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Introduction
Globally, the Industrial Revolution played a significant impact 
on the development of the economies of many different coun-
tries because it changed an economy that was predominately 
based on agriculture and handicrafts into one that was domi-
nated by industry and machine manufacturing.1,2

In India, the Industrial Revolution had a pivotal role in the 
economic rise of developing countries. In the case of India, the 
Industrial Revolution commenced post-1850 and notably bol-
stered the rural economy.3 However, this period of scientific 
and technological development had concomitantly brought 
pros and cons in the long run. As a result, it led to unprece-
dented outcomes due to human activities which were first 
ignored until the publication of Silent Spring by Rachel Carson 
on September 27, 1962.4 The Silent Spring unveiled the mys-
tery behind the use of synthetic chemical inputs and its nega-
tive impact on the environment.5 Their effects were 
environmental pollution that was formally categorized as 
anthropogenic activities,6-9 resulting from the dumping of 
industrial, home trash, and synthetic agricultural inputs. 
Therefore, to sustain the environment, alternative methods 
need to be employed to mitigate the effects induced by syn-
thetic chemicals on the environment.

The anthropogenic activities, primarily emanating from the 
agricultural, industrial, and urbanization side, are currently 
releasing contamination to the rhizosphere or atmosphere 
which includes accumulation of heavy metals and other toxic 
fumigant chemicals that pose an environmental threat.10 Heavy 
metal contamination is considered as one of the most critical 
environmental issues that reduce crop productivity and directly 
or indirectly jeopardizes the survival of almost all types of liv-
ing entities on the planet.11 The toxic metals absorbed by plants 
result in chemical residues on marketable produce causing 
mutagenic reactions which result in cancer in human beings.12 
Because wildlife depends on plants, they are also affected by 
heavy metal pollution, which disturbs the balance of mother 
nature and reduces biodiversity.13 On the other side, pesticides 
used in plant protection also kill or affect the reproductive 
potential of untargeted organisms like beneficial nematodes, 
insects, birds and earthworms.14 The prevention of heavy metal 
infiltration into terrestrial, atmospheric, and aquatic habitats as 
well as the remediation of damaged land are therefore 
imperative.

Heavy metals are a distinct group of metals that possess 
comparatively high densities, atomic numbers, and atomic 
weights within the periodic table.15,16 Typically, heavy metals 
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are non-biodegradable and persist in the environment for sev-
eral decades.17 Heavy metals such as mercury (Hg), cadmium 
(Cd), lead (Pb), chromium (Cr), and arsenic (As) are consid-
ered to pose a significant threat to untargeted living entities 
due to their toxicity character, even at low concentrations.18 As 
a result, bioremediation is viewed as a future technique to ame-
liorate the effects caused by pollution on the environment due 
to anthropogenic activities. This technique is suitable for reme-
diating contaminants and it is eco-friendly.19 Bioremediation 
involves the use of living entities such as bacteria: Acinetobacter 
sp.,20 Alcaligenes odorans,21 Bacillus subtilis,22 Corynebacterium 
propinquum,23 Microbacterium sp.,24 Pseudomonas sp., P. putida, 
P. aeruginosa,25 and Ralstonia sp.26 to deteriorate toxic sub-
stances from the rhizosphere as well as the atmosphere.27 It 
also employs the use of plants, technically known as green bio-
technology where Brassica juncea,28 Helianthus annuus,29 Pteris 
vittate,30 Salix viminalis,31 and Solanum lycopersicum 32 plants 
were employed and shown the ability to extract or reduce heavy 
metals from the soil. This review summarizes a variety of 
bioremediation techniques, with a focus on their efficacy in 
thoroughly eradicating heavy metal pollution from the envi-
ronment. It does so by doing a thorough analysis of the current 
literature.

The Principal Sources of Pollution
Heavy metals are released into the environment from various 
sources including mining, urbanization, chemical industry, sew-
age plants, pesticide plants, biomedical and unsafe agricultural 
practices (Figure 1) The United Nations Environment Program 
(UNEP/GPA) and the Global Plan of Action (GPA) recognize 
electronic waste (e-waste) which includes devices like mobile 
phones, tablets, computers, and smartwatches as a major threat 
to the environment and human well-being. This is primarily 
due to the presence of heavy metals like Hg, Cd, and Pb in elec-
tronic devices, which can pose serious risks to both the environ-
ment and human health if not properly disposed of UNEP/
GPA33 and Tchounwou et  al.34 The pollution levels of these 
heavy metals are influenced by industrial activities, geographic 
locations, regulatory oversight, and diverse sources.35 For 
instance, Hg primarily emanates from coal combustion, elec-
tric/light bulb, wood preservatives, leather tanning, ointments, 

thermometers, adhesives and paints.36 Cd often originates from 
industries like battery manufacturing, paint pigments, pesti-
cides, galvanized pipes, plastics, polyvinyl and copper refiner-
ies.37 Pb, an extremely toxic metal, commonly originates from 
substances like Pb-based paints, gasoline and mobile batteries.38 
Cr is emitted from a variety of industrial activities, including 
petroleum refining, electroplating, leather tanning, textile man-
ufacturing, and pulp processing.39 As, a naturally occurring ele-
ment in the Earth’s crust, is released into the environment 
through a variety of human activities, including mining, agricul-
tural practices, automobile exhaust and industrial dust, wood 
preservatives, and dyes.40

Soil plays a vital role in supporting terrestrial ecosystems 
and their biodiversity. Heavy metals are prevalent pollutants 
within the soil environment, and their presence can adversely 
affect microorganisms, plants and animals. The European 
Environment Agency (EEA) has set limit values for soil pol-
lutant levels of various heavy metals, including Hg (0.20 ppm), 
Cd (0.44 ppm), Pb (0.48 ppm), Cr (0.20 ppm), and As 
(0.11 ppm).41,42 According to World Health Organization 
(WHO) guidelines, the acceptable levels of heavy metal pollut-
ants in drinking water are as stated: Hg—0.001 ppm, 
Cd—0.005 ppm, Pb—0.05 ppm, Cr—0.05 ppm, and 
As—0.05 ppm.43 The Food and Agriculture Organization 
(FAO) of the United Nations (UN) and the WHO set maxi-
mum limits for the consumption of heavy metals, as higher 
levels can cause health problems. The permissible limits for 
heavy metals consumption through vegetables are as follows: 
Hg—0.05 mg/kg for all vegetables; Cd—0.2 mg/kg for leafy 
vegetables, 0.3 mg/kg for root vegetables, and 0.1 mg/kg for 
other vegetables; Pb—0.15 mg/kg for all vegetables; 
Cr—0.1 mg/kg for all vegetables, and As—0.1 mg/kg for all 
vegetables.44-46

Managing Pollution
Several techniques are employed to decontaminate the environ-
ment from these pollutants and avert the entry of toxic metals 
into the environment. Nevertheless, these methods tend to be 
costly and exhibit suboptimal efficacy.47,48 The increasing con-
cerns surrounding environmental contamination have initiated 
the development of suitable technologies to assess the presence 
and mobility of metals in soil, water, and wastewater (Figure 2). 
Private and government institutions face a technical challenge to 
removing contaminants from the environment. Phytoremediation 
has emerged as a popular and economical plant-based technol-
ogy for effectively addressing environmental issues. The process 
entails utilizing plants to extract and remove elemental pollut-
ants or lower their bioavailability in soil or water.49 In modern 
science, this technology is widely accepted due to its eco-friend-
liness, affordability, and high effectiveness.50 Phytoremediation 
takes advantage of the unique and selective uptake capabilities of 
plant root systems, coupled with the translocation, bioaccumula-
tion, and contaminant degradation abilities of the entire plant 

Figure 1. A schematic diagram illustrating the origins of heavy metal 

pollution.
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body.51 Both aquatic and terrestrial plant species have been har-
nessed to eliminate pollutants from the environment.52

More than 400 species have been identified as metal accu-
mulators of Hg, Cd, Pb, Cr, As, and various radionuclides from 
contaminated soils (Tables 1–4). Arabidopsis sp. is well known 
for its metal tolerance and hyperaccumulation of Zn.53 Aquatic 
plant species such as Azolla pinnata, Ceratophyllum demersum, 
Eichhornia crassipes, Lemna minor, Myriophyllum spicatum, 
Nasturtium off icinale, Pistia stratiotes, Potamogeton pectinatus, 
Phragmites, Salvinia herzogii, Salvinia minima, Spirodela inter-
media, Scirpus spp., and Typha latifolia, are of particular impor-
tance due to their high contaminant removal capacity.54-58

Mechanism of phytoremediation

Phytoremediation encompasses several processes, including 
phytoextraction, phytoaccumulation, phytovolatilization, phy-
tostabilization, and phytotransformation (Figure 3).49 
Phytoextraction is a technique that involves the absorption of 
organic and inorganic pollutants through the roots and stems. 
Besides, some particular plant species, like Brassica juncea, 
Cassia alata, Celosia argentea, Kummerowia striata, Helianthus 
annuus, Momordica charantia, Nicotiana tabacum, Salix mucro-
nata, Salix viminalis, Solanum lycopersicum, Solanum melongena, 
Swietenia macrophylla, Pteris vittata, and Vigna unguiculata, 
have the potential to be used as suitable plant selections to 
enhance the phytoextraction process.83-86 In phytostabilization, 
in this process, plants accumulate and immobilize heavy metals 
by binding with biomolecules.87 Miscanthus giganteus, Avena 
sativa, and Sinapis alba can also help to stabilize heavy metal 
compounds in the soil.88 There are several processes by which 
plants can reduce contaminants.

Phytoextraction. Phytoextraction, also called phytoaccumula-
tion, involves the accumulation of heavy metals from earthland. 
In this method, the uptake and translocation of contaminants 

Figure 2. An illustrative diagram elucidating bioremediation, highlighting 

the crucial roles of plants, bacteria, and fungi (Created with BioRender.

com).

Table 1. Heavy metal accumulation in plants.

PLANT NAME CoNTAMINANT REfERENCES

Arabidopsis halleri Cd Grignet et al59

Brassica juncea Pb Rathika et al60

Mentha aquatic Cd, Pb Zhang et al61

Nicotiana tabacum Cd Yang et al62

Pteris vittata As Zhu et al63

Salix spp. Cd Yang et al64

Sesbania 
drummondii

Pb Valenti et al65

Solanum nigrum Cd, Pb He et al66 and Li et al67

Tagetes patula Cd, Pb Zhang et al61

Vigna unguiculata Pb Narayanan et al68

Zeamays Pb Huang et al69

Table 2. Heavy metal accumulation in aquatic plants.ww

PLANT NAME CoNTAMINANT REfERENCES

Azolla caroliniana As Sebastian et al70

Callitriche brutia Hg Kaur et al71

Callitriche lusitanica As Shukla et al72

Eichhornia crassipes Cd, Cr Rai73

Ranunculus trichophyllus As Stefanidis et al74

Typhaangustifolia Pb Nabuyanda 
et al75

Table 3. Heavy metal accumulation in genetically modified plants.

PLANT NAME CoNTAMINANT REfERENCES

Arabidopsis thaliana Pb Naqqash et al76

Brassica juncea Hg Raj et al77

Polypogonmonspeliensis As Samreen et al78

Table 4. Heavy metal accumulation in ornamental plants.

PLANT NAME CoNTAMINANT REfERENCES

Calendula officinalis Cd Mahmood-Ul-Hassan 
et al79

Chlorophytum 
comosum

Cd Sangsuwan and 
Prapagdee80

Melastoma 
malabathricum

Pb Selamat et al81

Mirabilis jalapa Cd Wei et al82
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by plants root into the aerial portions of plants and deposited 
into vacuoles. The mechanism during the accumulation process 
is used to absorb and precipitate the toxic metals by metal-
phytochelatin complex before translocating into the shoot, leaf 
and stem parts of the plant. The hyperaccumulator species 
accumulate a higher concentration of heavy metals.89,90

Rhizofiltration. Rhizofiltration involves the elimination of 
heavy metals using plant roots. Though it is comparable to 
phytoextraction, in this process, plants remove contaminants 
from wastewater or groundwater rather than soil. In this pro-
cess, plant roots assimilate or adsorb pollutants from wastewa-
ter, groundwater, or surface water. Generally, aquatic plant 
species are employed to eliminate pollutants through rhizofil-
tration. Rhizofiltration is effective for removing Cd, Pb, and 
Cr, which are primarily accumulated in the roots. Sunflower, 
tobacco, and spinach exhibit promising potential in removing 
Pb from water.91

Phytostabilization. Plant roots can limit the movement of 
heavy metals by phytostabilization, a process that reduces toxic 
effects. This process involves the capture of contaminants on 
the root surface using transport proteins or secondary metabo-
lites. Furthermore, the process involves the breakdown of com-
plex organic molecules into simpler ones by coupling them 
with protein, amino acid, and sugar derivatives. Black night-
shade, sunflower, and cowpea are among the plant species that 
employ phytostabilization mechanisms.92

Phytovolatilization. This process entails the uptake of contam-
inants by plants from the soil and their conversion into less 
toxic volatile compounds that are released into the atmosphere. 
The volatile compounds are primarily released from aerial 

plant parts such as stems and leaves. This mechanism is effec-
tive when the contaminants are less toxic.93

Phytodegradation. Phytotransformation, also known as this 
process, refers to the absorption of contaminants by plants, 
which are then metabolized or broken down into less toxic 
compounds and translocated to various plant organs. The 
organic compounds are then degraded into non-toxic forms 
inside the plant tissue.94

Microbial-assisted remediation of heavy metal

Microbial remediation is the process of using living microor-
ganisms such as bacteria, fungi, and archaea to break down and 
detoxify various chemical and metallic hazardous wastes from 
the environment.95 Bioremediation involves the direct applica-
tion of microorganisms to the polluted site in order to facilitate 
the degradation of contaminants. Microorganisms are used in a 
variety of remediation techniques, including bioaugmentation 
and biostimulation. In bioaugmentation, specific microorgan-
isms are added to a contaminated site to enhance the break-
down of contaminants. In biostimulation, the environmental 
conditions at the site are modified to promote the growth and 
activity of naturally occurring microorganisms that can degrade 
contaminants. Physical and chemical treatments are conven-
tional remediation methods that have drawbacks such as high 
cost, heavy machinery, logistical glitches, and potential envi-
ronmental toxicity.96 In contrast, bioremediation technologies 
have seen significant growth and development, making it a 
promising method for treating soil and water contamination 
(Table 5). Among these methods, bioremediation of oil spills is 
the most lucrative and environment-friendly technique.97

Fungi are used for the remediation of pollutants in mycore-
mediation, a type of bioremediation. Fungi play a vital role in 
cleaning up contaminated sites in both soil and aquatic ecosys-
tems.111 These microorganisms, which are widely present in 
nature, can thrive in a diverse range of environmental condi-
tions. These microorganisms survive in extreme conditions and 
produce some extracellular ligninolytic enzymes like peroxi-
dase and laccases. These enzymes help fungi to transform pol-
lutants into non-toxic forms. Pollutants can be adsorbed by 
extracellular enzymes.112 Diverse fungal species such as 
Aspergillus sp., Bjerkandera adusta, Coriolus versicolor, Cryptococcus 
sp. Hirschioporus laricinus, Inonotus hispidus, Mucor sp., 
Penicillium sp., Phanerochaete chrysosporium, Phlebia tremellosa, 
Phanerochaete chrysosporium, Pleurotus sp., and Trametes versi-
color, have been reported for bioremediation.113,114

Role of genetical engineering microbes in 
bioremediation

The potential of microbes for bioremediation is vast but unex-
ploited. Genetically engineered organisms are the best way to 
enhance bioremediation activity.115,116 Further research is 

Figure 3. A schematic diagram depicting the underlying mechanisms of 

phytoremediation processes (Created with BioRender.com).

Downloaded From: https://bioone.org/journals/Environmental-Health-Insights on 16 Nov 2024
Terms of Use: https://bioone.org/terms-of-use



Das et al 5

required to formulate advanced bioremediation techniques in 
engineering that can effectively eliminate the complex mix-
tures of pollutants found at various sites. Several microbes use 
the contaminants as an energy source through their metabolic 
processes. Bacteria and fungi in the environment help to 
degrade or detoxify harmful substances. Modern science relies 
on biotechnology to facilitate the development of genetically 
modified organisms (GMOs), which can be instrumental in 
comparing them with their wild-type variant. GMOs possess 
the necessary protein machinery, which they utilize to uptake 
and regulate heavy metals through the implementation of gene 
regulatory elements such as promoters, binders, and termina-
tors. These organisms produce a heavy metal binding protein 
that protects from toxicity by strongly binding to heavy metals 
(Figure 4). Mesorhizobium huakuii strain B3, produces phyto-
chelatin protein which accumulates Cd as reported by Sriprang 
et  al117. Bae et  al118 reported that P. putida 06909 produced 
metal-binding peptide (MBP) EC-20 that has a high affinity 
for Cd. Al Hasin et al119 found that Methylococcus capsulatus can 
remediate Cr (VI). Wagner-Döbler120 demonstrated that 
recombinant bacteria allow detoxifying Hg2+ to the non-toxic 
form of Hg0 through mercury reductase and subsequent release 
of Hg. The mechanism for detoxification of heavy metals is 
controlled by the mer operon gene that regulates transcription 
levels at both positive and negative. P. fluorescens HK44 was 
applied for large-scale field-based remediation of pollutants.121 
Patel et al122 reported that the recombinant Caulobacter crescen-
tus strain JS4022/p723-6H was able to eliminate Cd.

According to several researchers, certain microbes can 
remove heavy metals from their environment by either accu-
mulating them or developing a tolerance toward them. There 
are several microorganisms, including Acinetobacter sp., 
Alcaligenes odorans, Aspergillus niger (fungus), Aspergillus versi-
color, Bacillus subtilis, Corynebacterium propinquum, Fomitopsis 
pinicola, Microbacterium sp, Pseudomonas sp., P. putida, P. aerugi-
nosa, Ralstonia sp., and Streptomyces, that play a role in remov-
ing heavy metals.123-126

Effect of Heavy Metal on Human Health
Certain edible crops can accumulate heavy metals, even in very 
small amounts. When these heavy metals enter our food chain, 
they disrupt the food pyramid and pose a threat to human 
health by causing cancer and liver diseases. Vegetables such as 

Figure 4. Illustrating the process of heavy metal degradation using 

genetically modified organisms (GMos) (Created with BioRender.com).

Table 5. Bioremediation of heavy metal by microorganisms.

MICRooRGANISM CoNTAMINANT REfERENCES

Acinetobacter junii As Marwa et al98

Aeromonas sp. Cr Geng et al99

Aspergillus versicolor SPf-1 Cd, Cr Shukla et al100

Aspergillus fumigatus Cd Bhattacharya et al101

Bacillus flexus As Marwa et al98

Bacillus safensis Cd Li et al102

Cladosporium sp. Cd Văcar et al103

Cunninghamella elegans Hg, Cd, Pb Malik et al104

Microsporum sp. Cd Saini et al105

Lysinibacillus sphaericus CBAM5 Pb, Cr Páez-Vélez et al106

Paecilomyces sp. K32 Cd Pramanik et al107

Pseudomonas aeruginosa Cr Mat Arisah et al108

Pseudomonasfluorescens Cd okpara-Elom et al109

Rhodopseudomonas palustris Cr, Cd Xiao et al110

Saccharomyces cerevisiae Hg, Pb Selamat et al81
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brinjal, gourd, spinach, coriander, tomato and pumpkin are par-
ticularly susceptible to heavy metal uptake by their roots, which 
can then be transported to the edible portions of the plant.127,128 
As a result, consuming these vegetables that contain heavy 
metals can be extremely hazardous to human health. Alexander 
et al129 carried out research involving vegetables cultivated in 
soil contaminated with heavy metals. Significant variations 
were observed among the vegetables in terms of the levels of 
metal accumulation. For Cd, lettuce exhibited a higher accu-
mulation (8.6 mg/kg dry matter) compared to spinach (5.8 mg/
kg dry matter), onion (3.6 mg/kg dry matter), carrot (2.0 mg/kg 
dry matter), pea (0.29 mg/kg dry matter), and French bean 
(0.07 mg/kg dry matter). Remarkably, lettuce recorded the 
highest concentration of Pb, nearly double that of onions, 
which held the second-highest average value. The sequence 
was as follows: lettuce (14.6 mg/kg dry matter) > onion 
(7.5 mg/kg dry matter) > carrot (5.8 mg/kg dry matter) > spin-
ach (1.8 mg/kg dry matter) > pea (0.78 mg/kg dry mat-
ter) > French bean (0.34 mg/kg dry matter). A study conducted 
by Zhu et al,63 revealed that the concentration of heavy metals 
in the edible parts of vegetables varied, with leafy vegetables 
having the highest amounts, followed by stalk vegetables, root 
vegetables, and solanaceous vegetables, and then legume vege-
tables and melon vegetables. Previous reports have also sug-
gested that edible crops grown in industrial areas such as coal 
mines and petrochemical plants tend to contain higher levels of 
heavy metals.130 Human exposure to heavy metals primarily 
occurs through the consumption of edible crops, which 
accounts for 90% of the exposure. The remaining 10% is attrib-
uted to the inhalation of polluted air particles as reported by 
Khan et al.131

Excessive levels of heavy metals have the potential to pose 
harm to the body. They have the capacity to inflict damage on 
various organs such as the brain, muscles, nerves, liver, kidneys, 
and heart (Figure 5). Previous studies have specified that heavy 
metals can impair different organs within the human body, as 
illustrated in Table 6. The European Protection Agency (EPA) 
has reported that prolonged exposure to heavy metals can result 

in severe cancer. Research conducted by the WHO has shown 
that higher exposure to heavy metals puts 10% of women at 
risk of infertility.132,133

Hg, a highly toxic metal found in air, water, and soil, is con-
sidered to be highly carcinogenic by the EPA. Hg exposure can 
result in various health problems, including Alzheimer’s dis-
ease, lung damage, and skin issues such as the common ail-
ment.151 Acrodynia is a common skin ailment in which skin 
color becomes pink.152 Similarly, Cd is a highly toxic metal that 
causes bone damage and acute exposure can lead to renal dys-
function, while prolonged exposure to high levels of Cd can 
result in lung damage. Heavy metals such as these can also 
induce DNA damage, cause chromosome aberrations, and alter 
DNA replication and transcription.153-155 Exposure to Cr over 
a long period can result in the formation of ulcers. Human 
activities have resulted in the contamination of the environ-
ment with heavy metals, which can have adverse effects on 
human health. Excessive uptake of heavy metals poses a signifi-
cant threat to human health. The entering of heavy metals into 
the human body can initiate cancer by the production of reac-
tive oxygen species (ROS) which mainly disrupts DNA mole-
cules. Heavy metals can cause damage to specific organs within 
the human body. In an animal model of acute toxicity, Wister 
rats exposed to 1 mg/kg of Hg caused alterations in their kid-
neys. A study reported that oral exposure to Hg in rats resulted 
in diarrhea. Additionally, scientists found that guinea pigs 
exposed to 0.1 to 0.4 M of Pb increased serum endothelial and 
serum total protein levels, along with lung infection.156 Male 
adult rats exposed continuously to Pb (0.4%) exhibited a sig-
nificant reduction in white blood cell count, as reported by 
Mugahi et al.157 Furthermore, the administration of Pb (10 mg/
kg) was observed to increase the levels of lactate dehydrogenase 
and acid phosphatase in rats.158 In rats, Patlolla et al159 demon-
strated that the administration of 10 mg/kg of Cr increased the 
levels of ROS and malondialdehyde in the liver and kidney. 
High doses of Cr(VI) caused the immune system to reduce, 
resulting in the development of allergic contact dermati-
tis.160,161 Fay et  al162 investigated Cd toxicity (0.6 mg/kg for 
12 weeks) in the renal cortex of rats and found that Cd expo-
sure significantly increased the volume of urine while decreas-
ing the excretion of protein in urine. Cd toxicity can cause 
osteoporosis and bone fracture by increasing the dynamin-
related protein, as demonstrated by Ma et al.163 A close rela-
tionship between osteoporosis and high intake of Cd was also 
proven by Pouillot et al.164

Conclusion
Recent technological advances have made bioremediation a 
more effective tool. This method is distinct and effective 
because it does not rely on chemicals or complex machinery. In 
the current study, bioremediation was shown to be a potential 
technique for resolving or reducing the negative effects of envi-
ronmental contamination. Since it uses living entities to 

Figure 5. Illustrating the health implications of exposure to heavy metals 

on human well-being (Created with BioRender.com).
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manage pollution, it cannot worsen the problem of heavy metal 
buildup or ozone depletion and is thought to be both environ-
mentally friendly and economically effective, making it appli-
cable to both emerging and developed nations globally. The 
results of the toxicity evaluation indicated that heavy metals 
constitute a substantial threat to living entities that are not spe-
cifically targeted. Therefore, funding ongoing research and 
innovation in bioremediation technologies is crucial for solving 
the 21st century’s expanding environmental issues.
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