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Introduction
In 1948, the World Health Organization (WHO)1 adapted 
the definition of human health as “a state of complete physical, 
mental and social wellbeing, and not merely the absence of dis-
ease or infirmity.” The US Department of Health and Human 
Services2 recognizes that achieving this definition of human 
health is

“determined in part by access to social and economic opportuni-
ties; the resources and supports available in our homes, neighbor-
hoods, and communities; the quality of our schooling; the safety of 
our workplaces; the cleanliness of our water, food, and air; and the 
nature of our social interactions and relationships.”

Likewise, the WHO3,4 recognizes that inequities in the distri-
bution of power, wealth, and resources at local, national, and 
global levels negatively impact the conditions in which people 
are born, grow, live, work, and age, resulting in significant 
health inequities around the globe. The importance of 

addressing these key social determinants of health (SDOH) is 
reflected by the fact that 1 of the 4 overarching goals of Healthy 
People 2020, the US federal government’s prevention agenda 
and national health objectives, is to “create social and physical 
environments that promote good health for all.”2 Furthermore, 
given that approximately 60% of preventable deaths in  
the United States are linked to modifiable behaviors and/or 
community-based exposures,5 the Centers for Medicare and 
Medicaid Services (CMS) is exploring direct payment for non-
medical interventions that address SDOH.6 An exemplar is 
North Carolina’s Section 1115 Medicaid Waiver authorizing 
expenditure of US $650 million in Medicaid funding to address 
SDOH in up to 2% of Medicaid enrollees in the state.7

Healthy People 2020 identifies 5 key SDOH: (1) economic 
stability, (2) education, (3) social and community context, (4) 
health and health care, and (5) neighborhood and built envi-
ronment. Within each of these 5 SDOH arenas are a number 
of key underlying factors, many of which arguably rely either 
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directly or indirectly on soil health, which has been defined as 
“the continued capacity of soil to function as a vital living eco-
system that sustains plants, animals, and humans.”8 For exam-
ple, access to soils and the health of soils impacts employment, 
food insecurity, and poverty; all factors comprising the arena of 
economic stability. In the arena of neighborhood and build 
environment soil health impacts the underlying factors of 
access to foods that support healthy eating patterns, environ-
mental conditions, and quality of housing as well as impacting 
air and water quality.9

The intersections between soil health and human health are 
myriad and, from a human health perspective, may best be 
viewed though a lens of what soils “do for us” vs what soils “do to 
us”10 (Table 1). The most obvious thing that soils do for us is 
serve as the basis for most food production. However, less appar-
ent to health care practitioners and the public at large are the 
other critical ecosystem services healthy soils provide for us, 
including carbon sequestration, detoxification, water and nutri-
ent retention, and maintaining biodiversity.11 Of particular 
importance are the ecosystem services that mitigate global cli-
mate (carbon sequestration, water retention). This is because 
global climate change poses a number of significant health chal-
lenges. These include more frequent, severe, and prolonged heat 
events, forest fires, erosion of outdoor air quality, flooding from 
rising sea level and worsening precipitation events, expansion of 
vector-borne diseases, and increases in food- and weather-related 
infections.12 In fact, the WHO states that climate change is the 
greatest threat to global health in the 21st century.

Since antiquity, it has been recognized that certain proper-
ties of soils have negative effects on human health.13,14 Hence, 
it should not be surprising that, rather than recognizing what 
soil health does for human health, a majority of health care and 
public health practitioners only consider what soils do to 
human health. This includes causing disease through exposures 
to soil-borne toxins such as arsenic, lead, cadmium, and other 
heavy metals; asbestos; or infectious agents such as viruses, 
enteric bacteria, fungi, and parasites. There are also diseases 
such as hypothyroidism/multinodular goiter, Keshan/Kashin 
Beck disease, or anemia that are associated with soil deficien-
cies in iodine, selenium, and iron, respectively.15,16

Many aspects of the relationship between soils and human 
health have been elucidated and well reviewed.11,14,17-23 More 
holistic frameworks for both assessing and defining soil health 
that are rooted in ecological theory are emerging that will allow 
a more nuanced, complex, and complete understanding of how 
soils and human health are interconnected. In this article, we 
discuss why chemical pollution of soil, soil micro- and mac-
roorganisms, and soil nutrient supply should be considered as 
key determinants of human health. We also identify key gaps in 
our understanding in these relationships that require future 
research and discuss strategies for effectively communicating 
the importance of soils to human health. Our ultimate goal is 
for soils to be “given their due”24 as a social determinant of 
human health.

Soil Pollution and Human Health
Current status

The impacts of soil pollution on human health have been 
extensively studied, especially heavy metals in urban areas,25,26 
mining areas,27-29 near industrial areas,30-32 and areas affected 
by warfare activities.33 Such studies have also been conducted 
in agricultural fields.34-36

Traditionally, most of the studies investigating soil chemistry 
impacts on human health were focused on heavy metals.20,37 
Several indices have been developed to assess the degree of soil 
contamination and its potential impact on human health such as 
contamination factor, geoaccumulation index, enrichment factor, 
contamination degree, sum of pollution index, single pollution 
index, ecological risk index, integrated pollution index, Nemerow 
pollution index, pollution load index, hazard index, dermal 
absorption factor, and aggregated carcinogenic risks. These indi-
ces aid in understanding the status of soil contamination and 
exposure risks for humans. For more details about these indices, 
please refer to the literature.30,38-42 Although some metals are 
essential for plant growth (eg, copper, iron, zinc), their presence 
in high concentrations can induce toxicity for plants and expose 
the human population to disease problems. High concentrations 
of heavy metals in the body can affect several systems including 
the blood, liver, brain, kidneys, and lungs. Long-term exposure to 
even low levels of heavy metals can result in neurological and 
physical degenerative processes (eg, Parkinson disease and 
Alzheimer disease) and cancer.43 The impacts of high concentra-
tions of heavy metals on human health are well summarized in 
recent publications.37,44-46

Additional soil chemistry studies that have investigated 
human health links include the impacts of persistent organic 
pollutants (POPs) (Table 2) and radionuclides on human 
health. In the United States, Grindler et al47 observed a high 
positive association between the concentration of POPs in 
urine and early age menopause. High concentrations of pol-
ychlorinated biphenyls (PCBs) affect fetal growth and 
childbirth weight. Other POPs such as dichlorodiphenyl-
trichloroethane (DDT), dichlorodiphenyldichloroethylene 
(DDE), and hexachlorobenzene (HCB) affect childbirth 
weight as well.48 POPs are also considered endocrine  
disruptors.49 POPs can accumulate in soils because they 
were used as pesticides (see the numerous pesticides listed in 
Table 2) and deliberately applied to the environment, but 
non-pesticide POPs have also been added to the environ-
ment through both deliberate and accidental means.50

Pesticides used in agricultural fields are associated with an 
increased risk of developing several chronic diseases such as 
diabetes, cancer, and asthma, as well as a variety of short-term 
problems (eg, dizziness, nausea, skin and eye irritation, and 
headaches).51 It is estimated that 25 million agricultural work-
ers per year are affected by pesticide poisoning.52 Associated 
health problems are not limited to pesticides used on animals. 
Herbicides are also recognized to have negative impacts on 
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human health, such as glyphosate which is considered carcino-
genic for humans and wildlife.53,54

Radionuclides can exist in soil naturally or as a consequence 
of anthropogenic activities (eg, medical and nuclear waste), 
and they are correlated with diseases such as cancer and  

leukemia.55 The Chernobyl (April 26, 1986) and, more 
recently, Fukushima (March 11, 2011) accidents brought to 
light the importance of radionuclides’ impacts on human 
health.56 With Chernobyl, 137Cs contamination of farm prod-
ucts was related to the concentration of the radionuclide in the 

Table 1. Select properties of soil or soil components that may act directly and/or indirectly as determinants of human health.

DIRECT EFFECTS INDIRECT EFFECTS

What soils “Do 
for us”
(positive)

1.  Deliberate ingestion of soil (geophagia), particularly clays, is 
hypothesized to compensate for mineral deficiencies and/or 
detoxify via absorption of dietary toxins in the gut14

2. Provide substrate/structure on which most humans live

1. Provide a myriad of key ecosystem services (ES)290

A. Provisioning services (“products that soil ES make 
available for human use””)
 Food and fiber production—soils support the 
production of a majority of the earth’s supply of food 
and fiber
 Building materials—sand for cement and fill, clay for 
bricks, wood for building
 Biorepository—source of antibiotic-producing 
organisms
B. Regulating Services (mediation/moderation of 
environment in ways that affect health, safety, 
comfort)
 Climate regulation—modulation via cycling of key 
greenhouse gases including carbon dioxide, methane, 
and nitrous oxide
 Water regulation—storm water mitigation via 
retention, surface, and ground water purification
 Bioremediation—decontamination of toxic waste 
and/or pathogens via soil microbiota
C. Cultural Services (“non-material, and normally 
non-rival and non-consumptive outputs [sic] that affect 
the physical and mental states of people”)
 Aesthetic and recreational—promotes health and 
well-being through supporting aesthetically pleasing 
environments and recreational opportunities

What soils “Do 
to us”
(negative 
effects)
Natural vs 
Anthropogenic

1.  Disease/health effects due to direct exposure to soils or soil 
components primarily via:

A. Ingestion
 Gastroenteritis—diarrheal disease caused by ingestion of 
small quantities of soil contaminated with enteric bacterial 
pathogens (Campylobacter, Escherichia coli, Shigella spp.) or 
viruses (Norwalk virus) or protozoans (Cryptosporidium parvum)
 Helminthiasis—parasitic intestinal infection caused by 
ingestion of soil containing Ascaris or whipworm eggs
 Element toxicity—ingestion of naturally contaminated soils or 
soils contaminated by anthropogenic activities may cause toxicity 
most notably due to lead, arsenic, cadmium, and nitrate
Xenobiotic exposure—xenobiotics are synthetic chemicals, 
typically carbon based, often characterized by long 
environmental half-lives, and increasing recognized as having 
endocrine disrupting effects at very low concentrations. Exposure 
may cause cancer, obesity/metabolic disease, reproductive, 
developmental, and cognitive anomalies
B. Inhalation
 Coccidioidomycosis—pulmonary infection AKA valley fever 
due to inhalation of dust-borne fungal spores
 Mesothelioma—cancer of lining of the lung caused by 
inhalation of soil dust containing asbestos
 Silicosis—pulmonary fibrosis caused by inhalation of silica 
crystals
 Lung cancer—inhalation of radon that naturally occurs in soils 
and accumulates in basements/underground structures
C. Dermal absorption/penetration
 Podoconiosis—chronic debilitating non-filarial elephantiasis of 
lower extremities due to penetration of skin by fine volcanic soils 
with resultant chronic inflammation. 1 to 2 million people affected
 Tetanus—paralysis caused by wound contamination with soil 
containing Clostridium tetani spores
 Helminthiasis—parasitic intestinal infection caused by 
penetration of skin by hookworm larvae in soil

1. Disease/health effects due to soil deficiencies

A. Inherent poor soil fertility—may result in food 
insecurity with resultant protein-energy malnutrition, 
growth stunting, immunocompromised ion and death
B. Micronutrient/trace element deficiencies
 Iodine—deficiency causes congenital anomalies, 
mental retardation, hypothyroidism, and goiter. 
Remerging as a problem in Europe. 740 million people 
currently affected. 2 billion people at risk
 Iron—deficiency results in anemia, fatigue, 
cognitive impairment, and impaired immunity. 1 to 2 
billion people at risk
 Selenium—deficiency associated with low 
glutathione peroxidase levels, impaired antioxidant 
and redox status, pseudoalbinism, and Keshan 
disease. 0.5 to 1.0 billion people at risk
 Zinc—deficiency impairs wound healing and 
immunity

Source: Table based on Oliver,299 Oliver and Gregory,14 Brevik et al,290 and Steffan et al.56
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Table 2. Persistent organic pollutants identified by the Stockholm Convention (SC).

ChEMICAL YEAR ADDED SOURCE ANNEx IN SC ADDITIONAL NOTES

Aldrin 2001 P A  

Chlordane 2001 P A  

Dichlorodiphenyltrichloroethane 
(DDT)

2001 P B DDT still used against mosquitoes in several 
countries to control malaria

Dieldrin 2001 P A  

Endrin 2001 P A  

heptachlor 2001 P A  

hexachlorobenzene (hCB) 2001 P, IC, UP A & C  

Mirex 2001 P A  

Toxaphene 2001 P A  

Polychlorinated biphenyls (PCB) 2001 IC, UP A & C has specific exemptions under Annex A

Polychlorinated dibenzo-p-dioxins 
(PCDD)

2001 UP C  

Polychlorinated dibenzofurans 
(PCDF)

2001 UP C  

Alpha hexachlorocyclohexane 2009 P A No exceptions or acceptable uses

Beta hexachlorocyclohexane 2009 P A No exceptions or acceptable uses

Chlordecone 2009 P A No exceptions or acceptable uses

hexabromobiphenyl 2009 IC A No exceptions or acceptable uses

hexabromodiphenyl ether, 
heptabromodiphenyl ether

2009 IC A Can be used in accordance with the provisions 
of Part IV of Annex A

Lindane 2009 P A human use for control of head lice and scabies 
as second-line treatment

Pentachlorobenzene 2009 P, IC, UP A & C No exceptions or acceptable uses

Perfluorooctane sulfonic acid, its 
salts, and perfluorooctane sulfonyl 
fluoride

2009 IC A & B Acceptable purposes and specific exemptions 
in accordance with Part III of Annex B, 
amended 2019

Tetrabromodiphenyl ether, 
pentabromodiphenyl ether

2009 IC A has specific exemptions under Part V of Annex 
A

Technical endosulfan and its related 
isomers

2011 P A Exemptions for crop-pest complexes in 
accordance with the provisions of part VI of 
Annex A

hexabromocyclododecane 2013 IC A Expanded and extruded polystyrene in 
buildings in accordance with the provisions of 
part VII of Annex A

hexachlorobutadiene 2015 IC, UP A & C No exceptions or acceptable uses, added to 
annex C in 2017

Pentachlorophenol and its salts and 
esters

2015 P A Pentachlorophenol for utility poles and 
cross-arms in accordance with the provisions 
of part VIII of Annex A

Polychlorinated naphthalenes 2015 IC, UP A & C Can be used for production of polyfluorinated 
naphthalenes, including octafluoronaphthalene

Decabromodiphenyl ether 2017 IC A Exemptions for certain uses in vehicles, 
aircraft, textiles, additives in plastic housings, 
etc, polyurethane foam for building insulation

(Continued)
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ChEMICAL YEAR ADDED SOURCE ANNEx IN SC ADDITIONAL NOTES

Short-chain chlorinated paraffins 2017 IC A Allowed as additives in transmission belts, 
rubber conveyor belts, leather, lubricant 
additives, tubes for outdoor decoration bulbs, 
paints, adhesives, metal processing, 
plasticizers

Dicofol 2019 P A No exceptions or acceptable uses

Source: Table based on Stockholm Convention300,301 (modified from Steffan et al56).
Abbreviations: IC, industrial chemicals; P, pesticide; POP, persistent organic pollutants; UP, unintentional production/by-products.
Some POPs can still be used for specific purposes as outlined in the SC.

Table 2. (Continued)

soil through the consumption of crops and cattle raised on 
those soils.57 A recent study carried out by Komissarova and 
Paramonova58 in an area affected by the Chernobyl accident 
found that some areas still exceeded the 137Cs safety standard 
by 3.5 to 6 times in 2017. Despite this high concentration, the 
transfer of this radionuclide to crops and forages was limited. 
After the Fukushima accident, it was estimated that Japanese 
soils were highly contaminated with 137Cs, which will affect 
agricultural products and human health for decades.59

Chemicals released by warfare activities also increase soil 
pollution. Apart from heavy metals and radionuclides, other 
toxic elements are released into the soil such as energetic mate-
rials, nitroaromatic explosives, organophosphorus nerve agents, 
and oil products.33,60 Energetic materials, nitroaromatic explo-
sive, and organophosphorus nerve agents are among the dead-
liest warfare-related materials identified in soils.61,62

Humans can be exposed to soil chemicals, pathogens, and 
minerals by respiration, skin absorption or penetration, and 
ingestion.56 Several indices have been developed to assess the 
impact of contaminated soil on cancer through ingestion, inha-
lation, and dermal contact.63 The inhalation of soil particles 
occurs as a consequence of dust transport by wind. Dust trans-
port has been recognized to have an impact on diseases such as 
pulmonary fibrosis, chronic obstructive pulmonary disease, sar-
coidosis, and asthma. This especially affects people with weak 
or compromised immune systems, such as children, older peo-
ple, and people already suffering from cardiopulmonary chronic 
diseases.64 It has been reported that chemicals are transported 
with dust particles (eg, arsenic), increasing human health 
risks.65,66 Dust events are particularly common in arid and 
semi-arid areas. However, the expansion of human activities 
(eg, road development, urban sprawl, agriculture, mining) in 
other climates is increasing the number of dust events in  
temperate continental,67 tropical monsoon,68 subtropical  
monsoon,69 continental monsoon,70 and temperate oceanic71 
climates. Previous works showed that skin contact with soils 
with a high level of heavy metals might cause skin diseases27 
such as itching72 and rashes.73 Ingestion of contaminated soil 
particles can increase levels of heavy metals in the blood.74 
Plants can uptake a large number of heavy metals, quickly 

passing them up the food chain.75 This problem has been 
reported in areas irrigated with wastewater,76 and in farms and 
gardens located close to cities, industrial, and mining areas. 
Although the impact of heavy metals on human health through 
dermal contract is recognized, the risks seem to be higher 
through inhalation or ingestion.26,36,77

Urban agriculture has recently been encouraged as a way 
to contribute to increasing the quality and quantity of soil-
related ecosystem services.78,79 It is estimated that the global 
impacts of urban agriculture could provide ecosystem ser-
vices that are valued at between US $80 and US $160 billion 
annually.80 Urban agriculture also has positive impacts on 
food security,81 poverty alleviation,82 community develop-
ment, and social justice83; reduces energy demand and carbon 
footprint84; increases the resilience of urban communities85; 
creates jobs86; and increases the local economy and  
education.87 All of these can have a positive impact on human 
health. Urban agriculture has the ability to make an impor-
tant contribution to sustainable development and the 
achievement of the United Nations Sustainable development 
goals (eg, no poverty, zero hunger, sustainable cities and 
communities, climate action, life on land).88,89

There are a large number of works focused on mapping soil 
heavy metal contamination in urban, industrial,40,90,91 and agri-
cultural areas,92,93 as well as at the continental scale.94 New 
methods such as proximal and remote sensing techniques have 
recently been applied to map heavy metals in soils.95-97 These 
techniques represent a substantial advance in mapping, mainly 
because more sample points can be processed in a reduced 
amount of time than with more conventional methods. The 
identification of spatial patterns is crucial to understand the 
sources of pollution, the factors that govern soil pollution dis-
tribution, and the population exposed to soil contamination. 
Therefore, appropriate mapping is critical to mitigate the 
impacts of soil pollution on human health.98 Several maps of 
soil radionuclides in areas affected by the Chernobyl accident 
and monitoring people’s exposure to associated radionuclides 
have been created.99-101 A similar effort was carried out in 
Japan after Fukushima.102 Some works have combined the 
mapping of heavy metals and radioactivity.103
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Future needs in soil pollution and human health

The relationship between soil pollution through various chem-
icals and human health is well established, as highlighted in the 
previous section. This includes exposure to heavy metals, radio-
nuclides, and organic chemicals. Knowing that these issues 
represent a problem in our modern world, it is important to 
look to the future and anticipate ways these problems may 
change, including potential intensification.

Dust transports pollutants over long distances. Dust storms 
are expected to increase as a consequence of climate and land-
use change (eg, urbanization, agriculture intensification, and 
desertification). Therefore, it is very likely that related prob-
lems will also increase.64,104 Some work has been conducted to 
identify sources and the type of material being transported and 
link this to human health.105-107 However, more research is 
needed to forecast these events and find ways to minimize their 
impacts on human health, such as the use of nature-based solu-
tions. Most of the works carried out have been focused on 
heavy metals pollution, but research into plastics, pesticides, 
and related organic chemicals increased exponentially in recent 
years and the number of chemical elements in soil that are 
known to be harmful to human health has increased.108-110 It is 
vital to understand the spatial distribution of soil microplastics, 
pesticides, etc, to identify areas where soil conditions threaten 
human health. In addition, it is crucial to identify critical 
thresholds of these elements in the soil that can be considered 
harmful for human health.111 Most of the work that has been 
conducted to date focuses on individual pollutants, but these 

pollutants interact with both other chemicals and the broader 
complex soil environment. It is critical that we find ways to 
determine the threat posed by chemical mixtures and by the 
interactions these mixtures undergo in soil.50

Despite the importance of urban agriculture, several works 
have highlighted that the food produced in urban areas might 
have high heavy metal content.112 This is a pivotal issue that 
needs to be addressed to ensure the health of those who con-
sume food produced in the urban environment.113 The use of 
brownfields for gardening and wastewater for irrigation can 
pose serious problems related to contamination of the vegeta-
bles produced in these areas.114,115 Some urban areas studies 
have shown the levels of pollutant accumulation in vegetables 
did not threaten human health, such as Barcelona, Spain113,116; 
Sevilla, Spain117; Lisbon, Portugal118; Madrid, Spain119; 
Sheffield, UK120; and Braganca, Portugal.121 However, in other 
cities, the pollutant levels identified were high and threatened 
human health, including Rio de Janeiro, Brazil122; Daejeon, 
South Korea123; Rome, Italy124; Melbourne, Australia125; Dera 
Ismail Khan, Pakistan126; and Ghaziabad, India.127 Figure 1 
shows study sites where the heavy metal content in fruits and 
vegetables were analyzed in peri-urban and urban areas. In 74% 
of the cases, at least one of the metals studied was above the 
acceptable limits defined by FAO/WHO,128 European 
Union,129 or national legislation. The most pressing concerns 
regarding heavy metal contamination of fruits and vegetables 
were observed in India, Pakistan, and China. According to the 
studies screened in Supplementary Material 1, this was attrib-
uted to soil contamination through the use of untreated 

Figure 1. Studies in urban and peri-urban areas that investigated the concentration of heavy metals in fruits and vegetables. Red dots show sites where 

at least one chemical element had a concentration above the guidelines provided by FAO/WhO, the European Union, or national legislation. Green dots 

show sites where none of the chemical elements had a concentration above FAO/WhO, European Union, or national legislation levels. The criteria for 

selection of the studies used to create this map are given in Supplementary Materials 1 and 2. FAO indicates Food and Agriculture Organization of the 

United Nations; WhO, World health Organization.
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wastewater or the location of the farms near pollutant sources 
(eg, roads, power plants). Also, the usage of wastewater for irri-
gation is increasing the accumulation of emergent pollutants 
(eg, pharmaceuticals) in soils and plants.130,131 Therefore, it is 
important that future research in urban food production 
include robust analysis of both the positive and potential nega-
tive human health impacts of such production.

Soil maps can be important tools in understanding the 
links between soils and human health.132 The quality of our 
maps depends on the sampling design used to gather informa-
tion, methods used, the models used to project point data 
across a 2- or 3-dimensional mapping product, and the skill 
and training of those who create the maps.98,133-135 Therefore, 
additional research is needed to investigate best soil mapping 
practices including data collection, analysis, manipulation, and 
display.136

Soil Microorganisms and Human Health
Current status

Human pathogens in soil. Soil serves as a reservoir for a large 
number of human pathogens and their associated vectors.24 
Soil-borne pathogens can be classified into 4 distinct but not 
mutually exclusive groups: (1) permanent, those organisms 
which can complete their entire life cycle in the soil; (2) peri-
odic, those organisms that complete part of their life cycle in 
the soil or occur naturally in the soil; (3) transient, those organ-
isms that are found naturally in the soil, but don’t require the 
soil for their life cycle; and (4) incidental, those organisms that 
are not naturally found in the soil, but can survive when intro-
duced into the soil.137 Pathogens are often introduced into soil 
via contact with contaminated water, animal or human  
excrement,138 or municipal and clinical wastes.139 Moreover, 
soil and climatic conditions play a large role in the accumula-
tion and abundance of pathogens in the soil, which affects the 
infectivity potential. These environmental conditions have 
been reviewed recently24,140 and are not further covered in this 
review; however, Table 3 contains examples of human diseases 
and associated pathogen(s) found in soil.

Antibiotic resistance and antibiotic products. Since the discovery 
of penicillin in 1928, the use of antibiotics to treat animal and 
human bacterial diseases has saved millions of lives.141 How-
ever, it has also led to the emergence of antibiotic-resistant 
pathogens which have reduced or eliminated the effectiveness 
of many antibiotics.142 A rapid increase in the prevalence of 
antibiotic-resistant bacteria (ARB) in various environments 
has been documented.143,144 Resistance to an antibiotic devel-
ops via several mechanisms including (but not limited to) the 
activation of antibiotic transporters (efflux pumps), the pro-
duction of enzymes to inactivate antibiotics, and modification 
of the target (active) site of the antibiotic.145 These mecha-
nisms occur via either spontaneous mutations, through the 
acquisition of antibiotic resistance genes (ARGs) from other 

bacteria through horizontal gene transfer (HGT),146 or through 
infection via bacteriophages.147 Often the pathogens acquire 
multi-drug resistance which complicates treatment and leads 
to poor patient prognosis.148

In terms of antibiotic production, soil-dwelling organisms, 
namely bacteria, fungi, and actinomycetes, have sourced most of 
the naturally occurring antibiotics used in human and veterinary 
medicine.149 These organisms naturally produce antibiotics to 
aid in competition during times of ecological stress. It has been 
suggested that increased ecological stress may lead to an increase 
in antibiotic-like compound production in soil bacteria,150 so 
perhaps it may be that with increased stress on soils worldwide 
(due to climate change, population growth, ecological devasta-
tion, unsustainable management practices, among others) and 
with new soil organism isolation methods,151 new antibiotics 
will be found at a more rapid rate. Alternatively, increased stress 
on soils worldwide may eliminate microbial species which har-
bor undiscovered antibiotics.152 Either way, the rate of antibiotic 
discovery will still be much slower than the emergence of antibi-
otic resistance.153 This is due to the fact that the soil environ-
ment contains a large number of ARB and ARGs.154 The 
application of antibiotic-laden wastewater, animal manure, and/
or night soil to enhance soil fertility often contributes to the 
increased abundance of ARGs and ARB in soil.155,156 Genes 
conferring resistance to the antibiotics tetracycline, fluoroqui-
nolones, and sulfonamides are common in soil amended with 
animal manure.157-160

Worldwide antibiotic use is expected to increase 67% 
from 2010 to 2030 due to an increase in global demand for 
food animal production161,162; thus, a concomitant increase in 
antibiotic-laden water and manure is likely. To help offset 
this expected increase, the Food and Drug Administration in 
the United States has implemented increased animal drug 
regulations (known as the Veterinary Feed Directive) to limit 
the usage of antibiotics administered in feed and drinking 
water to animals by requiring a prescription from a licensed 
veterinarian.163 These new regulations became effective 
October 1, 2015, to encourage the appropriate use of and 
avoid unnecessary administration of antibiotics to decrease 
the threat of antibiotic resistance development. Moreover, 
the regulations are thought to ensure the availability of anti-
biotics when needed to timely treat, control, or prevent ani-
mal disease. Moreover, antibiotic exposure risk is of increasing 
concern worldwide with several mitigation strategies being 
sought, including but not limited to increased wastewater 
management and governmental take-back programs.164

Antibacterial properties of clays. It is not solely soil microbiota 
that play a role in providing medicines for humans. A number 
of clay-rich soils throughout the world have been shown to have 
antibacterial action independent of their biological component. 
The healing properties of clay-rich soils have been documented 
for thousands of years165,166 and used topically or ingested.167,168 
The scientific basis for some of the antibacterial action has been 
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Table 3. Examples of human pathogens found in soil and associated diseases.

PAThOGEN(S) TYPE OF 
ORGANISM

MEDICAL 
CONDITION

TRANSMISSION SOIL NIChE/CARRIER KNOWN 
DISTRIBUTION

Clostridium perfringens Bacterial Gas gangrene Skin trauma Permanent Worldwide

Streptomyces spp. Bacterial Skin infection Skin trauma Permanent Worldwide

Chlamydophila psittaci; 
Chlamydophila trachomatis

Bacterial Ornithosis or 
psittacosis

Contact inhalation Bird fecal/nasal 
discharge; placentas and 
placental fluid of infected 
animals

Worldwide

Legionella spp. Bacterial Legionnaires’ 
disease

Aerosol droplets Incidental; soil amoebae Worldwide

Rhodococcus equi Bacterial Pneumonia Inhalation or 
wound 
contamination

Incidental; livestock 
feces

Worldwide

Escherichia coli O157:h7 Bacterial Gastroenteritis Ingestion Incidental; cattle feces Worldwide

Salmonella spp., Salmonella 
typhi

Bacterial Salmonellosis; 
typhoid fever

Ingestion; 
zoonotic

Incidental; chicken 
feces; shed by reptiles

Worldwide

Bacillus cereus Bacterial Mild gastroenteritis Ingestion Incidental; fresh 
vegetables

Worldwide

Campylobacter jejuni Bacterial Mild enteritis to 
severe dysentery

Ingestion Incidental; cattle and 
poultry manure

Worldwide

Shigella spp. Bacterial Shigellosis Ingestion Incidental Worldwide

Yersinia enterocolitica Bacterial Yersiniosis Ingestion Incidental Worldwide

Clostridium botulinum Bacterial Botulism Ingestion; skin 
trauma

Permanent Worldwide

Clostridium tetani Bacterial Tetanus Ingestion; skin 
trauma

Permanent Worldwide

Mycobacterium leprae Bacterial hansen disease 
(Leprosy)

Unknown; person-
to-person

Permanent Tropics; endemic 
pockets

Burkholderia pseudomallei Bacterial Melioidosis Ingestion; skin 
trauma; inhalation

Permanent Worldwide

Pseudomonas aeruginosa Bacterial Pseudomonas 
aeruginosa infection

Skin trauma; 
opportunistic

Permanent Worldwide

Bacillus anthracis Bacterial Anthrax Ingestion; skin 
trauma; inhalation

Periodic Worldwide

Rickettsia spp. Bacterial Rocky Mountain 
Spotted Fever

Tick vector Periodic Worldwide

Leptospira spp. Bacterial Leptospirosis Ingestion; skin 
trauma

Incidental; urine of 
infected animals

Worldwide; higher 
incidence in tropics

Listeria monocytogenes Bacterial Listeriosis Ingestion Incidental Worldwide

Coxiella burnetii Bacterial Q Fever Inhalation; 
contact with 
infected animals

Incidental Worldwide; 
excluding New 
Zealand

Francisella tularensis Bacterial Tularemia Vector; skin 
trauma; contact 
with infected 
animals

Transient Northern 
hemisphere

Trichophyton, Microsporum, 
Epidermophyton spp.

Fungal Ringworm; Tinea 
corporis

Skin trauma/
contact

Permanent Worldwide

Sporothrix schenckii Fungal Sporotrichosis Skin contact; 
inhaled spores

Transient Americas, Europe, 
Africa

(Continued)
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PAThOGEN(S) TYPE OF 
ORGANISM

MEDICAL 
CONDITION

TRANSMISSION SOIL NIChE/CARRIER KNOWN 
DISTRIBUTION

Nocardia, Streptomyces, 
Madurella, and 
Pseudoallescheria spp.

Fungal Subcutaneous 
swelling leading to 
skin rupture

Skin trauma Permanent/transient Mostly 30°N 
through 15°S 
latitude

Histoplasma capsulatum Fungal histoplasmosis Inhalation Bat/bird feces Americas, Africa, 
India, SE Asia

Coccidioides immitis Fungal Coccidioidomycosis Inhalation; skin 
trauma

Permanent Americas, Northern 
Mexico

Aspergillus fumigatus Fungal Aspergillosis Inhalation Permanent Worldwide

Blastomyces dermatitidis Fungal Blastomycosis Inhalation; skin 
trauma (rare)

Permanent Americas and 
Africa

Exserohilum rostratum Fungal Fungal meningitis Inhalation Permanent Worldwide; 
especially tropics

Trematode; Fluke; 
Schistosoma spp.

Parasite Schistosomiasis Ingestion Periodic Tropics

Cestodes; Taenia saginata; 
Tapeworm

Parasite Tapeworm Ingestion Transient Worldwide

Taenia solium; Tapeworm Parasite Taeniasis and 
cysticercosis

Ingestion Transient Worldwide

Hookworm Parasite Ancylostomiasis Direct contact 
(burrow through 
skin)

Periodic North Africa, Asia, 
Southern Europe, 
Americas, Australia

Roundworm; Ascaris 
lumbricoides

Parasite Ascariasis Ingestion Transient Worldwide

Roundworm; Strongyloides 
stercoralis

Parasite Strongyloidiasis Ingestion Transient Tropical/temperate 
regions

Enterobius vermicularis Parasite Pinworm; 
enterobiasis

Ingestion Incidental Temperate regions

Trichuris trichiura Parasite Whipworm; 
trichuriasis

Ingestion Incidental Worldwide

Toxocara canis Parasite Toxocariasis Ingestion Transient; dog feces Worldwide

Entamoeba histolytica Protozoan Amebiasis; amoebic 
dysentery

Ingestion Incidental Worldwide

Giardia intestinalis Protozoan Giardiasis Ingestion Transient Worldwide

Cryptosporidium parvum Protozoan Cryptosporidiosis Ingestion Transient Worldwide

Cyclospora cayetanensis Protozoan Cyclosporiasis Ingestion Incidental United States

Acanthamoeba spp. Protozoan Keratitis; 
granulomatous 
amoebic 
encephalitis

Skin trauma; eye Incidental Worldwide

Naegleria fowleri Protozoan Primary amoebic 
meningoencephalitis

Through nose 
(swimming)

Transient; warm 
freshwater and soil

Worldwide

Toxoplasma gondii Protozoan Toxoplasmosis Ingestion Transient; cat feces Warm climates

Source: Table modified from: Pereg et al.140 Additional references: Loynachan,138 Brevik and Burgess,302 Brevik,205 Baumgardner,18 Abrahams,17 and Burtis et al.303

Table 3. (Continued)

elucidated (reviewed in Williams169). However, most clay-rich 
soils have some antibacterial properties. It appears that the 
structure and type of clay and factors during its formation (ie, 
physical and chemical weathering) play a significant role.170 

Most antibacterial clays develop from hydrothermally altered 
volcanic material where reduced metals are concentrated in 
hydrothermal water. For example, French Green clay is a 
reduced iron-rich clay dominated by illite-smectite clays, 
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formed from past volcanic activity in the Massif Central region 
in France.171 A second example is a clay, owned and marketed 
by Oregon Mineral Technologies Inc. (OMT) as a healing clay, 
located in the Cascade Mountains of Oregon, USA. These 
OMT clays formed under somewhat similar conditions to the 
French Green clay. However, it is the presence of particular 
metals, their solubility, and other chemical characteristics that 
influence its antibacterial properties.170,172

Soil microbes and human immune systems. In addition to antibi-
otic properties and antimicrobial products found in soil, expo-
sure to soil-borne microorganisms likely plays an important 
direct role in development and regulation of the human immune 
system. This is related to the concept of the microbiome-gut-
brain axis, which emphasizes the role of gut microbiome com-
position and microbiome-driven signaling pathways in host 
immune system function and even human behavior.173,174 
Increased focus in medical research fields further explores the 
linkages between contact with the natural environment, includ-
ing soils, and microbially driven immunoregulatory responses in 
humans that positively influence mental and physical well-
being. This has been especially studied as it relates to allergy 
prevalence and is termed the “biodiversity hypothesis.”175,176 For 
example, early environmental exposure to allergy-causing 
microbial products such as endotoxins may promote allergen 
tolerance in children.177 Chronic allergen exposure such as 
encountered in rural traditional farming communities can also 
provide greater protection against allergic diseases compared 
with communities with similar genetic backgrounds but more 
industrialized farming practices.178 The specific contribution of 
diverse soil-borne microorganisms in host microbiome compo-
sition and immune system regulation is also receiving increased 
focus and helping to delineate the mechanisms by which soil 
microorganisms contribute to the effects described above. For 
example, a recent study using mice demonstrated that gut 
microbes acquired from soil increased anti-inflammatory capac-
ity to TH2-type inflammation responses compared with mice 
who received no soil contact.179 Studies have also demonstrated 
that exposure to Mycobacterium vaccae, a common soil sapro-
phyte, is involved both in immune system activation and in spe-
cific serotonergic pathways that influence emotional and 
behavioral response to stress using mouse models.180,181 In 
humans, administration of a heat-killed M vaccae preparation 
has resulted in improved human response to chemotherapy, 
suggesting a potential role for soil-borne microbial products in 
immunotherapy.182 These studies lend support to the idea that 
human contact with and exposure to soil microbial communi-
ties plays an important role in human health both from a devel-
opmental and therapeutic perspective and that the complexity 
and diversity of human and environmental microbiomes are 
inherently linked.183

Soil microorganisms and food systems, human nutrition. Along 
with their role in human immune system development and 

function, soil microorganisms have both direct and indirect 
effects on sustainability, quality, and security of food systems 
that subsequently influence human health and nutrition. 
Ensuring a sustainable, nutritious, and stable food supply for a 
growing world population depends on the interaction between 
multiple food system components ranging from production 
and distribution of food and fiber products to consumer and 
post-consumer practices. Although substantial gains can and 
should be made possible through genetic improvement of 
agronomic plants,184 in this section we will focus on the contri-
bution and influence of soil microorganisms. Specifically, we 
suggest that soil microbial communities and their functions are 
critical to human health outcomes of food systems. This occurs 
through impacts on plant yield and nutritional quality, increases 
in soil nutrient cycling and pathogen inhibition, and through 
their role in enhanced long-term ecosystem stability under 
future global change conditions.

Multiple studies have demonstrated that direct manipula-
tion of plant root and soil microbial communities may be a 
promising strategy to increase food crop yield and nutritional 
quality through targeted deployment of beneficial plant-
growth-promoting (PGP) bacterial or fungal inoculum on 
seeds or in soil.185 For example, inoculating maize plants with 
PGP rhizobacteria Pseudomonas alcaligenes, Bacillus polymyxa, 
and Mycobacterium phlei significantly increased plant growth 
and nutrient uptake when soil nutrients were scarce.186 A 
recent study by Fiorentino et al187 found that inoculation of 2 
lettuce species (Lactuca sativa and Eruca sativa) with 
Trichoderma virens or Trichoderma harzianum fungi increased 
yields and nutrient content, particularly N, when grown under 
low soil nutrient levels. T harzianum inoculation has also been 
shown to improve successful colonization of rapeseed (Brassica 
napus) roots by accompanying arbuscular mycorrhizal fungi 
(AMF), with additive improvements to the number of seed-
pods produced per plant.188 Co-inoculation of AMF and 
Pseudomonas fluorescens bacterium (PFB) with supplemental 
phosphorus (P) fertilizer increased micronutrient content and 
yield of the medicinal herb purple coneflower (Echinacea pur-
purea).189 As a context-dependent plant mutualist that is most 
effective under P-limited conditions,190 much research has 
focused on the potential beneficial effects of inoculating or 
encouraging colonization of AMF to improve crop production 
and nutritional quality.191 For example, recent studies have 
demonstrated that inoculation or re-introduction of AMF spe-
cies can increase yield and quality of crops such as tomato,192 
cucumber,193 and tea plants.194

Non-nutritional benefits of PGP bacteria and fungi, such as 
influencing pathogen or herbivore interactions, and improving 
plant-soil properties, such as water relations and aggregate sta-
bility, are equally important to ensuring sustainable and high-
quality food production. For example, a recent meta-analysis of 
literature focusing on AMF found that associated improve-
ments to soil aggregation and stability, soil moisture dynamics, 
and pathogen resistance were as influential to plant fitness as 
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nutrient uptake.195 Targeted management of soil fungal and 
bacterial composition or inoculation is likely important for 
alleviating biotic stress (eg, disease or herbivory) or abiotic 
stress (eg, drought or nutrient scarcity), although literature out-
comes are mixed.196,197 Researchers are therefore still delineat-
ing the complex plant-microbe-soil interactions involved in 
manipulating soil microbial communities to optimize crop 
production and soil ecosystem functioning across a variety of 
environments and management systems. Multiple reviews have 
focused on the importance of soil microbial interactions, both 
with each other and with plants, and associated ecosystem 
functions to sustainable and high-quality food produc-
tion.198-201 Empirical studies have shown that soil microbial 
community composition and functioning are important drivers 
of ecosystem processes that promote plant growth and fitness 
such as nutrient cycling are critical for long-term sustainable 
plant production.202,203 Effectively managing soil microbial 
communities for increased long-term sustainability and eco-
system resilience will be critical to ensure secure food systems 
and maintain or improve human health and well-being under 
future global change conditions.

Future needs in soil microorganisms and human 
health research

Multiple important intersections exist between soil microor-
ganisms and human health. These range from pathogen pres-
ence and transmission, antibiotic products and antibiotic 
resistance, immunoregulatory compounds and signaling from 
soil-borne organisms, to soil microbial contributions to sus-
tainable and nutritious agricultural products. Based on our dis-
cussion above, future research in soil microbial community and 
human health research should better integrate soil ecology and 
agronomic crop production with human health and nutritional 
sciences. For example, more research is needed to investigate 
the linkages between soil microbial community structure and 
function in agricultural and natural soils and human health 
outcomes such as disease and allergy characteristics alongside 
nutrition and economic well-being. Moreover, continued 
enhancements in bacterial and fungal sequencing, metagenom-
ics, and the subsequent analysis (including enhanced reference 
genome databases) are needed to further our understanding of 
the intersections outlined above. Finally, a complete under-
standing of these intersections will require a vast array of inter-
disciplinary teams of scientists including, but not limited to, 
soil scientists, agronomist, botanists, biologists, microbiologists, 
ecologists, geneticists, immunologists, medical doctors, veteri-
narians, food scientists, and statisticians.

Soil Macroorganisms and Human Health
Current status

Biological diversity of soil ecosystems is fundamentally impor-
tant for soil and human health. Soil macroorganisms are 
important in establishing soil health, and soil health has direct 

ties to human health19,204; therefore, soil macroorganisms are 
important to human health at least to the extent they are 
important to soil health. However, the complexities and associ-
ated quantification of that diversity provide many challenges.205 
The association between macroorganisms and productivity of 
the soil ecosystem is not well understood, though many studies 
acknowledge that these organisms are important for soil mix-
ing, micropore formation, indicators of soil disturbances, 
microbial respiration and biomass, microbial community com-
position, and agro-economics.205-208 Currently, most studies 
seek to examine the role and impact of earthworms, ants, mites, 
and other arthropods in agroecosystems.209-213 As stated previ-
ously, quantifying the impact of soil macroorganisms has 
proved challenging and past research has typically circum-
vented these difficulties by using a bioindicator species, with 
earthworms fitting that role in many cases.214-216

Earthworms play roles in recycling organic material, increas-
ing nutrient availability (by incorporating organic materials 
into the soil and unlocking nutrients held within dead animals 
and plant matter), improving soil structure with burrowing 
behaviors, and influencing the habitat and activities of other 
organisms. Although this information is treated as common 
knowledge among the academic soil community, only a frac-
tion of earthworm species have been identified and regional 
variability in diversity and biomass are only now being investi-
gated.217 Some species of earthworm are drastically affected by 
heavy metal pollution. For example, Aporrectodea caliginosa are 
not found in soils with zinc levels more than 2000 ppm and 
even moderate levels resulted in approximately 50% decline in 
population size.206 Other studies have shown that A caliginosa 
and Lumbricus rubellus can be used to develop a biota-to-soil 
accumulation factor as there is a direct relationship between 
the amount of heavy metal bioaccumulation and that found 
freely in the soil.218 Ayuke et al219 showed that fallowing and 
application of farm yard manure (FYM) in combination with 
fertilizer increased earthworm diversity and biomass in the top 
15 cm of the soil. Earthworms are also known to bioaccumulate 
motor oil and heavier contamination levels produce inhibitory 
physiological responses in earthworms causing them to starve 
rather than eat contaminated soil.220 These studies reinforce 
the logic for using earthworms as bioindicators of soil health.

Many other soil animals are fundamentally important in 
carbon and nutrient cycling. As a result, their abundance and 
diversity have been used to provide a key contribution to the 
overall assessment of soil health.221 Soil disturbance by animals 
has long been seen as substantially important for shaping land-
scape ecology.222 Soil disturbances by vertebrates have been 
shown to impact many ecological processes including pedo-
genesis, seed entrapment, plant germination and establishment, 
soil nutrient heterogeneity, water infiltration and storage, soil 
respiration, microbial activity, and litter decomposition.223 
Although these processes are required for ecosystem function-
ing, many smaller vertebrates are facing extinction. However, 
soil disturbance by animals also has several negative effects 
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such as reducing structural stability, inverting the soil profile, 
and exposing the soil to higher wind and water erosion. Of 
course, these natural processes are also essential for the positive 
effects that were stated previously, such as soil formation and 
infiltration. In Australia, soil turnover rates caused by burrow-
ing mammals vary between 0.1 and over 87 t/ha and native  
animals have much higher soil turnover rates than non- 
native species.224 Although this finding was not statistically 
significant at α = 0.05 (P = .07), it does provide insight into how 
natural systems have become established through evolutionary 
ecology and a disturbance to that ecological balance could have 
far-reaching consequences for soil health.

Small animals are responsible for mixing organic matter 
into the soil profile. This provides substrate for a wide range of 
soil biota including bacteria, fungi, actinomycetes, nematodes, 
algae, protozoa, and viruses.225 Without these substrates, soil 
biota are dramatically reduced in abundance and diversity.226 
These processes may be very important in the drier areas of the 
world where soil crusts can form underneath plant litter. The 
utilization of these nutrients by mycorrhizal fungi provides the 
framework for plant ecology and is the driving force behind 
most terrestrial ecosystems,225 including succession processes 
in disturbed or newly established environments. Thus, the met-
rics associated with soil fertility can be directly linked to the 
macro (and micro) organisms. Although these organisms obvi-
ously provide many direct and indirect impacts to soil health, 
most research has focused on only a handful or “bioindicator” 
species to examine these complex relationships. This examina-
tion of the literature is in no way exhaustive, but to our knowl-
edge, represents the current state of information regarding the 
impacts of macroorganisms on soil health. Further research is 
needed to unravel the complexities of the interactions between 
macroorganisms and soil health and to identify new potential 
soil health bioindicators.

Future needs in soil macroorganisms and human 
health

Many of the studies examining the impact of macroorganisms 
on soil health do so with the use of a bioindicator species. 
However, most of the studies are attempting to answer com-
plex and difficult ecological questions, which cannot be ade-
quately represented by a single or even a few species, with an 
emphasis on agricultural or environmental stability. A major 
need for information regarding macroorganisms in soil health 
stems from 2 very important areas: (1) agricultural environ-
ments and (2) restoration and reclamation.227 The answer to 
both of these problems requires the analysis of the resource to 
determine the level of degradation; however, in most cases, pre-
degradation information is not available.227 This includes spe-
cies of invertebrates and vertebrates present in the system. 
Most studies examining the impact of soil health on agricul-
tural production take place in small, localized areas.228 Larger 
studies examining additional natural and native ecosystems are 

warranted to fully understand the impacts on the ecological 
system. These same conditions are true for disturbed natural 
areas in which restoration or reclamation is taking place. Most 
emphasis on soil health in the literature is orientated toward 
soil microorganisms. Future work should seek to examine the 
interconnectedness between soil micro- and macroorganisms 
in one of the most complex habitats on Earth, soil, in both pre-
disturbance and post-disturbance instances.229,230

Thakur et al231 documented the integration of soil biodi-
versity assays in relation to the amount of work done on differ-
ent organisms in soil ecology (Table 4). This work highlights 
the emphasis placed on microorganisms and the little effort 
that has been placed on macroorganisms. Table 4 suggests that 
macroorganisms are often overlooked in soil ecological analy-
sis and are underrepresented in the current literature. This also 
shows the relatively small geographic area covered by these 
studies; future work needs to focus on a more comprehensive 
understanding of how macroorganisms maintain and establish 
soil health over broad scales. Soil biodiversity (and bioindica-
tor) research should aim to investigate the feedback mecha-
nisms within the ecological setting. This would allow us to 
provide an integrated understanding of the complexity of 
these systems. The movement of soil organisms including dis-
persal needs to be assessed to understand soil biodiversity 
patterns.232,233

Understanding the life-history characteristics of an organ-
ism is fundamental to understanding its role in a natural setting. 
For many of the macroorganisms inhabiting the soil environ-
ment, little information is known about these basic life charac-
teristics.234 However, even less is known about how 
macroorganisms that are not typically considered as being part 
of the soil biosphere influence soil health. For instance, a litera-
ture search to examine the relationship between the presence of 
grazing ungulates (non-cattle) and the impact on soil will yield 
no results. Yet, we know that organisms such as those in Cervidae 
family interact with other organisms and processes both within 
and growing from the soil. They also provide nutrients for this 
environment but most research has focused on this aspect in 
terms of FYM (cattle deposition). Also, there has been no 
empirical examination of aerial macroorganisms impact to the 
soil environment. Recent work (computational) suggests that 
bat species provide ecological services of approximately US $3.7 
billion/year in North America as the primary predators of agri-
cultural pests.235 This information suggests that bats occupy 
agricultural environments in high abundances and therefore 
must deposit guano during nightly flights. However, no research 
exists as to the impact or contribution of this high-quality ferti-
lizer in agricultural settings. Also, many bird species migrate 
over the agricultural regions of North America yet no direct 
connection between those species and soil health exists. 
Likewise, there is no research on whether or not humans can be 
exposed to pathogens through these aerial droppings.

Many studies have examined the impact of pesticide use on 
microorganisms236,237 yet the only species of macroorganisms 
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to be extensively studied in contaminated soils are earthworms 
(see above). Contaminated/altered soils should be the focus of 
much of the future work on soil health. Without background 
knowledge about soil ecology, insights and interpretations of 
those findings will be limited in their application. The most 
relevant concept that comes from a literature review on this 
subject suggests that the role of macroorganisms might be 
more critical than previously thought (as judged by the lack of 
peer-review publications). Certain studies are beginning to 
shed light on this problem by examining the role burrowing 
macroorganisms have in establishing microbiota in the soil225 
but have since been abandoned. It is not clear why these efforts 
have been abandoned. Information gathered by examining the 
ecological diversity, establishment, stability, and dynamics are 
essential for a thorough understanding of the soil biosphere 
and, by extension, soil health.

Finally, there is a need to understand the direct links that 
exist between soil macroorganisms and human health. Rodents 
that live in soil burrows can be vectors for hantavirus,238 and 
while considered rare, prairie dog-to-human transmission of 
Francisella tularensis (the plague) has been documented.239 
Both of the links noted here need additional study, and other 
such links undoubtedly exist, but research in this area has not 
been a priority.

Nutrient Supply From the Soil
Current status
Nutrient inputs to soils are essential for food production. While 
nutrients already present in the soil may initially be enough to 
sustain plant growth in fertile soils, constant nutrient removal 
through harvest of crop or animal products eventually necessi-
tates the replacement of removed nutrients to sustain further 

production. This becomes even more important in highly 
weathered tropical soils with inherent low fertility. Although 
the supply of some nutrients, like nitrogen, seems to be endless 
(eg, atmospheric nitrogen, N), the finite nature of global 
resources of other nutrients, such as phosphorus (P), potassium 
(K), and zinc (Zn) is of concern.240 Among the many roles of 
soils, nutrient storage and supply is one of the most important 
ones, which in turn supports the production of food and fiber. 
Thus, soils are vital to human health because they support both 
quantity and quality of food and feed production that is essen-
tial for animal and human consumption. During the past dec-
ades, intensification of agriculture in many regions has resulted 
in a decline in the content of organic matter in agricultural 
soils.241 This in consequence has led to negative effects on the 
regulatory services of soil, air, and water quality.242 Therefore, 
to sustain biomass production of higher nutritive quality and to 
avoid negative environmental impacts, fertile soils need to be 
preserved and to be restored where lost. The soil function “fer-
tility” refers to the ability of soil to support and sustain plant 
growth by regulating nutrient supply. This is facilitated by (1) 
the storage of nutrients in soil organic matter, (2) nutrient recy-
cling from organic to plant available forms, and (3) physical-
chemical processes that control nutrient sorption, availability, 
and losses to the atmosphere and water.241 Overall, the fertility 
and functioning of soils strongly depend on interaction between 
the soil mineral matrix, plants, and microbes; these are respon-
sible for the preservation and availability of nutrients in soils.243

Intensification of agriculture through advances in agricul-
tural technology and increasing food demand for an ever-
growing population have put our soils under pressure, leading 
to nutrient depletion, physical degradation, and reduction in 
biodiversity. This jeopardizes their capacity and ability to meet 

Table 4. Number of studies providing support (Yes or No) for each of the 5 biodiversity theories. Support is also listed for the 4 categories of 
body size (microorganisms, microfauna, mesofauna, and macrofauna). The minimum and maximum grain and extent investigated for each theory 
are shown. The data presented in this table includes all cases (note that there is some overlap of studies between niche and neutral theories). 
highlighted area indicates macroorganisms.

ThEORY 
SUPPORT

SPECIES-ENERGY 
RELATIONShIPS

ISLAND 
BIOGEOGRAPhY

METACOMMUNITY 
ThEORY

NIChE NEUTRAL 

YES NO YES NO YES NO YES NO YES NO

N 5 4 16 7 17 1 16 8 12 13

Microorganisms 4 3 7 0 6 1 8 8 9 7

Microfauna 0 0 1 2 1 0 0 0 1 0

Mesofauna 0 0 7 5 9 0 3 0 2 3

Macrofauna 2 0 1 0 1 0 5 0 0 3

Minimum extent 100 m 1 km 1 km 1 km 10 m 100 km 10 m 10 m 1 m 10 m

Maximum extent 1000 km 1000 km 100 km 100 km 100 km 100 km Global Global Global Global

Minimum grain 10 cm 10 cm 1 cm 1 cm 1 cm 10 cm 1 cm 10 cm 1 cm 1 cm

Maximum grain 10 m 10 cm 10 cm 10 cm 10 cm 10 cm 10 m 10 m 10 m 10 m

Table based on Thakur et al.231 See Supplementary Material 1, S1, for a list of the studies included. N is the total number of cases.
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the needs of future generations. This has also led to deficiencies 
of micronutrients in soils worldwide which in turn have adverse 
effects on animal and human health. Micronutrient deficien-
cies are currently identified as the main contributors to the 
global burden of diseases, as nearly half of the world’s popula-
tion suffers the insidious effects of micronutrient malnutri-
tion.244 More than 2 billion people suffer from one or more 
micronutrient deficiency diseases.245 Worldwide more than 
800 million people, mostly women and children, do not have 
access to food that meets their basic energy needs, and nearly 
one-third of these live in India.246 As anticipated, deficiencies 
of micronutrients are highly prevalent in places where cereals 
with low nutritional quality are the main component of the 
diet.247 There is an increasing awareness of the need to pay 
greater attention to the role of micronutrients in soil, plant, 
animal, and human nutrition. This would help explain the 
adverse effects of deficiencies and toxicities and avoid subopti-
mal concentrations that limit the attainment of optimum eco-
nomical yield of crops along with productivity and welfare of 
animal and human well-being. In South Asia, where cereal-
cereal rotations are prevalent and cereals are the staple food, 
incidence of micronutrients malnutrition is the highest and 
therefore these deficiencies have been noted as the top-priority 
public health issues that need to be addressed to achieve health 
security.248

Deficiencies of minerals essential for the health of animals 
and humans exist in many soils around the world, while other 
soils have accumulated toxic elements (eg, cadmium, Cd, and 
arsenic, As). The contamination of soil with these elements can 
result in phytotoxic effects as they enter the food chain249 and 
in the deterioration of surface water and groundwater.250 It is 
also important to mention that about 50% of the cereal-culti-
vated soils globally have low amounts of plant available Zn, 
indicating that there is an urgent need for enhancing concen-
trations of Zn and other micronutrients in cereal-based 
foods.251 According to model studies, enrichment of cereal-
based foods with Zn effectively saves the lives of about 50 000 
children annually.252

Future needs in nutrient supply from the soil

An exponential rise in population between 1961 and 2000 
increased the demand for food. The demand was met by a 
combination of scientific and technological advances, govern-
ment policy, institutional intervention and business investment, 
innovation, and delivery. However, increased farm inputs and 
outputs were partly at the expense of detrimental effects on the 
environment.253,254 In 2050, it is estimated there will be 9.7 bil-
lion people, and we will require about 70% more food available 
for human consumption than is consumed today.

Arable land is a finite resource; therefore, to meet the higher 
food demands of the future, we need intensification of food 
production. The agricultural areas where soils present numer-
ous physical, chemical, and biological (low organic matter) 

constraints to plant growth present a big challenge. Meeting 
future food demands using finite and non-replaceable resources, 
without further environmental degradation, presents a major 
challenge. Hence, the best soil and fertilizer management prac-
tices will play an essential role in ensuring food security for the 
next generations.

A good example that comes from the most populous country 
in the world, China, illustrates this fact. China’s population is 
predicted to peak at around 1.47 billion by the mid-2030s. The 
growing population together with anticipated economic expan-
sion means the projected grain demand must increase by at least 
50%.255 To attain this goal, China must increase per hectare 
crop yields because significant expansion of arable land is 
unlikely.255 One way to improve grain yield by 50% is to further 
boost fertilizer use (particularly N) from the current level of 
~250 to 375 kg N ha−1,256 assuming that a partial factor produc-
tivity for nitrogen (PFPN, defined as kg grain increase per kg N 
applied) of 26 kg kg−1 can be attained. This can theoretically be 
achieved because field experiments (n = 43) in China have dem-
onstrated dramatic maize yield increases from 6.8 to 
15.2 Mg ha−1 with high N input, averaging 747 kg ha−1.257 
However, this would exacerbate current problems including 
China’s pollution and ecological degradation. Alternatively, crop 
yield may be improved through other management options. For 
example, improving soil quality and productivity by emphasiz-
ing organic inputs has resulted in relatively high yields in 
Chinese studies258,259 and elsewhere (eg, Rothamsted, UK).260

Recent data from 66 on-farm trials across northern China 
suggested that it is possible to significantly increase yields and 
reduce our environmental footprint.257 These experiments, 
using N rates (~237 kg ha−1) that are like current farming meth-
ods, produced an average of 13 Mg maize ha−1, compared with 
6.8 Mg ha−1 in adjacent farmer’s fields using current methods. 
The PFPN levels were 57 kg kg−1 in the experimental fields 
compared with 26 kg kg−1 for current farming methods. 
Management techniques employed in these large-scale pro-
jects, termed the integrated soil-crop system management 
(ISSM) approach, can be summarized into 4 principle aspects: 
(1) improving soil quality by recycling organic resources, (2) 
enhancing NUE accounting for various nutrient sources and 
matching nutrient supply with the dynamics of crop needs, (3) 
reducing the gap between potential yield and actual yield using 
superior varieties and improved cultivation, and (4) reducing N 
loss by cutting N loss pathways (Figure 2).

In addition to producing enough calories through intensifi-
cation of agriculture as the example from China shows, we also 
need to enrich our food and feed crops with micronutrients to 
ensure adequate supply for human and animal health. Two 
approaches, ie, genetic or agronomic biofortif ication, have been 
proposed to increase the concentration of micronutrients, and 
especially of Zn, Fe, and Se, in food crops. Zn/Fe fertilization 
strategies positively influence the accumulation of these micro-
nutrients in plant systems and offer the fastest way to achieve 
this without yield penalty.
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Fertilizer application to food crops is essential both to 
increase food productivity and nutritional quality of food for 
human consumption. However, non-judicious and excessive 
fertilization can lead to contamination of soils, resulting in fur-
ther contamination of surface and groundwaters. The contami-
nation of soil with Cd and As can result in phytotoxic effects as 
they enter the food chain249 and in the deterioration of surface 
water and groundwater.250 Similarly, the contamination can 
also be caused by surface runoff and erosion of fertilizer nutri-
ents like nitrogen and phosphorus. Numerous examples of 
ground water contamination by nitrogen (N) fertilizers are pre-
sented in the literature. For example, Lawniczak et al261 found 
higher N concentrations in groundwater in the watersheds 
dominated by arable fields in comparison to forestry catch-
ments and the highest N concentration was noted in the areas 
with a higher level of fertilizer application.

Genetic modification to produce plants with useful traits 
such as increased pest resistance, reduced post-harvest losses, 
increased yield, or enhanced content of desirable constituents is 
readily apparent.262 The HarvestPlus, a Global Challenge 
Program of the Consultative (now Consortium) Group of 
International Agricultural Research (CGIAR), focuses on 
breeding for higher levels of Fe, Zn, and beta-carotene in the 
major staple crops in developing countries. However, genetic 
biofortification of food crops poses several challenges: (1) inte-
gration of the disciplines across their boundaries is difficult, (2) 
there should be no loss in yield, (3) the new grains need to be 
acceptable for consumption, and (4) certainty of improved 
nutrition.263 Despite these challenges, biofortified food crop 
cultivation in developing countries in Asia and Africa, where 
micronutrient problems are widespread, provide a potential 
solution to solve the malnutrition problem.

Agronomic biofortification mainly refers to adequate ferti-
lization using an appropriate method and time of application. 
This approach can be used to enrich genetically inefficient cul-
tivars by application of micronutrient fertilizers at different 
rates, methods, and at different crop growth stages.264 
Agronomic biofortification may also be necessary for Zn, on 
soils with low Zn availability, which represent nearly half of the 
cereal growing areas of the world.251

Genetic breeding or genetic biofortification is a powerful 
tool and sustainable strategy, but a long-term process. In the 
context of nutrient supply, genetic breeding is thought of as a 
traditional breeding approach and not the genetically modified 
organisms (GMO) approach. Also, newly developed genotypes 
should be able to efficiently extract large amounts of nutrients 
from potentially deficient soils and accumulate nutrients in 
whole grain at sufficient levels for human consumption. Due to 
the large genotypic variation in Zn deficiency among crops,251 
there is need for targeted selection and breeding of plants with 
greater efficiency, both in terms of higher grain yield and grain 
Zn concentration.

The physiological basis for micronutrient efficiency in crop 
plants plays a major role in controlling the accumulation of 
micronutrients in edible portions of seeds. It has also been 
reported that nipping practice enhanced Fe concentration both 
in efficient and inefficient cultivars of chickpea and pigeon pea 
grown in India.265 The grain Fe concentration increased by 
17% and 5% in efficient cultivars after nipping and defoliation, 
while in inefficient cultivars, the increase was 10% and 12%, 
respectively.266

Communicating the Soil-Human Health Connection
The need for communication with the public

All of our knowledge goes unused if people are not aware of it. 
As scientists we spend a lot of time communicating with each 
other, but are not always so effective at communicating outside 
the scientific sphere.267 To make informed decisions about a 
topic, people have to be aware of that topic.268 Once aware of a 
problem or an issue, people are more likely to engage with that 
issue.269 However, few people seem to recognize the links 
between soils and human health.205 This certainly is not 
because of a lack of communication between scientists; a num-
ber of recent papers, books, and book chapters have addressed 
this issue in the literature of multiple scientific and human 
health fields,11,14,23,24,56,270-272 just to list a few. Given the abun-
dance of scientific communication coupled with the relative 
lack of public recognition, the logical conclusion is that the 
scientific community is failing to communicate the importance 
of the soil-human health connection to the broader public.

Before people will connect with a soil message, they need to 
see soil as something that is important in their lives.273 At pre-
sent the public perception of soil is often negative, in fact, the 
public perception of soil is often “dirt” rather than “soil,” some-
thing that is reinforced in sayings such as “soiled,” “dirt poor,” 

Figure 2. Conceptual frameworks for the integrated soil-crop system 

management (ISSM) approach. The key points of this strategy are 

presented in the text above.
Source: Adapted from Cui et al.304
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“dirt bag,” and “mudslinging.”274,275 To change perceptions of 
soil, it is important that we do 2 things: (1) find a way to make 
a positive connection between people and soil and (2) find a 
way to reach people with this message. If the negative image of 
soil can be changed, and people learn that soil is important to 
their health, they should then theoretically behave in ways that 
will improve soil conditions and thus their own health.276 This 
section of the article will address ways that this communication 
disconnect might be rectified and human health associated 
with soil improved accordingly.

Concepts for a positive connection

Making a positive connection between the general public and 
soil involves presenting a viewpoint of soil that people who are 
not intimately vested in soil can connect with. Brevik et al276 
proposed soil health and soil security as 2 concepts that show 
promise in this regard. There are several advantages to using 
the soil health concept. One is that the idea of human health is 
already implicit in widely accepted definitions of soil health,277 
and the connection between soil health and human health is 
already documented.19,204 Commonly used soil health defini-
tions also incorporate the concepts of improving air and water 
quality, and these are goals that already enjoy widespread public 
support.278,279 Soil health already has international acceptance 
by agricultural interests280-282 and policy makers.283 Some 
farmers already recognize that links exist between the health of 
their soils and the health of those who consume products pro-
duced on those soils.284 Therefore, soil health shows promise as 
a concept to connect people to soil.

The soil security concept is much more recent than soil 
health and does not yet have the same recognition.276 However, 
soil security seeks to take advantage of the recognition that con-
cepts such as food security, water security, and energy security 
have gained, particularly among policymakers,285 and links have 
been identified between soil security and human health.286 Soil 
security also incorporates social aspects into the concept, which 
makes it appealing as a possible way to connect people to soil. 
The term “ecosystem services” was introduced in the 1990s and 
has rapidly gained widespread acceptance in many of the natu-
ral sciences.287 However, including soils in ecosystem services 
evaluations was not common until the 2000s.287 Soils have been 
linked to a wide range of ecosystem services,288,289 including 
those that support human health.11,290 The importance of eco-
system services is now widely accepted within the scientific 
community,287 but at present there is some evidence that there 
is little recognition of ecosystem services by the urban public. 
Collins et al291 and Bagstad et al292 found the public had a lim-
ited ability to perceive the importance of ecosystem services 
provisioning regions. Therefore, while soil security and soil eco-
system services are concepts that have potential to engage the 
public, each also appears to need more public exposure to do so 
most effectively.

Ways to communicate

Having a message that will resonate with the public is only one 
part of the picture. Another major aspect is how that message 
will be communicated. There are many options for this, includ-
ing social marketing and social media. Both should be effective 
ways to communicate soil information to a public audience.

Social marketing applies marketing techniques and princi-
ples with the goal of influencing public behavior in a way that 
benefits society.293 In traditional marketing, the goal is to con-
vince people to make a purchase; in social marketing, the goal 
is to illicit a specific behavioral change.294 Regarding the soil 
concepts previously discussed (soil health, soil security, and soil 
ecosystem services), the ultimate goal of a social marketing 
campaign would be to create behaviors that promote soil 
health, soil security, and soil ecosystem services. This promo-
tion may not be direct. For example, the willingness of consum-
ers to pay a premium price for products produced in a way that 
promotes soil security/health/ecosystem services could con-
vince farmers and ranchers to adopt such practices.295 Some 
early efforts at social marketing for soil purposes are being 
attempted,276 time will tell whether or not they end up being 
successful.

Social media has become a powerful platform for communi-
cation in the modern world, and it comes in many different 
forms. There are 13 types of social media296 and its use is 
expanding rapidly, making popular social media outlets effec-
tive platforms for marketing efforts.297 However, social media 
views often occur through the recommendations of peers, 
rather than randomly like on a billboard or television, which 
creates a strong emotional affiliation with the message. Unlike 
traditional marketing, where the content of the message is 
most important, the context of the message (who it comes 
from) is more important on social media.297 In other words, 
when a social media marketing message comes from a source 
the recipient trusts, the recipient is more likely to accept the 
content of the message, and vice versa. Informal messaging is 
more likely to be persuasive in the social media environment 
than traditional formal marketing. This introduces unique 
challenges to generating an effective social media marketing 
campaign, but it also offers the opportunity to reach people on 
budgets that can be much smaller than those required for tra-
ditional marketing outlets.298

There are some current attempts to market soil science 
through social media. Examples include the “Soils Matter” 
blog (https://soilsmatter.wordpress.com/) run by the Soil 
Science Society of America (SSSA), the “Soil Systems 
Sciences” blog (https://blogs.egu.eu/divisions/sss/) of the 
European Geosciences Union (EGU), the Twitter feeds run 
by SSSA (@SSSA_soils), the International Union of Soil 
Sciences (IUSS) (@IUSS_ORG), and the Soil System 
Sciences division of EGU (@EGU_SSS), and the Facebook 
pages run by SSSA, IUSS, and the Soil and Water Conservation 
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Society (SWCS). There are also a series of YouTube videos 
developed or supported by SSSA (eg, https://www.youtube.
com/watch?v=vDL6F6GkAzI and https://www.youtube.
com/watch?v=y0u_D5hmK6I), Soil Science Australia (eg, 
https://www.youtube.com/watch?v=S7I-yEUZ1j4), the “PED 
Talks” YouTube video channel (https://www.youtube.com/
channel/UC_NOrrVa1_cCNKQmQoLR5ig) developed by 
SWCS, and the YouTube channel run by the Soil Health 
Institute (https://www.youtube.com/channel/UCeBuJZT0Gi 
S-iVxaPNfqkww). Several professional soil science societies 
have LinkedIn accounts, including SSSA, EGU, and IUSS. 
Some measurements of the effectiveness of these efforts can 
be made. The SSSA blog now averages more than 35 000 
views per month (Susan Fisk, personal communication, 
November 10, 2019), each YouTube video displays the number 
of views it has received, Twitter tells how many times some-
thing has been retweeted, and LinkedIn accounts display the 
number of followers that a professional society has. However, 
much like social marketing efforts, the long-term effectiveness 
of marketing through social media has yet to be determined. 
Being able to link things like number of followers, retweets, or 
views to the taking of individual action regarding the idea 
being marketed is a major future need in this area.

Concluding Statements
The idea that soils are important to human health is widely 
accepted in the modern scientific community. Soils are recog-
nized for their contributions in areas such as the supply of 
adequate quantities of nutritious food products, medications, 
and for their assistance in developing the human immune sys-
tem. Negative health impacts also occur when foods are grown 
in soils that have nutrient deficiencies or when people are 
exposed to toxic levels of chemicals or pathogenic organisms 
through contact with soil or soil products. However, there are 
still many things we do not know about the links between soils 
and human health. The potential role of soils in the develop-
ment of ARB needs additional research, as do the methods 
used to investigate soil microorganisms. Investigation of the 
links between soil macroorganisms and human health has 
barely begun, and there is a need for a more holistic under-
standing of the soil ecosystem and its links to agronomic pro-
duction and broader human health. As the global population 
grows, we will need to produce more food that maintains or 
enhances its nutrient content on essentially the same land area, 
assuming we can reverse our current losses of arable land to 
degradational processes. A large amount of work has focused 
on heavy metals pollution, plastics, pesticides, and related 
organic chemicals, but this work typically focuses on a given 
pollutant as a stand-alone issue. In actuality, the soil is a mix-
ture of many chemicals that are in a very chemically and bio-
logically active environment; research into the health effect of 
chemical mixtures and how those mixtures react and interact in 
the soil environment is badly needed. Beyond research, there is 

a need for scientists to effectively communicate their findings 
to the broader public, who will not be aware of the challenges 
and opportunities we face if scientists do not get the word out. 
Closing all these gaps will require multidisciplinary teams that 
are able to communicate across those disciplines, as, for exam-
ple, soil scientists are not typically trained in human health 
issues and human health experts are not typically training in 
soil science, while neither of these groups are typically trained 
in effective large-scale public outreach. Therefore, we need 
agronomists, biologists, chemists, communications experts, 
medical doctors, public health experts, toxicologists, sociolo-
gists, soil scientists, and others working together toward com-
mon goals within the soil and human health realm. In some 
cases, achieving these collaborations will require a paradigm 
change in how we presently approach human health issues.
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