and 
derivatives produced by Prorocentrum lima can cause Diarrhetic 
Shellfish Poisoning (DSP). Also, this genus is present world-
wide, affecting seafood and fisheries activities.25-29 For the case 
of the Coscinodiscus, this genus was the most abundant found in 
Punta Galeta throughout the present study. According to 

toxicology, benthic organisms can be damaged by mucilage 
produced by Coscinodiscus, which can aggregate, sink, and cover 
the sea bed. Bloom decay is also likely to cause anoxic condi-
tions, whereas fisheries and aquaculture plants can be impacted 
by clogging of fishing nets and cages.4

The greatest abundance for the genus Prorocentrum in the 
Caribbean Sea was observed in the dry season at 27.4°C and 
salinity at 35 ppt30 in a study conducted in 2 coastal sites in 
Guadalupe Island to evaluate the abundance of dinoflagellates 
on an invasive macrophyte Halophila stipulacea. Other research-
ers indicate that the abundance of Prorocentrum is very low in 
temperate cold-water environments; although a direct com-
parison with warmer waters cannot be made as there have not 
been many samplings in cold waters.31-34 The results in Punta 
Galeta contrast with the findings of Boisnoir et  al,30 as we 
found that this genus had greater abundance in the rainy sea-
son, at an average temperature of 30°C and a variable salinity in 
each month of sampling.

Muciño-Márquez et al,35 in a case study in Mexico, indi-
cated that the genus Prorocentrum is abundant in high salinities 
finding maximum abundance of cells at 30 ppt and presenting 
a decrease when the salinity reached a value of 20 ppt. It is also 
known that these species are sensitive to sudden changes in 
salinity.36 Different species of phytoplankton with specific 
requirements respond differently to changing environmental 

Table 2. M icroalgae genera (P: Prorocentrum, O: Ostreopsis, OM: other microalgae) found on screens during the period of study at each sampling 
point.

Screens

Month/year Sampling points

  PG1 PG2 PG3 PG4 PG5

  P O OM P O OM P O OM P O OM P O OM

AUG 2016 X X X X X X

SEP 2016 X X X  

OCT 2016 X X X X X X X

NOV 2016 X X X X X X X

DEC 2016 X X X

JAN 2017 X X X  

FEB 2017 X X  

APR 2017 X X X

JUN 2017 X X X X X

JUL 2017 X X X X X X X

AUG 2017 X X X X

SEP 2017 X X X X X X

OCT 2017 X X X  

NOV 2017 X X X X X X X  
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conditions.37-40 The constant changes in the environment (nat-
ural and anthropic) can condition environments that favor the 
development of certain species. In Punta Galeta, the cell den-
sity in the genus Prorocentrum was correlated with high salinity 
(around 32.83 ppt), in accordance with the studies carried out 
in Mexico and Guadalupe mentioned above.

Marasigan et al41 point out that for the genus Prorocentrum 
and the dinoflagellates in general, a preference and better adap-
tation to seagrasses can be observed. Cells of this genus also 
have been found in detritus of floating mangroves.42,43 Contrary 
to previous investigations, our results show a preference for H 
tuna (81.58%) by this genus, followed by T testudinum (9.85%) 
and finally Dyctiota sp. (8.57%).

The genus Ostreopsis is usually found on hard substrates, 
such as rocks and mussel shells and plankton.44 Most of the 
organisms of this genus (9 species) have been observed on 
macro algae samples, except for Ostreopsis belizeanus and 
Ostreopsis carribeanus, which have been observed in plankton. 
Aligizaki and Nikolaidis45 identified this genus in macro algae, 
sediments, and water column. In New Zealand, Ostreopsis has 
been observed in plankton and in drifting macroalgae.46 In the 
Virgin Islands, Ostreopsis has been reported in samples of 

Dictyota, which grows in dead coral.47 Monti et  al48 showed 
that the genus Ostreopsis prefers to stay in brown and red algae 
in the northern Adriatic.

In Tasmania, Ostreopsis has been described as a common 
group in the seagrass.49 The 9 species of Ostreopsis presented 
differences in preferences. For example, in Belize, Ostreopsis 
lenticularis was abundant in A spicifera and was less prevalent in 
T testudinum, Dictyota dichotoma, and Halimeda opuntia. 
Ostreopsis hetagona was abundant in T testudinum, but also was 
present in A spicifera, H opuntia, and D Dichotoma.50 In Hawaii, 
Ostreopsis was abundant in Martensia fragilis and A spicifera.51 
The results presented in other investigations are different from 
those found in Punta Galeta, with the exception of the one by 
Kohler and Kohler,47 as they had a greater preference for 
Dictyota sp. (85.30%), followed by T testudinum (12.13%), 
H tuna (2.33%), and finally H monile (0.24%).

Boisnoir et al30 indicate that for Gosier in Guadalupe Island, 
the highest abundances of Ostreopsis spp. occur during the rainy 
season with a temperature between 31.3°C and 31.4°C, but in 
Rivière Sens the highest abundance is given at 26.8°C. It also 
reached great abundance during the dry season with a salinity 
of 36 ppt. Similarly, our results showed greater abundance dur-
ing the rainy season at an approximate temperature of 30°C. 
The changes in salinity at Punta Galeta were not associated 
with changes in abundance during the whole sampling period. 
Another important characteristic found in Punta Galeta is the 
high Dissolved Oxygen (9.07-13.71 mg L−1), this appears to be 
related to the proliferation of Prorocentrum, which is probably 
in direct relation with the rapid growth of many macrophyte.

Some factors that condition the occurrence and intensity of 
dinoflagellate blooms are the specific nutritional needs of each 
species, water temperature, solar radiation, meteorological 
phenomena that lead to movements of water masses, mixing 
by the action of rising currents, tides, and development of a 
thermoclimate.52,53

The genus Coscinodiscus has been reported as a marine 
planktonic group distributed in all waters of the world. Von 
Stosch54 indicates that the species related to warm waters of 
the tropics are between 18°C and 30°C and that they die below 
15°C and above 33°C. Our results agree as this diatom type was 
found within these temperature ranges. Santiago et al,55 in a 
study conducted in the port of Recife (Brazil), indicate that for 
sites associated with estuarine waters there is a dominance of 
diatomaceous groups as they are favored by their Euryhaline 
characteristics. This is consistent with our results as the 
sampling sites were close to an estuary and the Coscinodiscus 
genus remained the dominant group during all cell counts. 
Coscinodiscus is considered an invasive species probably intro-
duced with ballast water discharge4 from the ships at the 
entrance of the Panama Canal. This fact could be one of the 
reasons why this genus is found year round in the waters of 
Punta Galeta. Another hypothesis to explain the abundance of 
this genus could be that environmental conditions such as 

Figure 6.  (A) Artificial substrates. (B) Microalgae collected on natural 

substrates (macrophytes) from August 2016 to November 2017. Green 

boxes represent the genus Prorocentrum, red triangles the genus 

Ostreopsis, and inverted orange triangles other microalgae.
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temperature, salinity, dissolved oxygen, and nutrients present in 
Punta Galeta favor its growth, as also the gender competition.

It is important to notice that Gambierdiscus was not observed 
in this study. Nowadays, the rise of ocean temperature has lead 
to increases in Ciguatera Fish Poisoning (CFP) at higher lati-
tudes due to a broadening of the distribution of Gambierdiscus 
and Fukuyoa species poleward.10 However, these CFP-associated 

genera still present high cell densities in warm, shallow bays and 
where temperatures are high and relatively stable throughout 
the year.56 Although the sea surface temperature is higher and 
more stable in the Eastern Caribbean Sea (approximately 
24°C-29°C), the temperature-CFP relationship weakens at 
temperatures >30°C, suggesting that an upper thermal limit 
may restrict Gambierdiscus occurrence.56 An upper threshold is 
supported by experimental data showing a precipitous decline 
in Gambierdiscus and Fukuyoa growth rates at temperatures 
approaching ~31°C,9 but more substantial warming may cause 
cell mortality. The GCR shows optimal growth conditions for 
Gambierdiscus and Fukuyoa10 supporting the hypothesis that 
CFP occurrence is associated with these conditions; however, 
the environmental conditions presented in Punta Galeta 
(Caribbean Sea) do not favor the growth of these genera due to 
its high temperature (around 32°C).

Conversely, the climate at both sites of the Isthmus of 
Panama presents marked seasonal variations, related to the 
Intertropical Convergence Zone. Winds from the north move 
the intertropical convergence zone away from the isthmus, 
while the winds from the south generally push it toward the 
isthmus.57 The effect of the winds is more intense at the 
Caribbean Sea (in Panama), resulting in bigger waves than in 
the Pacific Ocean. Gambierdiscus inhabits certain substrates 
(macroalgae, sea grass, sand, and death corals) and requires spe-
cial conditions for its survival, such as zones without waves and 

Table 3. M icroalgae genera (P: Prorocentrum, O: Ostreopsis, OM: other microalgae) found on macrophytes during the sampling period at Punta 
Galeta.

Month/year Macrophytes

  Thalassia 
testudinum

Halimeda monile Halimeda tuna Dictyota sp. Acanthophora 
spicifera

  P O OM P O OM P O OM P O OM P O OM

AUG 2016 X X X  

SEP 2016 X  

OCT 2016 X X X X  

NOV 2016 X  

DEC 2016 X X X X  

JAN 2017 X X X X  

FEB 2017 X X  

APR 2017 X X X X X X  

JUN 2017 X X  

JUL 2017 X X X X X  

AUG 2017 X X  

SEP 2017 X X  

OCT 2017 X  

NOV 2017 X X X X X  

Figure 7.  Preference of microalgae in macrophytes. Cells were found in 

4 macrophytes (Thalassia testudinum, Halimeda monile, Halimeda tuna, 

and Dictyota sp.). The genus Prorocentrum and the genus Ostreopsis 

are shown in blue and red, respectively. Other microalgae are shown in 

yellow.
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away from contributions of continental waters.18,58-60 As we 
mentioned before, the Panamanian Caribbean coast presents 
large waves with irregular tides (1 m amplitude) influenced by 
prevailing weather conditions. As for the waters of Panama, the 
superficial marine currents at the Caribbean have a predomi-
nant direction from coast to coast to the East and 500 km off-
shore to the West shaping a counter clockwise ring of circulation 
during all seasons of the year. This constant dynamic does not 
favor the presence of this genus.

Another hypothesis could be that the allelopathic effect 
produced by Prorocentrum and Ostreopsis may lead to a compe-
tition among them and the production of chemical compounds 
inhibiting the proliferation of Gambierdiscus or another 
microalgae.61

Conclusions
In Punta Galeta, dinoflagellates of the genera Prorocentrum 
and Ostreopsis were found. Both are considered potential 
bloom-forming genera worldwide. In addition, the taxonomic 
genus Coscinodiscus which is known to cause damage to marine 
life was also found, showing the highest cellular abundance 
among the microalgae studied. The field sample collections 
indicate that Punta Galeta microalgae differ in their preference 
to adhere to natural substrates (macroalgal) or artificial sub-
strates (screens). However, the physicochemical characteristics 
of the waters in Punta Galeta present favorable conditions to 
sustain the life of the place. However, some parameters as water 
temperature, salinity, marine currents, the effect of the wind, 
and the contribution of continental waters neither favor the 
growth of certain genera vectors of marine toxins nor the 
blooms of these genera at Punta Galeta.
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