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Introduction and Backgrounds
Water is the secret of life for every living thing. It was accounted 
that about 97.5% of the whole accessible water on the earth is 
salty and unfeasible for being used. However, only 1% of the 
remaining 2.5% freshwaters are considered usable for human 
consumption.1,2 The United Nations Environment Program 
(UNEP) has stated that some African and European countries 
will be prone to water scarcity troubles by 2025. Moreover, 66% 
of the world populace could be insecure from the water crisis.3,4 
Water pollution is the foremost cause of water squander as it 
wastes the chance for water to be reused, particularly these 
waters that come out of industrial processes.1,5

The textile industry is at the forefront of industries consum-
ing and polluting water.6,7 It devours around 200 m3 of clean 
water to manufacture only 1 ton of fabric. Furthermore, the 
drainage of the resulting fabric wastewaters is highly posing a 
serious environmental impact as it characterized by incredible 

levels of chemical oxygen demand (COD), biological oxygen 
demand (BOD), pH along with robust color, and other organic 
and inorganic constituents.7,8 Dyes in water are often toxic and 
has a key impact on causing genotoxicity and carcinogenicity  
to the aquatic organisms. Moreover, it has devastating effects  
on humans and public health, and it can amplify the incidence 
of cancer, hemorrhage, fetus cerebral abnormalities, and  
dermatitis.9,10 In this way, dyes elimination from effluents is 
substantial before discharging to the environment.

Lately, it became a must for industrial factories to comply 
with the strict environmental laws, which deter poor discharge 
of industrial effluents.11 Therefore, numerous factories were 
considered tertiary treatment to enhance the quality of their 
effluent, for instance, ozonation,12 ultrafiltration,13 nano-filtra-
tion,14 and reverse osmosis.15 Despite all of these treatment 
techniques may be effective regarding the removal of dyes, they 
impact negatively on operational costs as periodic maintenance 
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is highly obligatory. On the other side, photodegradation is 
widely considered for the removal of different types of dyes.16,17 
Nevertheless, it possess drawbacks such as fast electron hole 
recombination, limited visible light response ability, low spe-
cific surface area for reaction, and difficult to be implemented 
in the treatment plants.18

Adsorption is one of the highest potential techniques for 
textile effluent quality enhancement as a result of its simple 
operation, major elimination of dyes, and contaminants over 
low cost. Using adsorbent has great adsorption capability and 
needs little processing.19-22 Diverse natural materials such as 
timber sawdust,23 pine cone,24 chitosan,25 and natural clay8 
have a fair adsorption efficiency of dyes from aqueous solu-
tions, but they are incompetent in dealing with such hard com-
plex real textile wastewaters. For raw textile wastewaters, 
activated carbon (AC) is one of the extensively used adsorbents 
rather than other materials for COD and color reduction, 
thanks to its great surface area and marvelous adsorption 
capability.26-28

Recent studies have reported nano zerovalent iron (nZVI) 
as a highly efficient, less toxic, and cost-effective adsorbent for 
color removal,29-32 heavy metals elimination,33,34 and organic 
impurities degradation.35 The reason for this is attributed to 
the nZVI abundant superior surface area and its great porous 
structure.36 On the other side, the application of using nZVI 
based on green synthesis preparation (GT-nZVI) has been 
proposed via today’s research as a promising eco-friendly eco-
nomic adsorbent material with massive contaminants removal 
capability.37,38 In general, the adsorption process is affected by 
adsorbent dose, pH, stirring rate, and contact time for real tex-
tile wastewater treatment.19,28 The relationship between exper-
imental factors and the response of interest (removal efficiency) 
can be evaluated using response surface methodology (RSM).39 
Vargas et al40 applied RSM to investigate the adsorption per-
formance of 3 dyes such as Acid Yellow 6 (AY-6), Acid Yellow 
23 (AY-23), and Acid Red 18 (AR-18) onto AC produced 
from flamboyant pods (Delonix regia). The RSM well revealed 
the parameters that effect the ternary adsorption of each dye: 
pH for AY-23, adsorption time for AR-18, and initial concen-
tration for AY-6 and AR-18.40 In another study, Ahmed S. 
Mahmoud et al (2019) studied the reduction of organic matter 
from municipal wastewater using GT-nZVI. The RSM based 
on linear regression enter method successfully predicted the 
correlation between the removal efficiency and different oper-
ating conditions.41

The impacts of the experimental factors on the adsorption 
process performance can also be exhibited by artificial neural 
networks (ANN). Artificial neural networks have indicated an 
incredible guarantee in driving important connections between 
off-base data by interfacing input data with one another and 
with the output data.41,42 Daneshvar et al43 have developed an 
ANN model to predict the decolorization efficiency of the C.I. 
Basic Yellow 28 using the electrocoagulation process based on 

experimental data obtained from batch studies. The input 
parameters such as solution pH and conductivity, current den-
sity, initial concentration of dye, time of electrolysis, distance 
between the electrodes, and retention time were studied to pre-
dict the dye removal. They found that simulations based on the 
developed ANN model can estimate the behavior of the decol-
orization process under different conditions.43

This work attempts to examine the removal of real color 
from textile wastewater using 3 different sorbent materials 
nZVI, AC, and GT-nZVI. Batch studies were investigated to 
determine the effects of pH, adsorbent material dosage, contact 
time, concentration, and stirring rate for the best adsorption 
rates of real color. The mechanism of real color adsorption and 
maximum uptake have been thoroughly discussed by different 
adsorption isotherm models. Different kinetic models were 
performed to accurately specify the rate and order of reaction 
for the 3 studied sorbent materials. Response surface method-
ology based on linear regression enter method is conducted to 
reveal the color removal equation rather than optimum condi-
tions. Artificial neural network (ANN) using multilayer per-
ceptron (MLP) statistics algorithms was conducted to detect 
the relation between experimental factors and real color 
removal. This study was carried out based on the effluent 
wastewaters resulting from one of the textile factories in 
El-Sadat City, Menoufia-Egypt. This factory adopts the 
chemical treatment method represented in coagulation-floccu-
lation and sedimentation process to treat about 200 m3 of raw 
textile wastewater daily. The wastewater received by this plant 
is usually produced from the dyeing and finishing processes of 
cotton fabrics, which is exceedingly polluted. Unluckily, the 
treated effluent quality was not as efficient as required by the 
Egyptian Standards to be discharged to the sewage networks 
or non-fresh waterways as mentioned in Table 2.

Materials and Methods
Chemicals and reagents

The following chemicals were used in the current study: ferric 
chloride (FeCl3·6H2O, 98.5% pure; Arabic Lab.), sodium 
boron hydride (NaBH4, 99% pure; Win Lab.), ethyl alcohol 
(C2H6O, 95% pure; World Co.), sodium hydroxide (NaOH, 
99% pure; Oxford Co.), sulfuric acid (H2SO4, 95%-97%; 
Honeywell Co.), soft black tea, and activated charcoal (Powder, 
pH 6-9; Sigma-Aldrich Co.).

Preparations

Preparations of nZVI.  About 1.0812 g of ferric chloride 
(FeCl3·6H2O) was absolutely dissolved in 60 mL 4/1 (v/v) 
ethanol/deionized water mixture. The reducing agent used 
was prepared by dissolving exactly 0.7564 g of NaBH4 at 
200 mL of deionized water. The reducing NaBH4 solution was 
poured in a burette and slowly dropped into the FeCl3 solution 
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with a rate of 1 drop/s. The black precipitate was immediately 
formed after the initial drops of NaBH4 solution as explained 
in equation (1). The chemical reduction between NaBH4 and 
FeCl3 was used to form black nZVI. Following that, the result-
ing mixture was agitated for further 10 minutes after adding 
the excess amount of NaBH4 to complete FeCl3 reduction. 
Then, the normal filtration technique was operated to separate 
and wash the precipitated iron nanoparticles from the liquid 
solution using Whatman filter paper (No. 42, 100 circles, 
diameter 150 mm, and 2.5 µm pore size). Finally, the chemi-
cally prepared nZVI was dried at 80°C for 3 hours. For stor-
age, the prepared nZVI was saved against oxidation by adding 
a layer of acetone44:

2 6 18

2 21 6 6
3 4 2

0
2 3

FeCl NaBH H O
Fe H B OH NaCl
+ +

→ + + +( )
   

    
	 (1)

Preparation of GT-nZVI.  Synthesis of green synthesized 
nano zero iron was done by using drop-by-drop method 
using black tea. About 25 g of soft Kenyan black tea per liter 
of deionized water was boiled for 2 hours at 200°C, then 
cooled, and the solution was filtered by filter paper number 1. 
About 100 mL of extra pure ethanol/acetone solution (1:1) 
was added to the infiltrated dry tea, mixed for about 15 min-
utes at normal room temperature, and then filtrated again to 
extract the tea solution. About 2.3212 g of FeCl3·6H2O was 
dissolved in deionized water. The extracted prepared tea 
solution was emptied in a burette and dropped into FeCl3, 
separated, washed, dried, and stored as detailed in section 
“Chemicals and Reagents.”45

Effect of operating parameters

The effect of operating parameters was conducted by using 
Table 1.

Batch adsorption studies

The color adsorption onto different sorbents (nZVI, AC, and 
GT-nZVI) was studied by batch technique at diverse operating 
parameters, for instance, pH: 1-12, dose: 0.05-1.0 g, stirring 
rate: 50-400 rpm, and contact time: 10-120 minutes. A known 
weight of adsorbent of 0.7 g was equilibrated with 1000 mL of 
an aqueous color solution of known concentrations (50-
350 mg/L Pt/Co) in 1000 mL of Erlenmeyer flasks and then 
shaked at a known period of time at ambient temperature. 
After equilibration, the suspension of the adsorbent was 
detached using a rapid sand filter, and the remained concentra-
tions were measured using spectrophotometer method accord-
ing to Standard Methods for the Examination of Water and 
Wastewater (23rd edition).46 The percentage of removal effi-
ciency was calculated using equation (2). The amount of sorbed 
color was calculated using equation (3):41

Sorption %( ) = −







×

C C
C

e0

0

100 	 (2)

where C0 is the initial concentration (mg/L Pt/Co) and Ce is 
the equilibrium concentration in solution (Pt/Co):

Q
C C V

me
emg mg/( ) =

−( )0 	 (3)

where Qe is the equilibrium adsorption capacity (mg/mg), V is 
the volume of aqueous solution (L), and m is the dry weight of 
the adsorbent (mg).

Samples collection

Textile wastewater samples were taken before and after receiv-
ing coagulation-flocculation and sedimentation treatment pro-
cess as shown in Figure 1 (Steps 1-11). The samples were 
collected every single hour over an entire day (grab sampling) 
to characterize the effluent diversity from local textile mill 
located at Second Industrial Extend Zone-El-Sadat City, 
Menoufia-Egypt (30°21′42.9″N, 30°32′55.4″E). Then, the 
collected samples were reserved in unreacted plastic containers 
at 4°C overnight to avoid compound degradation and then 
transported to the laboratory for characterization.

Characterization of nZVI and GT-nZVI

A prepared nanoparticle was characterized using X-ray powder 
diffraction (XRD) by adding nanopowder sample in XRD 
machine holder, and then, the X-ray patterns were recorded 
at a radiation equal to 1.5418 A° (Cu-Kα), with voltage and 
current values of 40 mA and 40 kV, respectively. While the dif-
fraction angle (2θ) extended from 0° to 80° at a step size of 
0.0167°,47 scanning electron microscope (SEM) with energy-
dispersive X-ray (EDX) analysis was performed to obtain the 
morphology and composition of the nanoparticles. Finally, the 
UV-Vis scanning spectrum from 190:1000 nm was performed 
to ensure the absence of impurities and hydroxides during the 
preparation process.48,49

Isotherm studies

Different nonlinear isotherm models were conducted to 
describe the decolourization process into different sorbent 
materials including the most common 9 nonlinear equations 
of Freundlich, Langmuir, Redlich-Peterson, Hill, Sips, 
Khan, Toth, Koble-Corrigan, and Jovanovic as shown in 
Supplementary Table 1 (Table S1).50

Kinetic studies

To determine the exact time to reach an equilibrium state,  
Pt/Co color solutions were placed in contact with sorbent 
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materials at different times at room temperature. The amount 
of color removed at time t, Qt (mg/mg), was considered using 
equation (4)51:

Q
C C V

Wt
o t=
−( )

	 (4)

where Co is the initial concentration (mg/L), Ct is the initial 
concentration at time t (mg/L), V is the volume of the solution 
(L), and W is the sorbent dosages.

The kinetic process is investigated using pseudo first-order 
and second-order, Avrami, Elovich, and Intraparticle as shown 
in Supplementary Table S2 (Table S2).52-56

Statistical analysis

Response surface methodology.  The RSM results were carried 
out using linear regression enter method to predict removal 
equation, which is important to use all and not restricted on 
optimum conditions by using equation (5):

Table 1.  The effect of pH, sorbent dose, contact time, stirring rate, and initial color concentration for textile wastewater treatment at temperature 
25°C ± 3°C.

Adsorbent 
dose (g)

Contact time 
(minutes)

pH Stirring rate (rpm) Concentration 
(mg/L Pt/Co)

  nZVI, AC, 
and GT-nZVI

nZVI AC GT-nZVI nZVI AC GT-nZVI nZVI AC GT-nZVI nZVI, AC, and 
GT-nZVI

Effect of pH 0.7 50 70 40 1:12 350

Effect of 
adsorbent dose

0.05:1 50 70 40 5 8 7 150 250 150 350

Effect of contact 
time

0.7 10:120 5 8 7 150 250 150 350

Effect of stirring 
rate

0.7 50 70 40 5 8 7 50:400 350

Effect of 
concentration

0.7 50 70 40 5 8 7 150 250 150 50:350

Abbreviations: AC, activated carbon; GT-nZVI, green synthesized nano zerovalent iron; nZVI, nano zerovalent iron.

Figure 1.  Schematic diagram of existing and proposed treatment units with color inlet and outlet concentrations.
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Y x x x x x x= + + + + + +β β β β β β β0 1 1 2 2 3 3 4 4 5 5 6 6 	 (5)

where Y is the predicted removal percentages for color removal 
(%), x1 is the pH (1-12), x2 is the dose (0.05-1.0 g), x3 is time 
(10-120 minutes), x4 is the stirring rate (50-400 rpm), x5 is the 
initial color concentration (50-350 mg/L Pt/Co), β0 is the 
model intercept, and β1, β2, β3, β4, and β5 are the linear coeffi-
cients of x1, x2, x3, x4, and x5, respectively.

Neural network structure.  An artificial neural network (ANN) 
using MLP was established to predict the importance of each 
operating parameter and build the neural architecture to help 
to understand the color removal and training artificial results to 
ensure the tested results. Artificial neural networks of input, 
hidden, and output layers were used to build artificial architec-
ture. The data from the 5 independent coverable (pH, dose, 
time, stirring rate, and concentration) are shifted to the input 
layer. All the obtainable data are generally distributed into 
standard values for training 70%, validation, and testing 30% 
procedures and plotted by the system. The network type is 
multilayer perceptron backpropagation and it is one of the best 
commonly used neural network architectures.44,57

Results and Discussions
Characterization of nZVI and GT-nZVI

Figure 2A displays the SEM characterization image of the pre-
pared powder nZVI before treatment. The nZVI formed regu-
lar as well as irregular surface structure with an average size of 

40 nm. Many pores were detected, which permits improved 
mass transfer and diffusion of color into the inner iron nano-
particles.58 Figure 2B shows EDX analysis of selected nZVI 
with particle size of 36 nm indicating that the main product in 
the prepared sample is iron.

Figure 2C shows the SEM characterization image of the 
prepared GT-nZVI before decolourization process. The 
formed GT-nZVI with the regular and irregular surface struc-
ture showed an average size of 80 nm. Figure 2D shows EDX 
analysis of selected GT-nZVI with particle size 83.7 nm indi-
cating that the formation of nano Iron is covered by carbon 
and oxygen layer formed from the green extract. The outer 
carbon surface acts as AC to adsorb a huge amount of color 
compounds.

Figure 3A shows the XRD for the powder nZVI in the 
zero-valent state. The position of the peaks fitted well to the 
body-centered structure of Fe mineral ( JCPDS card No. 
87-0722) with diffraction angles 44.713° and 64.9° imputed to 
(110) and (200) planes, respectively. Also, this figure indicated 
that there is not any formation of oxides and hydroxides formed 
during the preparation process. Figure 3B shows the UV-Vis 
scanning spectrum of nZVI sample in extra pure ethanol at  
a wavelength between 190 and 1000 nm with a rate of  
50 nm/min. This scanning spectrum indicates the formation of 
the adsorption peaks at 192 and 195 nm indicating the forma-
tion of nZVI with an average size between 10 and 100 nm (the 
main beak was observed at high energy levels of scanning  
spectrum).59 Also, the absence of other peaks during the spec-
trum shows that the formed nZVI in a pure form and the 

Figure 2.  (A) SEM result for nZVI with size between 31 and 60 nm, (B) EDAX analysis of the prepared nZVI, (C) SEM analysis for GT-nZVI with size 

between 60 and 80 nm, and (D) EDAX analysis of the prepared GT-nZVI. EDX indicates energy-dispersive X-ray; GT-nZVI, green synthesized nano 

zerovalent iron; nZVI, nano zerovalent iron; SEM, scanning electron microscopy.
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washing process prevents oxidation and formation of other by-
products during the preparation-storage process.

Figure 3C of the XRD result shows 2 main peaks at 
2θ = 44.59° and 64.99° indicating the formation of pure nano 
iron powder and showing agreement with the other previous 
studies. All characterized results agree with previous prepara-
tions of a commercial product of nZVI. Figure 3D indicates no 
creation of oxides and hydroxides during the preparation-stor-
age process.

Effect of operating parameters

Effect of pH.  The effect of pH was considered at diverse pH 
values at acidic, neutral, and alkaline media ranged from 1 to 12 
as displayed in Figure 4A. The obtained results suggested that 
nZVI, AC, and GT-nZVI are effective for color elimination 
from textile effluents where the removal efficiency were 61%, 
63%, 67%, 70%, 71%, 69%, 67%, 61%, 59%, 56%, 51%, and 44% 
after using nZVI, 46%, 55%, 58%, 61%, 64%, 67%, 70%, 72%, 
70%, 69%, 64%, and 62% after using AC, and 71%, 75%, 78%, 
81%, 83%, 84%, 85%, 84%, 83%, 81%, 78%, and 74% after using 
GT-nZVI using diverse pH values (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
and 12), respectively. The obtained results presented that the 
effective pH for greatest removal efficiency was occurred at 5, 
8, and 7 after using nZVI, AC, and GT-nZVI, respectively. 
The existing textile color comes from both cationic and anionic 
coloring salts, which can be adsorbed by chemical adsorption 
process depending on the surface charge (negative or positive). 
Also, the other disperse dyes can be adsorbed using physical 
adsorption process. When the surface charge remains neutral, 
it can reach the point of zero charge (PZC), as well as it is the 

most suitable condition for the physical adsorption process. 
The PZC of the prepared nZVI is usually within pH 6-8 
exactly at pH 7.7, above PZC result the surface will be charged 
with negative ions which making a repulsion force between 
negative ions and electrostatic attraction between positive 
ions.60-62 The PZC values determined for AC indicate their 
acidic nature, which means the charge of AC surface is neutral 
in slightly alkaline media.63 Also, powder accumulation may 
affect the removal efficiency results because it can affect parti-
cle mobility and reactivity causing a decrease in the sorbent 
materials surface area.64,65 Similarly, the optimum removal for 
methylene blue was achieved at pH 7.2 by adsorption on dif-
ferent types of commercial AC.66

Effect of adsorbent dose.  The effect of adsorbent materials dose 
was studied using different doses ranged from 0.05 to 1 g/L as 
shown in Figure 4C. The achieved results show that the 
removal efficiency increased by dose increase where the removal 
efficiency was 23%, 34%, 41%, 47%, 54%, 59%, 62%, 66%, 71%, 
74%, 77%, and 78% after using nZVI; 40%, 45%, 49%, 53%, 
57%, 59%, 63%, 66%, 72%, 75%, 78%, and 81% after using AC; 
and 46%, 54%, 72%, 75%, 77%, 80%, 82%, 83%, 85%, 87%, 
90%, and 93% after using GT-nZVI using different doses 
(0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 g/L), respec-
tively. The minimum effective dose for best removal efficiency 
was 0.7 g/L. The removal efficiency was improved with dose, 
thanks to getting higher vacant site for adsorption and free 
electrons for degradation process.50,67,68

Effect of contact time.  The influence of contact time was 
considered at different times from 10 to 120 minutes as 

Figure 3.  (A) XRD result for chemically prepared nZVI, (B) UV-Vis scanning for nZVI, (C) XRD result for green nZVI (GT-nZVI), and (D) UV-Vis scanning 

for the GT-nZVI. GT-nZVI indicates green synthesized nano zerovalent iron; nZVI, nano zerovalent iron; XRD, X-ray diffraction.
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shown in Figure 4C. The removal efficiency was 66%, 67%, 
69%, 70%, 71%, 71%, 71%, 71%, 71%, 71%, 71%, and 72% 
after using nZVI; 60%, 62%, 63%, 66%, 68%, 70%, 72%, 
72%, 73%, 74%, 75%, and 75% after using AC; and 77%, 
81%, 83%, 85%, 85%, 86%, 86%, 86%, 87%, 87%, 87%, and 
87% after using GT-nZVI at different time (10, 20, 30, 40, 
50, 60, 70, 80, 90, 100, 110, and 120 minutes), respectively. 
The minimum effective time was 50, 70, and 40 minutes 
after using nZVI, AC, and GT-nZVI, respectively. The 
methylene blue elimination through AC has been decreased 
with the enlargement of contact time after 90 minutes, 
which might also be as a result of the desorption process.66 
Alqadami et al68 revealed that a 24.3 mg/g adsorption capac-
ity for malachite green dye was achieved using trisodium 
citrate nanocomposite (Fe3O4-TSC) within 40 minutes of 
contact time at an adsorbent dose of 50 mg/25 mL and a 
solution pH 7. The initial fast adsorption rate was attributed 
to the accessibility of large number of binding sites at the 
exterior surface of the Fe3O4-TSC adsorbent. The slow 
adsorption rates at the end ascribed to the saturation of the 
binding sites and reaching equilibrium.

Effect of stirring rate.  The effect of stirring rate was considered 
at different stirring rates ranged from 50 to 400 rpm as shown 
in Figure 4D. The removal efficiency is 68%, 69%, 71%, 71%, 
71%, 71%, 71%, and 71% after using nZVI, 60, 64, 69, 70, 72, 
72, 73%, and 73% after using AC, 82, 83, 85, 85, 85, 85, 85%, 
and 85% after using GT-nZVI at diverse stirring rate (50, 100, 
150, 200, 250, 300, 350, and 400 rpm), respectively. The mini-
mum effective stirring rate was 150, 250, and 150 rpm after 
using nZVI, AC, and GT-nZVI, respectively. Similarly, the 
optimum removal efficiency for methylene blue was achieved 
at 200 rpm for commercial AC.69

Effect of initial color concentration.  The effect of initial concentra-
tion was considered at different dilutions ranged from 50 to 
350 mg/L Pt/Co as shown in Figure 4E. The removal efficiency 
is 99%, 97%, 94%, 90%, 85%, 78%, and 71% after using nZVI, 
100%, 98%, 95%, 93%, 88%, 80%, and 72% after using AC, and 
100%, 100%, 98%, 95%, 92%, 89%, and 85% after using GT-
nZVI at diverse concentrations (50, 100, 150, 200, 250, 300, and 
350 mg/L Pt/Co), respectively. It was detected that the adsorbed 
rate of dye is better at great concentration initially and then 

Figure 4.  Effect of operating parameter for color removal after using nZVI, AC, and GT-nZVI. (A) Effect of pH on color removal from textile wastewater 

using nZVI, AC, and GT-nZVI. (B) Effect of adsorbent on color removal from textile wastewater using nZVI, AC, and GT-nZVI. (C) Effect of contact time on 

color removal from textile wastewater using nZVI, AC, and GT-nZVI. (D) Effect of stirring rate on color removal from textile wastewater using nZVI, AC, and 

GT-nZVI. (E) Effect of concentration on color removal from textile wastewater using nZVI, AC, and GT-nZVI. AC indicates activated carbon; GT-nZVI, 

green synthesized nano zerovalent iron; nZVI, nano zerovalent iron.
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gradually attains equilibrium. In most cases, it is seen that the 
initial dye concentration and color removal are contrariwise 
associated with each other as active sites are saturated if there is 
high initial concentration. Corda and Kini69 have done methyl-
ene blue removal of 99% and 82.2% with concentration of 50 
and 250, respectively, by using sawdust carbon.

Effect of sorbent materials on other wastewater contaminants 
removal.  The effect of nZVI, AC, and GT-nZVI on other tex-
tile wastewater was observed for pH, COD, BOD, total dis-
solved salts (TDS), total suspended solids (TSS), and total 
nitrogen (TN). Table 2 shows the chemical characterization of 
the raw and partially treated samples. All analyzed samples 
were in conflict with the Egyptian Standards for discharging 
on to sewer systems or non-fresh water bodies. In this study, 
the average polluted samples were selected to characterize the 
utmost critical scenario.

Adsorption studies

Table 3 and Figure 5 describe nonlinear relations between dif-
ferent adsorption isotherm models. However, nZVI, AC, and 
GT-nZVI were represented by A, B, and C symbols. The 
adsorption isotherms were studied by applying nonlinear equa-
tions of Redlich-Peterson, Hill, Sips, Khan, Toth, Koble-
Corrigan, Jovanovic, Freundlich, and Langmuir models. The 
achieved results pointed that the color adsorption onto nZVI 
meets Hill adsorption isotherm model with the lowest summa-
tion of errors 0.162. Hill model describes the binding of diverse 
categories into homogeneous substrates and supposes that one 
of the binding places founding into macromolecule can also 
have an effect on the binding sites in the identical molecule. 
Consequently, the adsorption process is a supportive phenom-
enon between adsorbent and adsorbate.70,71 From the Hill 
adsorption isotherm, the maximum uptake is 720 mg color/g 
nZVI as shown in Table 3.

The color adsorption onto AC follows Hill, Sips, and 
Koble-Corrigan isotherm models with the identical lowermost 
summation of errors 0.3749. Hill model defines the binding of 
different types into homogeneous substrates and Sips model 
describes heterogeneous adsorption isotherm process, which 
combines Langmuir and Freundlich isotherm models. This 
model tends to approximate Freundlich model at low concen-
tration and to solve the Freundlich limitation at high concen-
tration through applying Langmuir adsorption model in the 
prediction of monolayer adsorption showing the maximum 
uptake is 1299 mg (color)/g (AC) and Koble-Corrigan model 
describes homogeneous and heterogeneous adsorption 
mechanisms.

Finally, the adsorption of color onto GT-nZVI obeys both 
Koble-Corrigan and Freundlich isotherm models with the 
same lowest summation of errors 1.9414. Koble-Corrigan 
model combines Langmuir and Freundlich adsorption iso-
therm models along with the adsorption isotherm for pure 
color removal. So, the reaction mechanism can be described by 
Freundlich model.72 Freundlich model describes heterogene-
ous adsorption surface and reversible adsorption process, and 
the multilayer adsorption process can occur in the surface of 
sorbent materials (GT-nZVI). Also, the adsorption process is 
influenced by binding energy between adsorbed molecules and 
sorbent, as well as the adsorption energy declined regularly 
until vanishes with complete adsorption process.73 Table 4 
describes the relationship between experimental and calculated 
Qe after solving nonlinear isotherm equation with constants in 
Table 3. The values in boldface represent the most suitable iso-
therm model that can describe the color adsorption onto nZVI, 
AC, and GT-nZVI.

Kinetic studies

Figure 6 and Table 5 describe the different kinetic model rela-
tions. The kinetic analysis was carried by practicing nonlinear 

Table 2.  Textile wastewater treatment before and after sorbent additions followed by rapid sand filter for collected samples (n = 20).

Parameter Unit Partially treated textile 
wastewatera

Tertiary treatment step Discharge 
to sewer 
systemb

Drainage on 
nonfresh 
water bodiesc

Minimum Average Maximum nZVI AC GT-nZVI

pH — 6 6.25 6.5 6.42 7.18 6.82 6-9.5 6-9

Turbidity NTU 27 31 34 2.26 3.65 1.92 N/A <50

COD mg/L 900 1065 1231 465 569 365 <1100 100

TSS mg/L 541 621 700 23 29 17 <800 60

TDS mg/L 532 614 696 632 619 623 N/A 2000

TN mg/L 22 27 31.2 13 21 16 100 N/A

Abbreviations: AC, activated carbon; COD, chemical oxygen demand; GT-nZVI, green synthesized nano zerovalent iron; nZVI, nano zerovalent iron; TDS, total dissolved 
salts; TN, total nitrogen; TSS, total suspended solids.
aPartially treated textile wastewater: wastewater subjected to coagulation, flocculation, and sedimentation.
bLaw 93/62 discharge to sewer system (as Decree 44/2000).
cDrainage on nonfresh water bodies Law 48/1982.

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 24 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



Karam et al	 9
Ta

b
le

 3
. 

N
on

lin
ea

r 
ad

so
rp

tio
n 

is
ot

he
rm

 m
od

el
s 

re
su

lts
.

R
edlich







-P
eterson










 (
1)

H
ill

 
(2

)
S

ips


 (
3)

K
han




 (
4)

Toth



 (

5)

 
A

B
C

A
B

C
A

B
C

A
B

C
A

B
C

C
on

st
an

ts
K

r
18

.0
37

.0
3

4.
77

Q
H

0.
72

0.
75

12
16

Q
s

1.
29

9
0.

75
3.

5
Q

k
0.

10
3

0.
15

0.
16

6
K

t
0.

58
0.

57
1

0.
6

6

B
r

43
.2

89
.9

67
.1

4
nH

0.
60

0.
50

0.
23

3
K

s
1.

39
5

8.
67

0.
0

B
k

3
65

.4
3

65
3

65
a t

0.
02

0.
01

4
0.

01

G
2.

05
0.

22
53

.4
6

K
D

0.
26

0.
33

15
83

B
s

0.
50

3
0.

50
0.

2
A

k
0.

65
6

0.
74

0.
67

8
t

0.
71

0.
69

8
0.

77

E
rr

or
s

 
A

B
C

A
B

C
A

B
C

A
B

C
A

B
C

C
hi

0.
02

0.
0

6
0.

99
9

0.
0

0
0

0.
0

02
8

0.
17

7
0.

0
01

0.
0

02
7

0.
09

92
0.

0
01

4
0.

01
89

0.
82

9
0

0.
02

0
0.

0
8

07
0.

99
01

E
R

R
S

Q
0.

0
0

0.
0

0
0.

02
8

0.
0

0
0

0.
0

0
05

0.
01

3
0.

0
0

0
0.

0
0

05
0.

01
35

0.
0

0
02

0.
0

01
2

0.
02

6
0

0.
0

01
0.

0
02

9
0.

02
75

H
Y

B
R

D
0.

01
0.

02
0.

22
1

0.
0

0
0

0.
0

02
8

0.
08

1
0.

0
01

0.
0

02
8

0.
0

66
3

0.
0

01
4

0.
01

27
0.

21
49

0.
01

2
0.

03
31

0.
22

14

M
P

S
D

0.
16

0.
37

2.
02

1
0.

0
04

0.
02

10
0.

54
5

0.
0

07
0.

02
11

0.
37

11
0.

01
42

0.
15

83
1.

98
75

0.
17

0
0.

42
9

0
2.

02
0

9

A
R

E
0.

56
0.

86
2.

3
40

0.
13

5
0.

29
72

1.
42

6
0.

19
9

0.
29

73
1.

15
85

0.
21

13
0.

57
61

2.
18

6
4

0.
56

4
0.

93
99

2.
33

97

E
A

B
S

0.
0

6
0.

09
0.

3
07

0.
02

0
0.

05
05

0.
25

6
0.

03
4

0.
05

05
0.

25
71

0.
02

88
0.

0
69

9
0.

26
50

0.
0

67
0.

10
3

4
0.

3
07

1

S
um

0.
82

1.
43

5.
91

6
0.

16
2

0.
37

49
2.

50
0

0.
24

3
0.

37
49

1.
9

65
8

0.
25

73
0.

83
73

5.
50

88
0.

83
5

1.
58

89
5.

9
0

6
8

K
oble




-C
orrigan








 (

6)
Jovanovic










 (
7)

F
reundlich











 (

8)
Langmuir








 (

9)

 
A

B
C

A
B

C
A

B
C

A
B

C

C
on

st
an

ts
A

2.
82

9
2.

26
4

0.
65

0
Q

m
0.

33
8

0.
3

41
0.

41
5

K
f

0.
92

2
0.

82
7

0.
65

0
Q

0
0.

41
7

0.
39

8
0.

51
8

B
3.

99
0

2.
98

9
0.

0
0

0
K

j
40

.3
5

55
.3

87
63

.2
54

n
2.

41
7

2.
9

0
0

5.
29

2
B

42
.7

69
.4

3
6

67
.1

45

D
0.

61
6

0.
50

7
0.

18
9

 

E
rr

or
s

 
A

B
C

A
B

C
A

B
C

A
B

C

C
hi

 e
rr

or
0.

0
0

0
0.

0
02

8
0.

09
12

0.
04

42
0.

16
27

0.
84

57
0.

0
02

0.
0

03
9

0.
09

12
0.

02
01

0.
0

8
07

0.
99

73

E
R

R
S

Q
0.

0
0

0
0.

0
0

05
0.

01
29

0.
0

02
4

0.
0

04
9

0.
02

93
0.

0
0

0
0.

0
0

09
0.

01
29

0.
0

01
1

0.
0

02
9

0.
02

75

H
Y

B
R

D
0.

0
0

0
0.

0
02

8
0.

0
63

2
0.

02
37

0.
05

18
0.

22
92

0.
0

03
0.

0
03

9
0.

0
63

2
0.

01
25

0.
03

31
0.

22
14

M
P

S
D

0.
0

05
0.

02
10

0.
35

3
8

0.
29

99
0.

63
49

2.
05

84
0.

02
8

0.
02

23
0.

35
3

8
0.

17
01

0.
42

9
0

2.
02

0
9

A
R

E
0.

14
3

0.
29

72
1.

16
67

0.
85

66
1.

24
3

8
2.

45
98

0.
3

43
0.

35
67

1.
16

67
0.

56
46

0.
93

99
2.

33
97

E
A

B
S

0.
02

1
0.

05
05

0.
25

3
6

0.
11

08
0.

14
99

0.
33

75
0.

05
3

0.
07

07
0.

25
3

6
0.

0
67

3
0.

10
3

4
0.

3
07

1

E
rr

or
 s

um
0.

17
1

0.
37

49
1.

94
14

1.
33

75
2.

24
81

5.
95

99
0.

43
1

0.
4

58
5

1.
94

14
0.

83
57

1.
58

89
5.

91
40

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 24 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



10	 Air, Soil and Water Research ﻿

Figure 5.  Isotherm studies for color removal after using nZVI, AC, and GT-nZVI. (A) Isotherm studies for color removal from textile wastewater by using 

nZVI. (B) Isotherm studies for color removal from textile wastewater by using AC. (C) Isotherm studies for color removal from textile wastewater by using 

GT-nZVI. AC indicates activated carbon; GT-nZVI, green synthesized nano zerovalent iron; nZVI, nano zerovalent iron.

Table 4.  Experimental and calculated Qe for color removal using nZVI, AC and GT-nZVI.

After using nZVI

  Calc. Qe 
(1)

Calc. Qe 
(2)

Calc. Qe 
(3)

Calc. Qe 
(4)

Calc. Qe 
(5)

Calc. Qe 
(6)

Calc. Qe 
(7)

Calc. Qe 
(8)

Calc. Qe 
(9)

0.068 0.041 0.065 0.071 0.062 0.040 0.064 0.032 0.077 0.040

0.129 0.126 0.135 0.136 0.138 0.125 0.134 0.112 0.137 0.125

0.186 0.190 0.185 0.182 0.186 0.190 0.185 0.184 0.181 0.190

0.237 0.248 0.235 0.231 0.234 0.247 0.235 0.252 0.228 0.247

0.282 0.289 0.279 0.275 0.276 0.288 0.279 0.297 0.273 0.288

0.317 0.321 0.321 0.321 0.320 0.321 0.321 0.323 0.321 0.321

0.353 0.339 0.352 0.355 0.354 0.340 0.352 0.332 0.360 0.340

After using AC

Exp. Qe Calc. Qe 
(1)

Calc. Qe 
(2)

Calc. Qe 
(3)

Calc. Qe 
(4)

Calc. Qe 
(5)

Calc. Qe 
(6)

Calc. Qe 
(7)

Calc. Qe 
(8)

Calc. Qe 
(9)

0.070 0.028 0.062 0.062 0.043 0.026 0.062 0.018 0.076 0.026

0.134 0.120 0.138 0.138 0.138 0.117 0.138 0.096 0.142 0.117

0.191 0.212 0.206 0.206 0.210 0.213 0.206 0.204 0.201 0.213

0.249 0.255 0.242 0.242 0.245 0.256 0.242 0.260 0.235 0.256

0.296 0.296 0.285 0.285 0.285 0.298 0.285 0.309 0.278 0.298

0.330 0.330 0.330 0.330 0.328 0.330 0.330 0.334 0.329 0.330

0.359 0.349 0.364 0.364 0.363 0.348 0.364 0.340 0.372 0.348

After using GT-nZVI

Exp. Qe Calc. Qe 
(1)

Calc. Qe 
(2)

Calc. Qe 
(3)

Calc. Qe 
(4)

Calc. Qe 
(5)

Calc. Qe 
(6)

Calc. Qe 
(7)

Calc. Qe 
(8)

Calc. Qe 
(9)

0.071 0.000 0.053 0.071 0.001 0.000 0.074 0.000 0.074 0.000

0.143 0.000 0.053 0.071 0.001 0.000 0.074 0.000 0.074 0.000

 (Continued)
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equations of pseudo-first-order (PFO), pseudo-second-order 
(PSO), Elovich, Avrami, and intraparticle kinetic models. The 
obtained results indicated that nZVI accepts the Elovich kinetic 
model with the lowest summation of errors equals to 0.086 as 
shown in Table 5. Recently, the Elovich model has been used to 
describe contaminants that are transferring from the aqueous 
solution to the solid phase as explained in Table S2.

In the case of AC, the kinetic model that can describe kinetic 
mechanisms is the intraparticle model with the lowest summa-
tion of errors equal to 0.124, which means that the adsorbate can 
transport from the aqueous solution phase to the solid phase of 
AC as sorbent through an intraparticle diffusion process. Also, 
this model takes into consideration the mass transfer resistance 
inside the adsorbent particles and neglects film diffusion.

In the case of GT-nZVI, the kinetic model which can 
describe kinetic mechanisms is pseudo-second-order model 
with the lowest summation of errors equal to 0.074, which 
means that the reaction is more likely to be chemisorption.

Table 6 describes the relation between experimental and 
calculated Qt after solving nonlinear kinetic equations with the 

existing constants in Table 5. The values in boldface represent 
the most suitable kinetic model that can describe the adsorp-
tion kinetic mechanisms if color adsorption onto nZVI, AC, 
and GT-nZVI at the optimum times.

Statistical analysis

Response surface methodology.  The effect of pH, adsorbent dose, 
contact time, stirring rate, and initial concentration in the tex-
tile effluent color removal efficiency is listed in Table 7. In the 
case of the effect of nZVI and GT-nZVI, positive linear effect 
of the independent effects “pH,” “dose,” and “concentration” 
were observed to be significant at P < .05. However, insignifi-
cant effect (P > .05) was determined for “contact time” and 
“stirring rate” indicating high reactivity and good dispersed 
effect of nZVI toward color removal.

In the case of the effect of AC, positive linear effect of the 
independent effects such as “pH,” “dose,” “contact time,” “stirring 
rate,” and “concentration” was observed to be significant at P < .05 
indicating that the color removal depends on all effect together.

After using GT-nZVI

Exp. Qe Calc. Qe 
(1)

Calc. Qe 
(2)

Calc. Qe 
(3)

Calc. Qe 
(4)

Calc. Qe 
(5)

Calc. Qe 
(6)

Calc. Qe 
(7)

Calc. Qe 
(8)

Calc. Qe 
(9)

0.204 0.173 0.246 0.258 0.186 0.173 0.258 0.157 0.258 0.173

0.260 0.283 0.302 0.304 0.276 0.283 0.304 0.282 0.304 0.283

0.318 0.336 0.333 0.328 0.327 0.336 0.330 0.342 0.330 0.336

0.373 0.375 0.361 0.350 0.372 0.375 0.352 0.380 0.352 0.375

0.424 0.404 0.388 0.370 0.416 0.404 0.373 0.400 0.373 0.404

Abbreviations: AC, activated carbon; GT-nZVI, green synthesized nano zerovalent iron; nZVI, nano zerovalent iron.

Table 4.  (Continued)

Figure 6.  Kinetic studies for color removal after using nZVI, AC, and GT-nZVI. (A) Kinetic studies for color removal from textile wastewater by using nZVI. 

(B) Kinetic studies for color removal from textile wastewater by using AC. (C) Kinetic studies for color removal from textile wastewater by using GT-nZVI. 

AC indicates activated carbon; GT-nZVI, green synthesized nano zerovalent iron; nZVI, nano zerovalent iron.
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Figure 7.  Neural network architecture for color removal after using nZVI, AC, and GT-nZVI. (A) ANN model for color removal using nZVI. (B) ANN model 

for color removal using AC. (C) ANN model for color removal using GT-nZVI. AC indicates activated carbon; ANN, artificial neural network; GT-nZVI, green 

synthesized nano zerovalent iron; nZVI, nano zerovalent iron.

The coefficient of determination between measured data 
and simulated results (R2), adjusted R2, F factor, standard 
error, and P value of each contaminant model were placed in 
Table 7. The high R2 value (more than 90% after using nZVI, 
AC, and GT-nZVI) suggested the reliability of the model. 
Equation (5) showed all regression models (significant and 
insignificant):

Y after g nZVI           

 

% usin( ) = +
+
80 991 2 040 48 721
0 0

1 2. _ . .
.

x x
557 0 014 0 119

51 943 1
3 4 5     

       

x x x+

= +( )
. _ .

.Y after AC% using .. .
. . _ .

833 38 366
0 140 0 034 0 121

1 2

3 4 5

   

      

  

x x
x x x

+
+ +

Y after%          

  

using GT nZVI- . . .
.

( ) = + +
+ +

64 874 1 847 32 942
0 051

1 2

3

x x
x      0 005 0 0614 5. _ . ,x x

where Y is the predicted response of color removal efficiency 
(%), x1 is the contact time (10-120 minutes), x2 is the adsorbent 
dose (0.05-1.0 g), x3 is the pH (1-12), x4 is the stirring rate (50-
400 rpm), color concentration is 50-350 mg/L Pt/Co, β0 is the 
model intercept, and β1, β2, β3, β4, and β5 are the linear coeffi-
cients of x1, x2, x3, x4, and x5, respectively.

Artif icial neural network.  Backpropagation statistical algo-
rithms model was used to build the neural networks architec-
tures. The neural network model adapted operating coverable 
(pH, dose, time, stirring rate, and concentration) by connecting 
weight and bias through a continuous progression to build the 
artificial neural network architectures for color removal (target) 
as shown in Figure 7.44,74

Each color contaminant removal was calculated using train-
ing and testing techniques without any excluded as explained 
in Table 8.

Statistical input, hidden environment, and output layer 
environment indicated that all sorbent materials run at the 
same coverable calculation techniques except the number of 
unit in hidden layers as shown in Table 9.

Table 10 shows the obtained ANNs of testing and training 
results indicating that the SSE for all parameter was accepta-
ble showing agreement with RSM results and chemical 
explanation.

Figure 8A to C shows the relation between the residual 
results and predictive results indicating that there is no signifi-
cant difference between them (−7.5%, +5%) after using nZVI, 
(−15%, +5%) after using AC, and (−15%, +10%) after using 
GT-nZVI.

Table 11 and Figure 9 show the importance and normalized 
importance results for each coverable effects on color removal 
using nZVI, AC, and GT-nZVI. The normalized importance 
agreed with previous discussions of effect of operating param-
eter and RSM statistic algorithm.

Conclusions
This study investigates the impact of using nZVI, AC, and 
GT-nZVI for color adsorption from partially treated fabric 
wastewater. The maximum environmental conditions for 
color elimination were pH 5, contact time 50 minutes, and 
stirring rate 150 rpm for nZVI; pH 8, contact time 70 min-
utes, and stirring rate 250 rpm for AC; and pH 7, contact 
time 40 minutes, and stirring rate 150 rpm for GT-nZVI, 

Table 8.  Case processing summary.

Parameter nZVI AC GT-nZVI

N % N % N %

Sample training 28 54.9 39 76.5 36 78.3

Sample testing 23 45.1 12 23.5 10 21.7

Valid 51 100.0 51 100.0 46 100.0

Excluded 0 0 0  

Total 51 51 46  

Abbreviations: AC, activated carbon; GT-nZVI, green synthesized nano 
zerovalent iron; nZVI, nano zerovalent iron.
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Table 9.  Network information.

nZVI AC GT-nZVI

Input layer Covariates 5 (pH, dose, time, stirring rate, and concentration)

Number of units 5

Rescaling method for covariates Normalized

Hidden layer(s) Number of hidden layers 1

Number of units in hidden layer 1 3 3 2

Activation function Hyperbolic tangent

Output layer Dependent variables Removal

Number of units 1

Rescaling method for scale dependents Standardized

Activation function Identity

Error function Sum of squares

Abbreviations: AC, activated carbon; GT-nZVI, green synthesized nano zerovalent iron; nZVI, nano zerovalent iron.

Table 10.  Model summaries.

nZVI AC GT-nZVI

Training

  Sum of squares error 0.726 0.128 1.636

  Relative error 0.054 0.007 0.093

  Stopping rule used One consecutive step(s) with no decrease in error

Testing

  Sum of squares error 0.175 0.641 0.587

  Relative error 0.023 0.111 0.248

Abbreviations: AC, activated carbon; GT-nZVI, green synthesized nano zerovalent iron; nZVI, nano zerovalent iron.

Figure 8.  Relation between the residual results and predictive results for color removal after using nZVI, AC, and GT-nZVI. (A) Relation between 

predicted model and residual model after using nZVI. (B) Relation between predicted model and residual model after using AC. (C) Relation between 

predicted model and residual model after using GT-nZVI. AC indicates activated carbon; GT-nZVI, green synthesized nano zerovalent iron; nZVI, nano 

zerovalent iron.
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respectively. At constant dose of 0.7 g/L and room tempera-
ture concerning the obtained optimum environmental 
parameters for each sorbent material, the best color removal 
efficiency for 350 and 50 mg/L Pt/Co color unit was 
achieved to be 71% and 99%, respectively, after using nZVI; 
72% and 100%, respectively, after using AC; and about 85% 
and 100%, respectively, after using GT-nZVI. The isotherm 
study pointed that nZVI color adsorption meets Hill 
adsorption isotherm model. AC color adsorption meets Hill, 
Sips, and Koble-Corrigan isotherm models. As well as, 
GT-nZVI color adsorption meets both Koble-Corrigan and 
Freundlich isotherm models. The kinetic study pointed that 
nZVI adsorption follows the Elovich kinetic model, AC 
adsorption the intraparticle model, and GT-nZVI meets 

pseudo-second-order model. The ANN and RSM models 
were able to predict and simulate the adsorption process of 
color. In conclusion, this study suggests the use of GT-nZVI 
rather than AC or nZVI due to its amazing removal effi-
ciency and simple eco-friendly preparation steps.
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Table 11.  Independent variable importance.

nZVI AC GT-nZVI

Importance

  pH 0.227 0.147 0.203

  Adsorbent dose 0.363 0.342 0.431

  Contact time 0.083 0.119 0.087

  Stirring rate 0.010 0.085 0.047

  Concentration 0.318 0.306 0.232

Normalized importance

  pH 62.5% 43.1% 47.1%

  Adsorbent dose 100.0% 100.0% 100.0%

  Contact time 22.8% 34.9% 20.2%

  Stirring rate 2.8% 24.8% 10.9%

  Concentration 87.6% 89.5% 54.0%

Abbreviations: AC, activated carbon; GT-nZVI, green synthesized nano zerovalent iron; nZVI, nano zerovalent iron.

Figure 9.  Importance and normalized importance results for color removal after using nZVI, AC, and GT-nZVI. (A) Importance and normalized importance 

for color removal from textile wastewater using nZVI. (B) Importance and normalized importance for color removal from textile wastewater using AC. (C) 

Importance and normalized importance for color removal from textile wastewater using GT-nZVI. AC indicates activated carbon; GT-nZVI, green 

synthesized nano zerovalent iron; nZVI, nano zerovalent iron.
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