

Genetic Diversity of Tropical Bats and Its Relationship With Ecological Role in a Tropical Semievergreen Rain Forest in El Ocote Biosphere Reserve, Chiapas, Mexico

Authors: Cruz-Salazar, Bárbara, Ruiz-Montoya, Lorena, Mendoza-Sáenz, Víctor Hugo, Riechers-Pérez, Alejandra, and García-Bautista, Maricela

Source: Tropical Conservation Science, 11(1)

Published By: SAGE Publishing

URL: https://doi.org/10.1177/1940082917752473

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Genetic Diversity of Tropical Bats and Its Relationship With Ecological Role in a Tropical Semievergreen Rain Forest in El Ocote Biosphere Reserve, Chiapas, Mexico

Tropical Conservation Science Volume 11: 1-21 © The Author(s) 2018 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1940082917752473 journals.sagepub.com/home/trc

Bárbara Cruz-Salazar¹, Lorena Ruiz-Montoya¹, Víctor Hugo Mendoza-Sáenz¹, Alejandra Riechers-Pérez², and Maricela García-Bautista³

Abstract

Species that are functionally equivalent but with little taxonomical relationship may display similar genetic patterns if the ecological function evolves genetically in the same way. This study investigated the levels of genetic diversity in the D-Loop gene of random samples collected from 21 bat species inhabiting El Ocote Biosphere Reserve (REBISO, for its acronym in Spanish), and whether the genetic diversity pattern could be associated with the ecological role. Genetic differences between functional groups, localities, and species were evaluated through generalized linear models using the Gaussian distribution error family for nucleotide diversity (π) and the Poisson family for haplotype diversity (h) and segregating sites (s). To study the clustering pattern of species based on nucleotide variation, genetic distances (Kimura's two-parameter model) between functional groups were calculated, and a Principal Components Analysis on genetic diversity parameters was run. Most of the species analyzed (20) maintained genetic diversity levels ranging from medium to high in all genetic diversity estimators. According to genetic distances, the species with the same ecological function shared a greater number of nucleotide substitutions, with some exceptions. The Principal Components Analysis did not detect any genetic structure in relation to the ecological function. Our study found no association between the diversity of the D-Loop gene and ecological function; nonetheless, it confirms the importance of REBISO as a reservoir of bat species richness and genetic diversity in Mexico.

Keywords

conservation, community genetics, tropical bats, REBISO

Introduction

Genetic diversity determines the evolutionary potential of a species and its ability to cope with changes in its environment (Frankham, Ballou, & Briscoe, 2002). Community genetics aims at understanding how withinspecies variation, species diversity, and environmental factors interact to shape community assemblages (Lamy, Laroche, David, Massol, & Jarne, 2017). Genetic diversity within communities can correlate with species diversity, both within and between trophic levels, in at least three ways (Avolio, Beaulieu, Lo, & Smith, 2012). First, intraspecific genetic diversity can influence the species diversity, structure, and functioning of communities through a *genetic-feedback mechanism* (see Genung et al., 2011; Whitlock, 2014). Second, genetic diversity and ecological function can be associated

through parallel responses to selection pressures and eco-evolutionary dynamics over time (Hughes, Inouye, Johnson, Underwood, & Vellend, 2008; Whitlock, 2014). Third, ecological interactions (e.g., competition,

- ¹Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México
- ²Coordinación Técnica de Investigación, Secretaría de Medio Ambiente e Historia Natural, Tuxtla Gutiérrez, Chiapas, México

Received 13 September 2017; Revised 14 December 2017; Accepted 15 December 2017

Corresponding Author:

Bárbara Cruz Salazar, Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Carretera Panamericana s/n Barrio de María Auxiliadora, CP 29290, San Cristóbal de las Casas, Chiapas, México. Email: bcruz@ecosur.edu.mx.

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons / terms of the work without further License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further the state of the stat permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). Downloaded From: https://bioone.org/journals/Tropical-Conservation-Science on 21 Oct 2024 Terms of Use: https://bioone.org/terms-of-use

³Laboratorio de Genética, El Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México

depredation, reproduction) determine demographic changes (birth, death, and movement of different biological types) affecting the dynamics of both populations and communities, hence establishing levels of species diversity and genetic structure within the community (Moreira, Abdala-Roberts, Parra-Tabla, & Mooney, 2014; Vellend & Geber, 2005). When competitive interactions dominate in a community, these increase the species diversity of one group while reducing the diversity in others by occupying the available niche space (Vellend, 2008). These conditions, together with the life history of the species (i.e., social structure, mating, behavior), may contribute to define the levels of genetic diversity (Lamy et al., 2017).

Understanding the relationship between genetic diversity and ecological function is key; if genetic diversity is a structuring driver in communities and ecosystems, it deserves to be included in ecological models constructed to explain the distribution, diversity, and abundance of species. In addition, the genetic diversity contained within species may determine the responses of communities and ecosystems to anthropogenic environmental change. Gaining knowledge on genetic diversity at the community level allows anticipating and managing the potential shifts in community structure and function that may arise as correlated responses. Also, the study of genetic diversity at a community level may provide useful information to evaluate the evolutionary potential, establish models for inferring evolutionary pathways within the community, and identify potential threats for a group of species, which can be useful to support strategies aimed at the conservation of priority species, communities, and ecosystems (Crawford & Rudgers, 2013).

The ecological function of a species is likely the result of natural selection, which drives adaptive differentiation (Hughes et al., 2008; Vellend, 2006; Whitham et al., 2006). The divergence between species is reflected in genetic relationships and ecological attributes, which in turn determine taxonomic groups (Aguirre, Montaño-Centellas, Gavilanez, & Stevens, 2016). However, the same ecological function can be observed in species with no apparent taxonomic relationship (He, Lamont, Krauss, Enright, & Miller, 2008; Symstad, 2000; Vellend & Geber, 2005). Species with little taxonomic relationship but with similar ecological functions may display similar genetic diversity patterns if the evolutionary processes that drive the diversification of species and their role occur concomitantly and in the same way (Avolio et al., 2012; Hoehn, Tscharntke, Tylianakis, & Steffan-Dewenter, 2008). Alternatively, species may be unrelated because of different evolutionary processes, by differences in their original gene pool, and because intrinsic ecological processes affect differentially the genetic diversity of each species (Aguirre et al., 2016; Freeland, 2005).

In theory, communities with high species diversity show a better ecosystem functioning than those with lower levels (Hoehn et al., 2008). The composition of a community depends on the survival and reproduction of the species, and these in turn are determined by genotypic composition. If evolution via natural selection promotes the coexistence of species, the loss of genetic diversity within species could hinder this process. This may lead to the loss of species (He et al., 2008; Vellend, 2006; Vellend & Geber, 2005), with negative effects on the community, particularly when the remaining species cannot assume or replace the ecological role that is lost along with the species (Cottontail, Wellinghausen, & Kalko, 2009; Crutsinger et al., 2006; Mooney et al., 2009; Park, 2015; Vellend, 2005; Vellend & Geber, 2005).

Tropical ecosystems are characterized by the highest species richness, biomass, and productivity levels (Ricklefs, 2004; Sahu, Sagar, & Singh, 2008). The expansion of human settlements and the need to increase productive areas in tropical regions has led to accelerated deforestation and habitat fragmentation, resulting in the loss of species and natural communities (Galindo-González & Sosa, 2003; Ripperger, Tschapka, Kalko, Rodríguez-Herrera, & Mayer, 2013). Bats are one of the most abundant and diverse mammal groups in tropical forests, displaying a great variety of behavioral, morphological, and ecological attributes; in these environments, bats play a key role in pollination, insect predation, and seed dispersal (Burns & Broders, 2014; Cosson, Pons, & Masson, 1999; Fenton et al., 2001; Fenton & Ratcliffe, 2010; Gorresen & Willig, 2004; Meyer, Struebig, & Willig, 2016). Bats are classified into five functional groups (trophic guilds) in relation to feeding habits and food preference: insectivorous, frugivorous, hematophagous. nectarivorous, and carnivorous (Calonge, 2009; Duckworth, Kent, & Ramsay, 2000; Merritt, 2010; Patterson, Willig, & Stevens, 2003; Reich, Walters, & Ellsworth, 1997; Reid, 2009; Soriano, 2000). The diverse functionality of bats involves ecological relationships with a wide range of species from other biological groups, both plants and animals (Medellín, Arita, & Sánchez, 1997).

There are approximately 140 species of bats in Mexico, accounting for about 13% of the total number of bat species worldwide (Ceballos & Ehrlich, 2002; Medellín et al., 1997). In El Ocote Biosphere Reserve (REBISO, for its acronym in Spanish), one of the main remnants of tropical forest in Mexico, 48 bat species have been recorded (accounting for 34% of the total number of bat species recognized in Mexico; Navarrete, Alba, March, & Espinoza, 1996). However, their genetic diversity has not been explored. The importance of bat species richness (Espinoza et al., 1999; Hernández-Mijangos, Gálvez-Mejía, Díaz-Negrete, & Cruz-Durante, 2008; Navarrete et al., 1996; Riechers, 2004, 2009) and the role of bats in the recovery of disturbed areas (Preciado-Benítez, Gómez, Navarrete-Gutiérrez, & Horváth, 2015) have been recognized to some extent. The current lack of information coupled with the continued habitat loss and fragmentation in El Ocote (Flamenco-Sandoval, Martínez, & Masera, 2007) call for the need to conduct research on this taxonomic group characterized by a high functional diversity.

Although some studies have correlated genetic diversity with species diversity (e.g., Avolio et al., 2012; Blum et al., 2012; Csergö, Hufnagel, & Höhn, 2014; Wei & Jiang, 2012), few have been conducted in México (outside the REBISO; e.g., Simental-Rodríguez et al., 2014; Wehenkel, Bergmann, & Gregorius, 2006) and none has related genetic diversity with the ecological function of species as intended in this research. The aim of this study was to determine the genetic diversity of a random sample of bat species in a semievergreen tropical forest at REBISO and explore whether this genetic diversity is correlated with the ecological role they play in the ecosystem. Considering that natural selection acts over all genomes and leads to an increased frequency of the genotypes governing the function of an organism in the community, our expectation was to find a positive relationship, that is, similar levels of genetic diversity across species with similar ecological functions, regardless of their taxonomic affinity. Measures of genetic diversity related to ecological function in a bat community can be further trait to estimate the conservation status and get an insight on their vulnerability to environmental changes.

Methods

Study Area

REBISO is a Protected Natural Area located to the northeast of the state of Chiapas, Mexico, between $16^{\circ}45'42''$ and $17^{\circ}09'00''$ N, and $93^{\circ}54'19''$ and $93^{\circ}21'20''$ W (Figure 1). The prevailing climate in El Ocote is warm and humid with abundant summer

Figure 1. Location of the four sampling localities in El Ocote Biosphere Reserve for the sampling of tropical bats.

rainfall, with a mean annual precipitation of 2,145 mm and a mean annual temperature of 23.3°C (Secretaria de Medio Ambiente y Recursos Naturales-Comisión Natural de Áreas Naturales Protegidas, 2001). The study was conducted at localities within the core of REBISO, which are sites with semievergreen tropical forest (Veinte Casas, Emilio Rabasa, Nuevo San Juan Chamula and San Joaquín; Figure 1).

Fieldwork

Unlike conventional population genetics studies, which focus on obtaining a large sample size for different populations of a given species, our sampling design aimed at sampling the functional diversity of bats inhabiting the semievergreen tropical forest at REBISO. To this end, we focused on obtaining largest number of species with different ecological roles, thereby recording the genetic diversity associated with the ecological function of the species in the community. Two sampling sites were established; in each locality, bats were sampled over six consecutive nights with similar weather conditions and lunar phase, from January 2015 to September 2015 (4 Localities \times 2 Sampling Sites \times 6 Nights). In each sampling site, four mist nets $(12 \text{ m} \times 2.5 \text{ m}, 6 \text{ m} \times 2.5 \text{ m})$ were placed between the vegetation and near water bodies, at an average height of 2m. In relatively open areas, nets were placed at 10 m height (Cosson et al., 1999; Preciado-Benítez et al., 2015). All nets remained open after sunset for seven hours (6p.m.-la.m.). The specimens captured were identified taxonomically according to Medellín and Sánchez (2008) and Reid (2009). For each specimen, the biological characteristics (i.e., body size, sex, age, and reproductive status) and geographical location were recorded, and a tissue sample from the uropatagium was collected for genetic analysis; afterward, the specimen was released. Tissue samples were preserved in 1.5 ml vials containing 96% ethyl alcohol. Bat sampling was conducted under the collection license SGPA/DGVS/ 14214/15 issued by the Mexican Secretariat of Environment and Natural Resources (Secretaria de Medio Ambiente y Recursos Naturales).

DNA Extraction and Amplification

Genomic DNA was extracted through the cellular lysis method followed by purification with phenol/chloroform-isoamyl alcohol (Hamilton, Pincus, Di Fiore, & Fleicher, 1999). Genetic diversity was determined based on the control region of mitochondrial DNA (*D-Loop*); this gene is found in all vertebrates and is characterized by high substitution rates, allowing the comparison of the same genomic region between species to describe genetic structure at the intraspecific level (Piaggio, Navo, & Stihler, 2009). The *D-Loop* region

was amplified with markers D-Loop-E (5'-CCTGAA GTAGGAACCAGATG-3') and D-Loop-P (5'-CCCCA CCATCAACACCCAAAGCTGA-3'; Wilkinson & Chapman, 1991). Amplifications were performed in a C1000 TouchTM thermal cycler (Bio-Rad) using a total volume of 50 µl. The amplification process consisted of an initial denaturation at $94^{\circ}C \times 4$ min, 35 cycles at $94^{\circ}C \times 1 \min$ (denaturation), $5^{\circ}C \times 1:30 \min$ (alignment) and $72^{\circ}C \times 1$ min (extension), and a final extension at $72^{\circ}C \times 10$ min. To evaluate the amplification of the *D-Loop*, the PCR products were visualized through 2% agarose gel electrophoresis with a 100 base pair (bp) control marker (Ladder, PROMEGA). Positively amplified reactions were sequenced in Macrogen Inc, Korea, through capillary electrophoresis (Sanger) sequencing using the ABI PRISM® BigDyeTM Terminator Cycle Sequencing Kits and the ABI Prism[®] 3730XL Analyzer.

Analysis

The sequences obtained were edited with the program Chromas Pro v. 1.5 (McCarthy, 1996) and were aligned with the program Clustal X v. 2.1 (Thompson, Gibson, Plewniak, Jeanmougin, & Higgins, 1997). The genetic diversity parameters by species were obtained with the software DnaSP v. 5 (Librado & Rozas, 2009), based on the Kimura two-parameter substitution model (Kimura, 1980). The Tajima index (D) was estimated for each species (Tajima, 1989) to identify some of the demographic evolutionary processes associated with genetic diversity (e.g., bottleneck).

Genetic diversity was associated with three potential explanatory variables: ecological function, locality, and species. To assess the influence of each of these variables on genetic diversity (i.e., number of haplotypes [h], nucleotide diversity [π], segregating sites [s]), Generalized Linear Models were built with the software R v. 3 (R Core Team, 2013). According to the nature of the genetic parameters and their distribution, we used the Poisson error distribution family for Generalized Linear Model constructed for *h* and *s*, while for π the Gaussian family was used. All models were evaluated with the Akaike Information Criterion (AIC; Akaike, 1974) using the statistical package mentioned earlier.

Genetic distances between species were obtained with the Kimura two-parameter method (Kimura, 1980), with 1,000 bootstrap replicates using the program MEGA v. 6 (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013). For this purpose, sequences were tested for similarity with the software TCS v. 1.21 (Clement, Posada, & Crandall, 2000). The clustering pattern was studied from dendrograms obtained through the Neighbor-Joining method (Saitou & Nei, 1987) using the PAUP program v. 4.0 a (Swofford, 2002). In addition, an analysis of genetic distances was carried out considering the four functional group, that is, frugivores, hematophages, insectivores, and nectarivores, assigning each species to one of these groups to get the genetic relationship between functional groups. Finally, the relationship between genetic structure and functional ecology was assessed through a Principal Components Analysis (PCA) with the software Statistica v. 8 (StatSoft, 2007); to this end, a colinearity analysis was performed between the three genetic diversity parameters (nucleotide diversity, segregating sites, number of haplotypes) through Pearson's correlations with the program R v. 3 (R Core Team, 2013).

Results

We analyzed 281 sequences from 21 bat species belonging to three taxonomic families (Phyllostomidae, Vespertilionidae, and Mormoopidae; Table 1). Of these, 11 were frugivores, four nectarivores, five insectivores, and one hematophage (Table 1). All sequences comprised 396 bp. GenBank accession numbers for these sequences are MF803983-MF804264 (Appendix). The composition of the *D-Loop* region showed 32.5% thymine, 12.6% cytosine, 31.6% adenine, and 23.4% guanine.

Eptesicus furinalis (Argentine brown bat, an insectivore) showed the lowest genetic variation (s=0,

 Table 1. Taxonomic Classification, Acronyms, Common Names, and Functional Group of 21 Bat Species Inhabiting El Ocote Biosphere

 Reserve.

Family	Subfamily	Species	Species acronym	Common name	Functional group
Phyllosdomidae	Carollinae	Carollia sowelli (Baker, Solari y Hoffmann, 2002)	Cso	Sowell's short-tailed bat	F
	Desmodontinae	Desmodus rotundus (E. Geoffroy S.H., 1810)	Dro	Common vampire bat	Н
	Glossophaginae	Anoura geoffroyi (Gray, 1838)	Age	Geoffroy's tailless bat	Ν
		Glossophaga morenoi (Martínez y Villa, 1938)	Gmo	Western long-tongued bat	Ν
		Glossophaga soricina (Pallas, 1766)	Gso	Pallas's long-tongued bat	Ν
		Hylonycteris underwoody (Thomas, 1903)	Hun	Underwood's long-tonguet bat	Ν
	Phyllostominae	Micronycteris microtis (Miller, 1898)	Mmi	Common big-eared bat	I
	Stenodermatinae	Artibeus jamaicensis (Leach, 1821)	Aja	Jamaican fruit-eating bat	F
		Artibeus lituratus (Olfers, 1818)	Ali	Great fruit-eating bat	F
		Centurio senex (Gray, 1842)	Cse	Wrinkle-faced bat	F
		Dermanura phaeotis (Miller, 1902)	Dph	Pygmy fruit-eating bat	F
		Dermanura tolteca (de Saussure, 1860)	Dto	Toltec fruit-eating bat	F
		Enchisthenes hartii (Thomas 1892)	Eha	Velvety fruit-eating bat	F
		Platyrrhinus helleri (Peters, 1866)	Phe	Heller's broad-nosed bat	F
		Sturnira þarvidens (Goldman, 1917)	Spa	Little yellow-shouldered	F
		Sturnira hondurensis (Goodwin, 1940)	Sho	Highland yellow-shouldered bat	F
		Uroderma bilobatum (Peters, 1866)	Ubi	Tent-marking bat	F
Mormoopidae		Mormoops megalophylla (Peters, 1864)	Mme	Ghost-face bat	I
		Pteronotus þarnellii (Gray, 1843)	Рра	Common mustached bat	I
Vespertilionidae	Myotinae	Myotis keaysi (J. A. Allen, 1914)	Mke	Hairy-legged Myotis	I
	Vespertilioninae	Eptesicus furinalis (d'Orbigny y Gervais, 1847)	Efu	Argentine brown bat	I

Note. N = nectarivore; F = frugivore; I = insectivore; H = hematophage.

 $\pi = 0.00$, and h = 1). Artibeus jamaicensis (Jamaican fruiteating bat) showed the largest number of segregating sites (s) and haplotypes (h) (s = 176, $\pi = 39$), while *Micronycteris microtis* (Common big-eared bat, an insectivore) showed the highest nucleotide diversity ($\pi = 0.27$) (Table 1). Haplotype diversity (*Hd*) was high in most species (*Hd*=0.94–1.00), except for *E. furinalis* (*Hd*=0.00) and *Desmodus rotundus* (Common vampire bat; *Hd*=0.51).

The Tajima test (*D*) was performed only in 11 of the 21 species analyzed due to the insufficient sample size for the analysis. We found a significant negative relationship between nucleotide diversity (π) and nucleotide variation by sequence (θ) in *A. jamaicencis* (D = -2.68, p < .001), *A. lituratus* (Great fruit-eating bat; D = -2.09, p < .001), and *D. rotundus* (D = -2.32, p < .001) (Table 2).

The genetic diversity measure, which included segregating sites (s), nucleotide diversity (π), and number haplotypes (h), was variable both across species and across localities within individual species (Figure 2(a) to (c)). Segregating sites displayed a wide variation from 0 to 160 (Figure 2(a)). Nucleotide diversity was also heterogeneous within and between both species and functional groups, ranging from 0.00 to 0.27 in *E. furinalis* and *M. microtis*, respectively (Figure 2(b)). The number of haplotypes was reduced for hematophagous, nectarivorous, and insectivorous species (Figure 2(c)). Species that could be sampled in more than one locality, like *A. jamaicensis* and *Carollia sowelli*, showed different level of *s*, π , and *h* per locality (Figure 2(a) to (c)). The best Generalized Linear Models identified by AIC was the species-by-locality interaction for all three genetic diversity parameters; however, none reached statistical significance (Table 3).

The clustering analyses showed a random grouping of species based on functional groups. A visual examination reveals two small groups of insectivores, a small group of nectarivores, a large group of frugivores, two groups with two species, and finally three isolated individual species (Figure 3). *Glossophaga soricina* (Pallas's long-tongued bat, a nectarivorous species) was clustered together with *C. sowelli* (Sowell's short-tailed bat), a frugivorous species (Figure 3). The analysis of genetic distances by functional group revealed the closest genetic relationship

 Table 2. Genetic Diversity of 21 Tropical Bat Species Inhabiting El Ocote Biosphere Reserve Based on the Mitochondrial DNA Control Region (D-loop).

Species	Ν	S	π	h	Hd	D
Anoura geoffroyi	3	38	0.07	3	1.00	NA
Artibeus jamaicensis	99	176	0.02	39	0.97	-2.68***
Artibeus lituratus	16	110	0.06	12	0.96	-2.09***
Carollia sowelli	42	68	0.04	34	0.99	-0.77^{a}
Centurio senex	4	9	0.01	4	1.00	-0.53^{a}
Dermanura phaeotis	5	82	0.10	5	1.00	-1.10^{a}
Dermanura tolteca	28	22	0.01	16	0.94	-1.27ª
Desmodus rotundus	14	84	0.04	5	0.51	-2.32***
Enchisthenes hartii	4	53	0.08	4	1.00	-0.64 ^a
Eptesicus furinalis	3	0	0.00	I	0.00	NA
Glossophaga morenoi	2	81	0.24	2	1.00	NA
Glossophaga soricina	2	3	0.009	2	1.00	NA
Hylonycteris underwoody	2	3	0.009	2	1.00	NA
Micronycteris microtis	3	127	0.27	3	1.00	NA
Myotis keaysi	2	34	0.09	2	1.00	NA
Mormoops megalophylla	3	8	0.02	3	1.00	NA
Platyrrhinus helleri	2	10	0.03	2	1.00	NA
Pteronotus parnellii	6	36	0.05	6	1.00	0.49 ^ª
Sturnira parvidens	10	21	0.02	8	0.96	-0.52^{a}
Sturnira hondurensis	29	95	0.06	21	0.96	-0.74^{a}
Uroderma bilobatum	2	46	0.13	2	1.00	NA

Note. N = Sample size; s = segregating sites; $\pi = \text{nucleotide diversity}$; h = number of haplotypes; Hd = haplotype diversity; D = Tajima's test; NA = not analyzed.

aNot significant, p > .10.

*p < .05. **p < .01. ***p < .001.

Figure 2. Distribution of the genetic diversity based on the mitochondrial DNA *D-Loop* region, of 21 bat species according to the ecological role, in four localities of El Ocote Biosphere Reserve.

Table 3. Generalized Linear Models to Explain the GeneticDiversity of 21 Tropical Bat Species Inhabiting El Ocote BiosphereReserve.

Model		AIC
I	π \sim species $ imes$ locality	-2560.60ª
2	$\pi \sim$ locality $ imes$ functional group	-59.05^{a}
3	$\pi{\sim}$ species $+$ locality	-68.22^{a}
4	$\pi{\sim}$ locality $+$ functional group	-44.98^{a}
5	$h{\sim}$ species $ imes$ locality	139.91ª
6	$h{\sim}$ locality ${ imes}$ functional group	239.40 ^ª
7	$h{\sim}$ species $+$ locality	217.99 ^a
8	$h{\sim}$ locality $+$ functional group	231.47 ^a
9	s \sim species $ imes$ locality	258.61ª
10	s \sim locality $ imes$ functional group	339.68ª
11	s \sim species $+$ locality	361.42ª
12	$s \sim locality + functional group$	360.90 ^a

Note. The best model according to AIC is highlighted in **bold**. π = nucleotide diversity (Gaussian family); s = segregating sites (Poisson family); h = number of haplotypes (family = Poisson); AIC = Akaike Information Criterion (Akaike, 1974). aNot significant, p > 0.10.

*p < .05. **p < .01. ***p < .001.

between frugivores and nectarivores (0.205), followed by hematophages and frugivores (0.331), frugivores and insectivores (0.347), nectarivores and hematophages (0.349), and nectarivores and insectivores (0.371); the greatest genetic distance occurred between insectivores and hematophages (0.470).

In the PCA, the first three components accounted for 100% of the genetic variation. Variables in the first and third components made a similar contribution: segregating sites (*s*) showed the greatest contribution (0.57, 0.43), followed by the number of haplotypes (*h*) (0.25). In the second component, both nucleotide diversity (π) (0.55) and the number of haplotypes (*h*) (0.45) accounted for virtually all the variation. The three components were positively related to the three genetic diversity variables, that is, segregating sites (*s*), number of haplotypes (*h*), and nucleotide diversity (π). The PCA showed no relationship between genetic structure and functional groups (Figure 4).

Discussion

When genetic diversity is high, the capacity of a species is better suited to respond to environmental selective pressures and stochastic events (Frankham et al., 2002). The levels of genetic diversity detected in this study suggest that 20 of the 21 species analyzed probably maintain genetic diversity levels that may contribute to their conservation if changes in the local habitat continue at the current rate (Flamenco-Sandoval et al., 2007; Frankham et al., 2002). With the exception of *E. furinalis* ($\pi = 0.000$), the genetic diversity of the bats studied lied within the range reported in previous studies of some species. For example, in *A. jamaicensis* and based on the same mitochondrial gene (*D-Loop*), a range of $\pi = 0.009-0.23$ was reported (Carstens, Sullivan, Dávalos, Larsen, & Pedersen, 2004; Llaven, Ruiz, García, Lesher, & Machkour, 2017; Redondo, Brina, Silva, Ditchfield, & Santos, 2008; Ruiz, Vargas-Miranda, & Zúñiga, 2013).

The lack of genetic variation observed in E. furinalis (an insectivore) in REBISO ($\pi = 0,000, s = 0, h = 1$) is worth noting; this may be associated either with a likely recent bottleneck or with sweeping selection. Both processes lead to a drastic decrease in genetic diversity levels (Kaplan, Darden, & Hudson, 1989; Perfectii, Picó, & Gómez, 2009). Glossophaga morenoi and M. microtis showed the highest genetic diversity ($\pi = 0.24$, 0.27, respectively). According to the IUCN Red List, *M microtis* is a generalist bat characterized by high tolerance to disturbance and high local abundance (Miller, Reid, Arrovo-Cabrales, Cuarón, & de Grammont, 2008), moreover, Téllez-Girón and Ceballos (2005) consider that this bat is a common species in undisturbed areas in Mexico, which account for the high genetic diversity levels observed in REBISO. The case of G. morenoi (Western long-tongued bat) is worth noting, since its endemism (Arita, 2005) would suggest a lower genetic diversity relative to species such as A. jamaicensis (Ortega & Steers, 2005), contrary to what we found in REBISO. However, populations of G. morenoi with high local abundance have been recently reported in protected areas in southern Mexico (Arroyo-Cabrales, Alvarez-Castañeda, Cuarón, & Grammont, 2015), which may explain the high levels of genetic diversity found in **REBISO** populations.

Hd was high in 19 species (Hd = 0.94-1.00), indicating a lower genetic diversity in *D. rotundus* and *E. furinalis* (Arboleda, 2008; Castillo-Cobián, 2007). *Desmodus rotundus* showed an intermediate value of unique haplotypes (Hd = 0.51) that may be related to its migratory habits, high flight capacity (>100 km), and high tolerance to anthropogenic environments (Burns & Broders, 2014; Castro-Castro, Muñoz-Flores, & Uieda, 2016). All these features can facilitate gene flow between populations of the REBISO localities studied and others outside the Reserve (Burns & Broders, 2014).

The Tajima test suggest that *A. jamaicensis*, *A. lituratus*, and *D. rotundus* are undergoing a population expansion, a condition that may result from their high tolerance to disturbed environments and their ability to use various types of habitats (Ortega & Steers, 2005; Steers & Flores, 2005; Suzán, 2005). The recent changes in land use and human activities that have transformed much of REBISO into crop and livestock areas

Figure 3. Kimura's two-parameter genetic distances (Kimura, 1980), with 1,000 bootstrap replicates, of 21 tropical bat species from El Ocote Biosphere Reserve, built by the Neighbor-Joining method (Saitou & Nei, 1987) based on the mitochondrial DNA *D-Loop* region.

(Flamenco-Sandoval et al., 2007) have probably favored the populations of both *D. rotundus* and *Artibeus* spp., as evidenced by their high abundance and association with crop areas (Barquez, Perez, Miller, & Diaz, 2015; Miller, Reid, Arroyo-Cabrales, Cuarón, & de Grammont, 2016).

These findings should be interpreted with caution, as the genetic diversity values for bat species reported here could be modified if further studies include a larger sample size by species (in terms of both individuals and populations) using a different molecular marker. The smaller the number of individuals captured, the lower the possibility of obtaining genetic variants; thus, a small sample size may lead to underestimate the genetic diversity of at least some species. Initially, we were interested to obtain a diversity genetic measure for several bats species for which no specific molecular markers have been developed to date. For this reason, we selected the *D-Loop* for its suitability to be reproducible and variable across mammal species (Freeland, 2005; HernándezBaños, Honey-Escandón, Cortés-Rodríguez, & García, 2007). This gene allowed having a genetic diversity measure to be correlated with ecological community factors, such as species richness and locality.

We found no significant correlation between genetic diversity based on variations in the *D-Loop* gene and functional group. It is possible that the relationship between the genetic diversity of a species and its ecological function within a community is mediated by geographical distribution and ecological interactions.

Kimura's two-parameter genetic distances clustered species sharing the same ecological function, with a few exceptions (*G. soricina*, *G. morenoi*, *C. sowelli*, and *P. parnellii*), indicating that the number of nucleotide substitutions in these lineages is similar between species that coincide in feeding habits. The Kimura two-parameter genetic distances obtained in this study are consistent with those reported by Simmons, Seymour, Habersetzer, and Gunnell, (2008), who mention that

Figure 4. Principal Components Analysis of the genetic diversity of 21 tropical bat species from El Ocote Biosphere Reserve.

insectivory is the ancestral feeding habit in the Chiroptera, while frugivores and nectarivores evolved subsequently.

The close relationship between frugivores and nectarivores may be due to the fact that they occasionally share food resources during periods of resource scarcity (fruits, nectar), according to the composition of the habitat and landscape heterogeneity (Calonge, 2009; Pedro & Taddei, 1997; Vleut, Levy-Tacher, de Boer, Galindo-González, & Vázquez, 2013; Vleut, Levy-Tacher, Galindo-González, & de Boer, 2015). In addition, frugivorous and nectarivorous bats are essentially tropical (Fleming, Geiselman, & Kress, 2009), a condition that could determine a converging evolutionary history of these functional groups (Hughes et al., 2008).

Within a community, species interact in time and space regardless of their taxonomic affinity (Martínez, 1996); these interactions may lead to feedback evolutionary processes (Genung et al., 2011). As a result, the evolutionary history of each species exerts a crucial effect on the genetic structure and diversity of communities (Vellend, 2005, 2006; Vellend & Geber, 2005), in ways not yet unveiled for the bat community in the tropical forest of REBISO. One possibility is that the evolutionary processes that govern the levels of genetic diversity are independent of their role in the ecosystem (Vellend, 2005; Vellend & Geber, 2005), and are probably determined by the historical, biological and behavioral characteristics of each species (Lamy et al., 2017). These factors can explain the genetic distances observed, with two different groups of frugivores, as well as isolated individual species.

An aspect that could influence genetic diversity at the community level is intra- and interspecific competition, which interferes with the strength of natural selection and is expected to increase genetic diversity (Vellend, 2008). Another factor of importance is the life history of the species (e.g., behavior, dispersal, feeding, and reproduction), as it determines the geographical distribution, dynamics, and genetic polymorphism population (Arboleda, 2008; Burns & Broders, 2014; Hedrick, 2000). Population size, flight capacity for searching food and colonization of new sites, reproduction (i.e., polygamous vs. monogamous), and tolerance to disturbance are all characteristics that influence the competitive ability (Meyer et al., 2016) and responses to selective pressures of individual species. These characteristics are unique to each species and may facilitate evolutionary processes (genetic drift and genetic flow) with different intensity and frequency over time (Moreira et al., 2014), leading to variable levels of genetic diversity and preventing the identification of parallel ecological-evolutionary processes between functional groups (Vellend & Geber, 2005; Whitlock, 2014).

It is important to underline that the limitations of the local geographical scale used may have not captured the genetic variation contained within each individual species to an extent that would allow an accurate identification of the genetic diversity patterns associated with functional groups (Jackson & Fahrig, 2014). Furthermore, the limited resources for fieldwork in this study, as well as the rarity and geographical distribution of hematophagous bats likely resulted in that our total sample failed to capture a number of hematophagous species equivalent to those recorded for nectarivorous, frugivorous, and insectivorous bats, likely lowering the statistical power of the comparisons between functional groups.

Social structure, mating systems, and past and current environmental conditions (Burns & Broders, 2014; Hedrick, 2000) are all important aspects to consider to explain the genetic structure of communities (Hoehn et al., 2008; Vellend, 2008); therefore these aspects should be included in subsequent analysis. Likewise, knowing the demography, niche breadth, and niche overlap between both species and functional groups will allow a better assessment of the association between genetic diversity and ecological function to unveil how these interactions influence genetic diversity patterns (Hedrick, 2000; Hughes et al., 2008; Vellend, 2008; Whitlock, 2014).

Implications for Conservation

A high genetic diversity was observed in the bat assemblages inhabiting REBISO, although some species may be more vulnerable than others to changes in their habitat (Ávila-Flores & Fenton, 2005; Bilgin, Karatas, Coraman, Disotell, & Morales, 2008; Meyer et al., 2016), in particular those with limited mobility or specialized ecological requirements (Martins, Ditchfield, Meyer, & Morgante, 2007). This may be the case of *E. furinalis*, which showed extremely low genetic diversity values. Although our results may be limited due to the low sample size of *E. furinalis* (N=3), we suggest monitoring this species in REBISO. Local human activities can severely affect the isolation of populations and population size, both of which reduce genetic diversity and increase

species vulnerability (Ripperger et al., 2013). Therefore, *E. furinalis* should be considered as priority species warranting close monitoring in REBISO.

El Ocote Biosphere Reserve is a key biological corridor for the fauna of moist tropical forests that harbor Neartic and Neotropical species and facilitates the genetic flow between two natural areas of paramount importance in Mexico and the world: Uxpanapa, Veracruz and Chimalapas, and Oaxaca (Flamenco-Sandoval et al., 2007). This research highlights the ecological relevance of El Ocote for its high bat species richness (Mendoza-Sáenz, 2016; Riechers, 2004, 2009) and genetic diversity.

Unfortunately, the changes in land use at REBISO are the primary factor of habitat loss and transformation (Flamenco-Sandoval et al., 2007), leading to the disruption of functional connectivity and the decreased evolutionary potential and survival of species and communities at a regional scale (Frankham et al., 2002; Hedrick, 2000; Hoehn et al., 2008; Jackson & Fahrig, 2014). All of this undermines the environmental services provided by the ecosystem, with important effects on the local human populations that subsist and benefit from these resources. Therefore, maintaining the biodiversity and ecological functionality of REBISO requires preserving the species diversity and genetic diversity of tropical bats through the control of the loss of habitat caused by changes in land use and human activities. This research is the first of its kind in REBISO, contributing to conservation based on the knowledge of biodiversity, and gives rise to a number of different questions about the patterns of genetic diversity and community genetics of tropical bats.

Appendix. List of Samples of 21 Species of Tropical Bats From El Ocote Biosphere Reserve, Chiapas, Mexico

Species	Locality	Laboratory code	GenBank accession number
Pteronotus parnellii	Emilio Rabasa	Ppa02TR1	MF803983
Artibeus lituratus	San Joaquín	Ali02TS2	MF803984
Dermanura tolteca	Nuevo San Juan Chamula	Dto04TN2	MF803985
Artibeus jamaicensis	Emilio Rabasa	Aja09TR I	MF803986
Centurio senex	Nuevo San Juan Chamula	Cse01TN1	MF803987
Artibeus jamaicensis	Emilio Rabasa	Aja05TR I	MF803988
Carollia sowelli	San Joaquín	Cso04TS2	MF803989
Desmodus rotundus	Veinte Casas	Dro02TV2	MF803990
Eptesicus furinalis	Nuevo San Juan Chamula	Efu01TN1	MF803991
Dermanura tolteca	Nuevo San Juan Chamula	Dto02TN2	MF803992
Carollia sowelli	Veinte Casas	Cso03TV3	MF803993
Pteronotus parnellii	Nuevo San Juan Chamula	Ppa0ITN3	MF803994

Species	Locality	Laboratory code	GenBank accession number
Desmodus rotundus	Nuevo San Juan Chamula	Dro02TN2	MF803995
Artibeus jamaicensis	Emilio Rabasa	Aja04TRI	MF803996
Artibeus lituratus	Nuevo San Juan Chamula	Ali05TN2	MF803997
Dermanura tolteca	Nuevo San Juan Chamula	Dto05TN2	MF803998
Carollia sowelli	San Joaquín	Cso06TS1	MF803999
Myotis keaysi	Veinte Casas	Mme04TV3	MF804000
Eptesicus furinalis	Nuevo San Juan Chamula	Efu03TNI	MF804001
Artibeus jamaicensis	Veinte Casas	Aja05TV2	MF804002
Carollia sowelli	Veinte Casas	Cso29TV2	MF804003
Artibeus lituratus	Nuevo San Juan Chamula	Ali03TN2	MF804004
Artibeus jamaicensis	Veinte Casas	Aja13TV3	MF804005
Artibeus jamaicensis	Nuevo San Juan Chamula	Aja12TN2	MF804006
Artibeus jamaicensis	Nuevo San Juan Chamula	Aja05TNI	MF804007
Carollia sowelli	Veinte Casas	Cso05TV3	MF804008
Myotis keaysi	Veinte Casas	Mke02TV2	MF804009
Artibeus jamaicensis	Veinte Casas	Aja45TV2	MF804010
Uroderma bilobatum	Veinte Casas	Ubi01TV1	MF804011
Artibeus jamaicensis	Emilio Rabasa	Aja29TR I	MF804012
Artibeus jamaicensis	Veinte Casas	Aja01TVI	MF804013
Artibeus jamaicensis	Veinte Casas	Aja06TV3	MF804014
Myotis keaysi	Veinte Casas	Mke01TV2	MF804015
Micronycteris microtis	Emilio Rabasa	Mmi01TR1	MF804016
Dermanura phaeotis	Veinte Casas	Dph22TV2	MF804017
Carollia sowelli	Veinte Casas	Cso04TV3	MF804018
Sturnira hondurensis	Veinte Casas	Sho24TV2	MF804019
Carollia sowelli	Emilio Rabasa	Cso02TR1	MF804020
Glossophaga morenoi	San Joaquín	Gmo01TE1	MF804021
Sturnira hondurensis	Veinte Casas	Sho26TV2	MF804022
Sturnira hondurensis	Nuevo San Juan Chamula	Sho03TN3	MF804023
Carollia sowelli	Veinte Casas	Cso21TV2	MF804024
Dermanura tolteca	San Joaquín	Dph01TS2	MF804025
Glossophaga soricina	Emilio Rabasa	Gso0ITRI	MF804026
Sturnira hondurensis	Nuevo San Juan Chamula	Sho01TN3	MF804027
Sturnira hondurensis	Veinte Casas	Sho22TV2	MF804028
Sturnira hondurensis	Veinte Casas	Sho20TV2	MF804029
Artibeus jamaicensis	Nuevo San Juan Chamula	Aja02TN3	MF804030
Artibeus jamaicensis	Veinte Casas	Aja44TV2	MF80403 I
Dermanura tolteca	Veinte Casas	Dto03TV3	MF804032
Artibeus jamaicensis	Veinte Casas	Aja02TVI	MF804033
Artibeus jamaicensis	Nuevo San Juan Chamula	Aja10TN2	MF804034
Carollia sowelli	Veinte Casas	Cso23TV2	MF804035
Pteronotus parnellii	Veinte Casas	Ppa02TV3	MF804036
Artibeus jamaicensis	Veinte Casas	Aja37TV2	MF804037
Artibeus jamaicensis	Emilio Rabasa	Aja I 3TR I	MF804038
Dermanura tolteca	Veinte Casas	Dto03TVI	MF804039
Artibeus jamaicensis	Veinte Casas	Aja42TV2	MF804040
Dermanura tolteca	Veinte Casas	Dto05TV3	MF804041

Cruz-Salazar et al.

Continued

Species	Locality	Laboratory code	GenBank accession number
Carollia sowelli	Nuevo San Juan Chamula	Cso02TN2	MF804042
Artibeus jamaicensis	Veinte Casas	Aja44TV3	MF804043
Artibeus jamaicensis	Veinte Casas	Ajal I TV3	MF804044
Artibeus jamaicensis	Emilio Rabasa	Aja22TR1	MF804045
Dermanura tolteca	Nuevo San Juan Chamula	Dto03TN2	MF804046
Artibeus jamaicensis	Veinte Casas	Aja15TV3	MF804047
Artibeus jamaicensis	Emilio Rabasa	Aja03TR1	MF804048
Dermanura tolteca	Nuevo San Juan Chamula	Dto04TN1	MF804049
Artibeus jamaicensis	Veinte Casas	Aja05TV3	MF804050
Dermanura phaeotis	Nuevo San Juan Chamula	Dph01TN2	MF804051
Dermanura phaeotis	Veinte Casas	Dph21TV2	MF804052
Enchisthenes hartii	Emilio Rabasa	Eha01TR1	MF804053
Artibeus jamaicensis	Veinte Casas	Aja18TV3	MF804054
Artibeus lituratus	Nuevo San Juan Chamula	Ali06TN2	MF804055
Carollia sowelli	Veinte Casas	Cso02TV2	MF804056
Carollia sowelli	Veinte Casas	Cso22TV2	MF804057
Carollia sowelli	San Joaquín	Cso33TS2	MF804058
Artibeus jamaicensis	Veinte Casas	Aja04TVI	MF804059
Artibeus jamaicensis	Emilio Rabasa	Aja I 8TR I	MF804060
Artibeus jamaicensis	Veinte Casas	Aja41TV2	MF804061
Artibeus jamaicensis	Nuevo San Juan Chamula	Aja01TN2	MF804062
Artibeus jamaicensis	Veinte Casas	Aja03TV3	MF804063
Artibeus jamaicensis	Veinte Casas	Aja16TV3	MF804064
Artibeus jamaicensis	Emilio Rabasa	Aja I 4TR I	MF804065
Artibeus jamaicensis	Emilio Rabasa	Aja23TR1	MF804066
Centurio senex	Veinte Casas	Cse01TV1	MF804067
Glossophaga soricina	Emilio Rabasa	Gso02TR1	MF804068
Carollia sowelli	Veinte Casas	Cso01TV3	MF804069
Carollia sowelli	Veinte Casas	Cso08TV3	MF804070
Carollia sowelli	Emilio Rabasa	Cso03TR1	MF804071
Carollia sowelli	Emilio Rabasa	Csol0TRI	MF804072
Artibeus jamaicensis	Veinte Casas	Aja19TV3	MF804073
Artibeus jamaicensis	Veinte Casas	Aja08TV3	MF804074
Carollia sowelli	Veinte Casas	Cso24TV2	MF804075
Carollia sowelli	Veinte Casas	Cso26TV2	MF804076
Artibeus jamaicensis	Nuevo San Juan Chamula	Aja I 4TN2	MF804077
Dermanura tolteca	Emilio Rabasa	Dto03TR1	MF804078
Artibeus jamaicensis	Emilio Rabasa	Aja30TR I	MF804079
Carollia sowelli	Emilio Rabasa	Cso04TR1	MF804080
Carollia sowelli	Emilio Rabasa	Cso05TR1	MF804081
Artibeus lituratus	Emilio Rabasa	Ali01TR1	MF804082
Sturnira hondurensis	Veinte Casas	Sho02TV2	MF804083
Artibeus jamaicensis	Veinte Casas	Aja03TV2	MF804084
Carollia sowelli	Emilio Rabasa	Cso07TR1	MF804085
Artibeus jamaicensis	Nuevo San Juan Chamula	Aja I I TN2	MF804086
Carollia sowelli	Veinte Casas	Cso03TV2	MF804087
Carollia sowelli	Veinte Casas	Cso20TV2	MF804088

Continued

Species	Locality	Laboratory code	GenBank accession number
Carollia sowelli	Veinte Casas	Cso28TV2	MF804089
Desmodus rotundus	San Joaquín	Dro07TS2	MF804090
Carollia sowelli	Veinte Casas	Cso01TV2	MF804091
Carollia sowelli	Veinte Casas	Cso03TV1	MF804092
Carollia sowelli	Veinte Casas	Cso04TV2	MF804093
Artibeus jamaicensis	Emilio Rabasa	Aja I 7TR I	MF804094
Artibeus jamaicensis	Veinte Casas	Aja01TV2	MF804095
Artibeus jamaicensis	Veinte Casas	Ajal 7TV3	MF804096
Artibeus lituratus	Nuevo San Juan Chamula	Ali04TN2	MF804097
Artibeus jamaicensis	Emilio Rabasa	Aja27TR I	MF804098
Dermanura tolteca	Emilio Rabasa	Dto04TR1	MF804099
Artibeus lituratus	Emilio Rabasa	Ali01TR3	MF804100
Dermanura tolteca	Veinte Casas	Dto04TV3	MF804101
Artibeus jamaicensis	Emilio Rabasa	Aja08TR I	MF804102
Dermanura tolteca	Veinte Casas	Dto05TVI	MF804103
Dermanura tolteca	Nuevo San Juan Chamula	Dto22TN2	MF804104
Sturnira parvidens	Emilio Rabasa	Spa04TR1	MF804105
Desmodus rotundus	San Joaquín	Dro03TS2	MF804106
Sturnira hondurensis	Emilio Rabasa	Sho05TR I	MF804107
Eptesicus furinalis	Nuevo San Juan Chamula	Efu02TN1	MF804108
Artibeus jamaicensis	Emilio Rabasa	Aja I 9TR I	MF804109
Artibeus jamaicensis	Veinte Casas	Aja32TV2	MF804110
Artibeus jamaicensis	Emilio Rabasa	Aja07TR I	MF804111
Artibeus jamaicensis	Veinte Casas	Aja45TV3	MF804112
Artibeus jamaicensis	Veinte Casas	Aja40TV2	MF804113
Carollia sowelli	San Joaquín	Cso22TS2	MF804114
Dermanura tolteca	Emilio Rabasa	Dto02TR1	MF804115
Artibeus jamaicensis	Veinte Casas	Aja39TV2	MF804116
Dermanura tolteca	Veinte Casas	Dto30TV2	MF804117
Sturnira parvidens	San Joaquín	Spa01TS2	MF804118
Sturnira parvidens	Nuevo San Juan Chamula	Spa0ITNI	MF804119
, Sturnira hondurensis	Emilio Rabasa	Sho03TR1	MF804120
Centurio senex	Emilio Rabasa	Cse01TR1	MF804121
Sturnira parvidens	San Joaquín	Spa02TS2	MF804122
, Sturnira hondurensis	Emilio Rabasa	Sho12TR1	MF804123
Carollia sowelli	Veinte Casas	Cso06TV2	MF804124
Carollia sowelli	Emilio Rabasa	Cso08TR1	MF804125
Carollia sowelli	Veinte Casas	Cso09TV3	MF804126
Sturnira hondurensis	Emilio Rabasa	Sho01TR1	MF804127
Artibeus iamaicensis	Nuevo San Iuan Chamula	Aia04TN I	MF804128
Dermanura tolteca	Nuevo San Juan Chamula	Dto05TN1	MF804129
Centurio senex	Veinte Casas	Cse02TV1	MF804130
Artibeus lituratus	Nuevo San Juan Chamula	Ali02TN2	MF804131
Enchisthenes hartii	Emilio Rabasa	Eha02TR I	MF804132
Dermanura phaeotis	Nuevo San Juan Chamula	Dph02TN2	MF804133
Sturnira barvidens	Nuevo San Juan Chamula	Spa02TN2	MF804134
Sturnira hondurensis	Emilio Rabasa	Sho20TR I	MF804135

Cruz-Salazar et al.

Continued

Species	Locality	Laboratory code	GenBank accession number
Sturnira hondurensis	Emilio Rabasa	Sho04TR1	MF804136
Sturnira hondurensis	Emilio Rabasa	Sho07TR1	MF804137
Sturnira parvidens	Nuevo San Juan Chamula	Spa01TN2	MF804138
Sturnira parvidens	Emilio Rabasa	Spa02TR1	MF804139
Dermanura tolteca	Emilio Rabasa	Dto01TR1	MF804140
Desmodus rotundus	Emilio Rabasa	Dro01TR1	MF804141
Artibeus jamaicensis	Emilio Rabasa	Aja06TR I	MF804142
Platyrrhinus helleri	Nuevo San Juan Chamula	Phe07TN2	MF804143
Dermanura tolteca	Veinte Casas	Dto04TVI	MF804144
Artibeus jamaicensis	San Joaquín	Aja05TS1	MF804145
Artibeus lituratus	Emilio Rabasa	Ali03TR I	MF804146
Micronycteris microtis	Veinte Casas	Mmi03TV3	MF804147
Desmodus rotundus	Nuevo San Juan Chamula	Dro01TN2	MF804148
Desmodus rotundus	Nuevo San Juan Chamula	Dro01TN1	MF804149
Artibeus jamaicensis	Veinte Casas	Aja12TV3	MF804150
Artibeus jamaicensis	Veinte Casas	Aja43TV2	MF804151
Dermanura tolteca	Emilio Rabasa	Dto05TR1	MF804152
Anoura geoffroyi	Nuevo San Juan Chamula	Age02TN2	MF804153
Pteronotus parnellii	Veinte Casas	Ppa0ITV3	MF804154
Sturnira hondurensis	Nuevo San Juan Chamula	Sho04TN2	MF804155
Pteronotus parnellii	Veinte Casas	Ppa01TV1	MF804156
Artibeus jamaicensis	Veinte Casas	Aja36TV2	MF804157
Artibeus jamaicensis	Emilio Rabasa	Aja I I TR3	MF804158
Dermanura tolteca	Emilio Rabasa	Dto07TR1	MF804159
Carollia sowelli	Veinte Casas	Cso05TV2	MF804160
Desmodus rotundus	San Joaquín	Dro06TS2	MF804161
Dermanura tolteca	Veinte Casas	Dto02TV2	MF804162
Artibeus jamaicensis	Veinte Casas	Aja07TV3	MF804163
Artibeus jamaicensis	Emilio Rabasa	Aja I 6TR I	MF804164
Dermanura tolteca	Nuevo San Juan Chamula	Dto13TN2	MF804165
Micronycteris microtis	Veinte Casas	Mmi01TV2	MF804166
Artibeus jamaicensis	Emilio Rabasa	AjaOITRI	MF804167
Pteronotus parnellii	Veinte Casas	Ppa01TV2	MF804168
Carollia sowelli	Veinte Casas	CsoI0TV3	MF804169
Artibeus jamaicensis	Veinte Casas	Aja20TV3	MF804170
Artibeus jamaicensis	Veinte Casas	Aja35TV2	MF804171
Artibeus jamaicensis	Nuevo San Juan Chamula	Aja01TN3	MF804172
Artibeus jamaicensis	Veinte Casas	Aja03TVI	MF804173
Artibeus jamaicensis	Nuevo San Juan Chamula	Aja02TN2	MF804174
Artibeus jamaicensis	San Joaquín	Aja06TS1	MF804175
Carollia sowelli	Emilio Rabasa	Cso09TR1	MF804176
Artibeus jamaicensis	San Joaquín	Aja01TS2	MF804177
Artibeus jamaicensis	Veinte Casas	Aja I 0 T V 3	MF804178
Artibeus jamaicensis	Veinte Casas	Aja40TV3	MF804179
Artibeus jamaicensis	Veinte Casas	Aja02TV2	MF804180
Sturnira hondurensis	Nuevo San Juan Chamula	Sho06TN2	MF804181
Desmodus rotundus	Veinte Casas	Dro20TV2	MF804182

Continued

Artibeus jamaicensisVeinte CasasAja01TV3MF804183Uroderna bilobatumNuevo San Juan ChamulaUbi01TN3MF804184Artibeus liuratusNuevo San Juan ChamulaAli07TN2MF804185Carollia sowelliNuevo San Juan ChamulaAja04TN2MF804186Artibeus jamaicensisNuevo San Juan ChamulaAja04TN2MF804187Dermanura toltecaVeinte CasasDc001TV3MF804189Artibeus jamaicensisNuevo San Juan ChamulaAja13TN2MF804189Artibeus jamaicensisNuevo San Juan ChamulaAja2TN1MF804189Artibeus jamaicensisNuevo San Juan ChamulaAja2TN1MF804190Hylonytetris underwoodyVeinte CasasHu02TV2MF804191Anoura geofforjiNuevo San Juan ChamulaAge01TR3MF804193Anoura geofforjiEmilio RabasaAge01TR3MF804193Playrhinus helleriNuevo San Juan ChamulaPhe01TN1MF804194Desmodus rotundusSan JoaquínDro0STS2MF804195Sturnic IndurensisNuevo San Juan ChamulaPhe01TN1MF804196Hylonytetris underwoodyVeinte CasasHu01TV2MF804197Artibeus jamaicensisVeinte CasasAja3TV3MF804198Dermodurs totadusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura totlecaNuevo San Juan ChamulaAja1TN2MF804201Artibeus jamaicensisVeinte CasasAja1TR1MF804201
Uroderma bilobatumNuevo San Juan ChamulaUbi01TN3MF804184Aribeus IturatusNuevo San Juan ChamulaCasol TTN1MF804185Carollia sowelliNuevo San Juan ChamulaCasol TTN1MF804187Dermanura toltecaVeinte CasasDro01TV3MF804187Aribbus jamaicensisNuevo San Juan ChamulaAja04TN2MF804187Aribbus jamaicensisNuevo San Juan ChamulaAja13TN2MF804189Aribbus jamaicensisNuevo San Juan ChamulaAja02TN1MF804190Hylonycteris underwoodyVeinte CasasHun02TV2MF804191Anoura geoffropiNuevo San Juan ChamulaAge01TN2MF804193Anoura geoffropiEmilio RabasaAge01TR3MF804193Detarminish belleriNuevo San Juan ChamulaPhe01TN1MF804194Desmodus rotundusSan JoaquínDro05TS2MF804195Sturnira hondurensisNuevo San Juan ChamulaSho05TN2MF804196Phylorycteris underwoodyVeinte CasasAja3TV3MF804197Artibeus jamaicensisVeinte CasasAja46TV2MF804197Artibeus jamaicensisVeinte CasasAja46TV2MF804198Desmodus rotundusNuevo San Juan ChamulaDro01TN3MF804201Artibeus jamaicensisVeinte CasasAja6TN3MF804202Dermanura tolecaNuevo San Juan ChamulaDro01TN3MF804202Artibeus jamaicensisEmilio RabasaAja01TR3MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804202
Artibeus lituratusNuevo San juan ChamulaAli07TN2MF804185Carolli sowelliNuevo San juan ChamulaCso01TN1MF804186Artibeus jornaicensisNuevo San juan ChamulaAja04TN2MF804187Dermanura tottecaVeinte CasasDro01TV3MF804188Artibeus jornaicensisNuevo San juan ChamulaAja13TN2MF804189Artibeus jornaicensisNuevo San juan ChamulaAja12TN1MF804199Artibeus jornaicensisNuevo San juan ChamulaAja02TN1MF804191Anoura geoffroyiNuevo San juan ChamulaAge01TN2MF804192Anoura geoffroyiEmilio RabasaAge01TN3MF804193Platyrrhinus helleriNuevo San juan ChamulaPhe01TN1MF804194Desmodus rotundusSan JoaquínDro05TS2MF804195Sturnin hondurensisNuevo San juan ChamulaSho05TN2MF804196Hylonycteris underwoodyVeinte CasasAja38TV3MF804199Permonura tottecaNuevo San juan ChamulaDro02TN1MF804199Artibeus jornaicensisVeinte CasasAja38TV3MF804199Desmodus rotundusNuevo San juan ChamulaDro01TN3MF804200Permanura tottecaNuevo San juan ChamulaDiro01TN3MF804200Permanura tottecaNuevo San juan ChamulaAja13TN3MF804200Permanura tottecaNuevo San juan ChamulaAja01TN1MF804200Permanura tottecaNuevo San juan ChamulaAja01TN2MF804200Permanura tottecaVeinte CasasDro0
Carollia sowelliNuevo San Juan ChamulaCso01TN1MF804186Artibeus jamaicensisNuevo San Juan ChamulaAja04TN2MF804187Dermanura toltecaVeinte CasasDtco01TV3MF804188Artibeus jamaicensisNuevo San Juan ChamulaAja02TN1MF804189Artibeus jamaicensisNuevo San Juan ChamulaAja02TN1MF804190Anoura geoffroyiNuevo San Juan ChamulaAja02TN1MF804192Anoura geoffroyiNuevo San Juan ChamulaAge01TN2MF804192Anoura geoffroyiEmilio RabasaAge01TN2MF804193Playrrhinus helleriNuevo San Juan ChamulaPhe01TN1MF804193Desmodus rotundusSan JoaquínDro05TS2MF804195Sturnic hondurensisNuevo San Juan ChamulaSho05TN2MF804196Hylonycteris underwoodyVeinte CasasAja38TV3MF804196Pesmodus rotundusVeinte CasasAja36TV2MF804196Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toltecaNuevo San Juan ChamulaDro01TN3MF804201Artibeus lituratusNuevo San Juan ChamulaAli01TN2MF804202Desmodus rotundusSan JoaquínDro1TS2MF804203Artibeus jamaicensisEmilio RabasaAja1TR3MF804205Sturnira hondurensisEmilio RabasaAja1TR3MF804205Sturnira hondurensisEmilio RabasaAja1TR1MF804209Dermanura toltecaVeinte CasasDtco02TV3MF804206Artibeus jam
Artibeus jamaicensisNuevo San Juan ChamulaAja04TN2MF804187Dermanura toltecaVeinte CasasDco01TV3MF804189Artibeus jamaicensisNuevo San Juan ChamulaAja13TN2MF804189Artibeus jamaicensisNuevo San Juan ChamulaAja02TN1MF804190Hylonycteris underwoodyVeinte CasasHun02TV2MF804191Anoura geoffroyiNuevo San Juan ChamulaAge01TN2MF804193Anoura geoffroyiNuevo San Juan ChamulaAge01TN3MF804193Platyrrhiurs helleriNuevo San Juan ChamulaShc05TN2MF804194Desmodus rotundusSan JoaquínDro05TS2MF804196Sturnira hondurensisNuevo San Juan ChamulaShc05TN2MF804196Hylonycteris underwoodyVeinte CasasHun01TV2MF804197Artibeus jamaicensisVeinte CasasAja46TV2MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804101Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toitecaNuevo San Juan ChamulaDro01TN3MF804201Artibeus jamaicensisEmilio RabasaAja01TR3MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturring hondurensisEmilio RabasaAja01TR3MF804206Artibeus jamaicensisEmilio RabasaAja01TR3MF804207Demanura toitecaVeinte CasasDco2TV3MF804208Ar
Dermanura toltecaVeinte CasasDtc01TV3MF804188Artibeus jamaicensisNuevo San Juan ChamulaAjal 3TN2MF804189Artibeus jamaicensisNuevo San Juan ChamulaAja02TN1MF804190Hylonytteris underwoodyVeinte CasasHun02TV2MF804191Anoura geoffroyiNuevo San Juan ChamulaAge01TN2MF804192Anoura geoffroyiEmilio RabasaAge01TN2MF804193Playrrhinus helleriNuevo San Juan ChamulaPhe01TN1MF804194Desmodus rotundusSan JoaquinDro05T52MF804195Sturnira hondurensisNuevo San Juan ChamulaSho05TN2MF804196Hylonytteris underwoodyVeinte CasasHun01TV2MF804197Artibeus jamaicensisNuevo San Juan ChamulaDro02TN1MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804198Artibeus jamaicensisVeinte CasasAja38TV3MF804198Desmodus rotundusNuevo San Juan ChamulaDro01TN3MF804200Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804202Desmodus rotundusSan JoaquinDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturina hondurensisEmilio RabasaSho02TR1MF804207Dermanura toltecaVeinte CasasDto20TV3MF804207Dermanura toltecaVeinte CasasDto20TV3MF804208Artibeus jamaicensisEmilio RabasaAja01TR3MF804201Artibeus jam
Artibeus jamaicensisNuevo San Juan ChamulaAjal 3TN2MF804189Artibeus jamaicensisNuevo San Juan ChamulaAja02TN1MF804190Hylonycteris underwoodyVeinte CasasHun02TV2MF804191Anoura geoffroyiNuevo San Juan ChamulaAge01TR3MF804192Anoura geoffroyiEmilio RabasaAge01TR3MF804193Platyrrhinus helleriNuevo San Juan ChamulaPhe01TN1MF804194Desmodus rotundusSan JoaquínDro05TS2MF804195Sturnira hondurensisNuevo San Juan ChamulaSho05TN2MF804196Hylonycteris underwoodyVeinte CasasHun01TV2MF804197Artibeus jamaicensisVeinte CasasAja38TV3MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804100Dermondus rotundusNuevo San Juan ChamulaDro01TN3MF804200Dermanura toltecaNuevo San Juan ChamulaAja01TN2MF804202Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804206Artibeus jamaicensisEmilio RabasaAja01TR1MF804206Artibeus jamaicensisEmilio RabasaAja01TR1MF804208Artibeus jamaicensisEmilio RabasaAja01TR1MF804210Artibeus jamaicensisEmilio RabasaAja03TN1MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carolla
Artibeus jamaicensisNuevo San Juan ChamulaAja02TN1MF804190Hylonycteris underwoodyVeinte CasasHun02TV2MF804191Anoura geoffroyiNuevo San Juan ChamulaAge01TN2MF804193Anoura geoffroyiEmilio RabasaAge01TR3MF804193Desmodus rotundusSan JoaquinDro05TS2MF804195Sturnira hondurensisNuevo San Juan ChamulaSho05TN2MF804196Hylonycteris underwoodyVeinte CasasHun01TV2MF804197Artibeus jamaicensisVeinte CasasAja38TV3MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toltecaNuevo San Juan ChamulaDro01TN3MF804201Artibeus jamaicensisVeinte CasasAja01TR3MF804201Artibeus jamaicensisSan JoaquinDro01TN3MF804202Dermanura toltecaNuevo San Juan ChamulaDio1TN3MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804203Sumira hondurensisEmilio RabasaAja01TR3MF804202Sumira hondurensisEmilio RabasaAja15TR1MF804207Dermanura toltecaVeinte CasasDro02TN1MF804208Artibeus jamaicensisEmilio RabasaAja15TR1MF804209Dermanura toltecaVeinte CasasDro02TN3MF804208Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carolla sowelliNuevo San Juan
Hylonycteris underwoodyVeinte CasasHun02TV2MF804191Anoura geoffroyiNuevo San Juan ChamulaAge01TN2MF804192Anoura geoffroyiEmilio RabasaAge01TN3MF804193Platyrrhinus helleriNuevo San Juan ChamulaPhe01TN1MF804194Desmodus rotundusSan JoaquínDro05TS2MF804195Sturnira hondurensisNuevo San Juan ChamulaSho05TN2MF804196Hylprycteris underwoodyVeinte CasasHun01TV2MF804197Artibeus jamaicensisVeinte CasasAja38TV3MF804199Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804199Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Artibeus lituratusNuevo San Juan ChamulaAlio1TN2MF804202Dermanura toltecaNuevo San Juan ChamulaAlio1TN2MF804202Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaAja01TR3MF804206Artibeus jamaicensisEmilio RabasaAja1STR1MF804209Dermanura toltecaVeinte CasasDto2TV3MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja2TR1MF804209Dermanura toltecaVeinte CasasDto2TV3MF804209Dermanura toltecaVeinte CasasDto2TV3MF804210Artibeus jamaicensis <t< td=""></t<>
Anoura geoffroyiNuevo San Juan ChamulaAge01TN2MF804192Anoura geoffroyiEmilio RabasaAge01TR3MF804193Platyrrhinus helleriNuevo San Juan ChamulaPhe01TN1MF804194Desmodus rotundusSan JoaquínDro05TS2MF804196Hylonycteris underwoodyVeinte CasasHun01TV2MF804196Hylonycteris underwoodyVeinte CasasAja38TV3MF804197Artibeus jamaicensisVeinte CasasAja38TV3MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804201Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaAja01TR3MF804206Artibeus jamaicensisEmilio RabasaAja01TR3MF804206Artibeus jamaicensisEmilio RabasaAja01TR3MF804209Dermanura toltecaVeinte CasasDto02TV3MF804209Dermanura toltecaVeinte CasasDto20TV2MF804209Dermanura toltecaVeinte CasasDto20TV3MF804211Carollia sowelliNuevo San Juan ChamulaCs02TN1MF804212Dermanura toltecaVeinte CasasDto20TV3MF804211Carollia sowelliNuevo San Juan Chamula <td< td=""></td<>
Anoura geoffroyiEmilio RabasaAge01TR3MF804193Platyrrhinus helleriNuevo San Juan ChamulaPhe01TN1MF804194Desmodus rotundusSan JoaquínDro0STS2MF804195Sturnira hondurensisNuevo San Juan ChamulaSho0STN2MF804196Hylonycteris underwoodyVeinte CasasHun01TV2MF804197Artibeus jamaicensisVeinte CasasAja38TV3MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisSan JoaquínDro1TS2MF804203Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaSho02TR1MF804206Artibeus jamaicensisEmilio RabasaDro2TV3MF804209Dermanura toltecaVeinte CasasDto20TV2MF804209Dermanura toltecaVeinte CasasDto20TV2MF804211Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804211Artibeus jamaicensisEmilio RabasaAja21TR1MF804212Dermanura toltecaVeinte CasasDto20TV2MF804211Artibeus jamaicensisEmilio RabasaAja21TR1MF804213Artibeus jamaicensisEmilio RabasaAja21
Platyrrhinus helleriNuevo San Juan ChamulaPhe01TN1MF804194Desmodus rotundusSan JoaquínDro05TS2MF804195Sturnira hondurensisNuevo San Juan ChamulaSho05TN2MF804196Hylorycteris underwoodyVeinte CasasHulo1TV2MF804197Artibeus jamaicensisVeinte CasasAja38TV3MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN11MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Artibeus jamaicensisVeinte CasasAja01TN2MF804202Desmodus rotundusNuevo San Juan ChamulaAli01TN2MF804203Artibeus jamaicensisSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaAja1STR1MF804207Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisEmilio RabasaAja21TR1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisNuevo San Juan ChamulaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaAja21TR1MF804213Artibeus jamaicensisEmilio RabasaAja21TR1MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804213Artibeus jamaicensisEmilio RabasaAja21TR1MF804214Enchistheres hartii </td
Desmodus rotundusSan JoaquínDro05TS2MF804195Sturnira hondurensisNuevo San Juan ChamulaSho05TN2MF804196Hylonycteris underwoodyVeinte CasasHun01TV2MF804197Artibeus jamaicensisVeinte CasasAja38TV3MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Artibeus lituratusNuevo San Juan ChamulaDto01TN3MF804202Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaAja15TR1MF804207Dermanura toltecaVeinte CasasDto20TV3MF804208Artibeus jamaicensisEmilio RabasaAja15TR1MF804207Dermanura toltecaVeinte CasasDto20TV3MF804210Artibeus jamaicensisNuevo San Juan ChamulaAja21TR1MF804210Artibeus jamaicensisNuevo San Juan ChamulaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaCso20TN1MF804213Artibeus jamaicensisFinilio RabasaAja21TR1MF804211Artibeus jamaicensisNuevo San Juan ChamulaCso20TN1MF804211Artibeus jamaicensisFinilio RabasaAja25TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes
Sturnira hondurensisNuevo San Juan ChamulaSho05TN2MF804196Hylonycteris underwoodyVeinte CasasHun01TV2MF804197Artibeus jamaicensisVeinte CasasAja38TV3MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Artibeus lituratusNuevo San Juan ChamulaDto01TN3MF804202Desmodus rotundusSan JoaquínDro10TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaAja15TR1MF804206Artibeus jamaicensisEmilio RabasaAja15TR1MF804208Artibeus jamaicensisEmilio RabasaDto02TV3MF804208Artibeus jamaicensisEmilio RabasaAja03TN1MF804207Dermanura toltecaVeinte CasasDto2TV3MF804210Artibeus jamaicensisNuevo San Juan ChamulaAja21TR1MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaCs02TN1MF804213Artibeus jamaicensisEmilio RabasaAja21TR1MF804214Artibeus jamaicensisEmilio RabasaAja21TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Artibeus jamaicensis
Hylonycteris underwoodyVeinte CasasHun01TV2MF804197Artibeus jamaicensisVeinte CasasAja38TV3MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Artibeus lituratusNuevo San Juan ChamulaAil01TN2MF804202Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaSho2TR1MF804206Artibeus jamaicensisEmilio RabasaDto02TV3MF804207Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisEmilio RabasaAja15TR1MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja03TN1MF804208Dermanura toltecaVeinte CasasDto20TV2MF804208Artibeus jamaicensisEmilio RabasaAja21TR1MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804214Enchisthenes hartiiVeinte CasasSho23TV2MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804216Sturnira hondurensisVeinte Casas<
Artibeus jamaicensisVeinte CasasAja38TV3MF804198Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Artibeus lituratusNuevo San Juan ChamulaDto01TN3MF804202Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaSho02TR1MF804206Artibeus jamaicensisEmilio RabasaAja15TR1MF804206Artibeus jamaicensisEmilio RabasaDto01TV3MF804206Artibeus jamaicensisEmilio RabasaAja15TR1MF804206Artibeus jamaicensisEmilio RabasaDto02TV3MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja03TN1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804216Mormoops megalophyllaVeinte CasasSho23TV2MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804216Sturnira hondurensisVeinte Ca
Desmodus rotundusNuevo San Juan ChamulaDro02TN1MF804199Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Artibeus lituratusNuevo San Juan ChamulaAli01TN2MF804202Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaSho02TR1MF804206Artibeus jamaicensisEmilio RabasaAja15TR1MF804207Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisEmilio RabasaAja03TN1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja03TN1MF804211Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804212Enchisthenes hartiiEmilio RabasaAja2STR1MF804213Artibeus jamaicensisEmilio RabasaAja2STR1MF804213Artibeus jamaicensisEmilio RabasaAja2STR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasSho23TV2MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804216Sturnira kondurensisVeinte CasasSho23TV2MF804216Sturnira kondurensisVeinte CasasSho23TV2MF804216Sturnira kondurensisVeinte CasasSh
Artibeus jamaicensisVeinte CasasAja46TV2MF804200Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Artibeus lituratusNuevo San Juan ChamulaAli01TN2MF804202Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaSho02TR1MF804206Artibeus jamaicensisEmilio RabasaAja15TR1MF804207Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja03TN1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804213Artibeus jamaicensisEmilio RabasaAja2STR1MF804213Artibeus jamaicensisEmilio RabasaAja2STR1MF804213Artibeus jamaicensisEmilio RabasaAja2STR1MF804213Artibeus jamaicensisEmilio RabasaAja2STR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasSho23TV2MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804218Surairia kondurensisVeinte CasasSho23TV2MF804218Surairia kondurensisVeinte CasasSho23TV2MF804218Surairia kondurensisVeinte Casas <t< td=""></t<>
Dermanura toltecaNuevo San Juan ChamulaDto01TN3MF804201Artibeus lituratusNuevo San Juan ChamulaAli01TN2MF804202Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Stumira hondurensisEmilio RabasaAja15TR1MF804206Artibeus jamaicensisEmilio RabasaAja15TR1MF804207Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja03TN1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804212Dermanura toltecaVeinte CasasDto20TV2MF804213Artibeus jamaicensisEmilio RabasaAja21TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804216Mormoops megalophyllaVeinte CasasS
Artibeus lituratusNuevo San Juan ChamulaAli01TN2MF804202Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaSho02TR1MF804206Artibeus jamaicensisEmilio RabasaAja15TR1MF804207Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja03TN1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja11R1MF804211Carollia sowelliNuevo San Juan ChamulaCs02TN1MF804212Artibeus jamaicensisEmilio RabasaAja21TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasMme02TV3MF804215Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF80421
Desmodus rotundusSan JoaquínDro01TS2MF804203Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaSho02TR1MF804206Artibeus jamaicensisEmilio RabasaAja15TR1MF804207Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja03TN1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804212Enchisthenes hartiiEmilio RabasaAja25TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha03TR1MF804215Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF8
Artibeus jamaicensisEmilio RabasaAja01TR3MF804205Sturnira hondurensisEmilio RabasaSho02TR1MF804206Artibeus jamaicensisEmilio RabasaAja15TR1MF804207Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja03TN1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804212Enchisthenes hartiiEmilio RabasaEha03TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804217Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218
Sturnira hondurensisEmilio RabasaSho02TR1MF804206Artibeus jamaicensisEmilio RabasaAja15TR1MF804207Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja03TN1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Artibeus jamaicensisEmilio RabasaAja21TR1MF804212Artibeus jamaicensisEmilio RabasaAja25TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasSho23TV2MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218
Artibeus jamaicensisEmilio RabasaAja I 5TR IMF804207Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja03TN IMF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja21TR IMF804211Carollia sowelliNuevo San Juan ChamulaCso02TN IMF804212Enchisthenes hartiiEmilio RabasaEha03TR IMF804213Artibeus jamaicensisEmilio RabasaAja25TR IMF804214Enchisthenes hartiiVeinte CasasEha01TV IMF804215Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218
Dermanura toltecaVeinte CasasDto02TV3MF804208Artibeus jamaicensisNuevo San Juan ChamulaAja03TN1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804212Enchisthenes hartiiEmilio RabasaEha03TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804218Sturnira hondurensisVeinte CasasCso25TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218
Artibeus jamaicensisNuevo San Juan ChamulaAja03TN1MF804209Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804212Enchisthenes hartiiEmilio RabasaEha03TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasSho23TV2MF804218
Dermanura toltecaVeinte CasasDto20TV2MF804210Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804212Enchisthenes hartiiEmilio RabasaEha03TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasCso25TV2MF804218
Artibeus jamaicensisEmilio RabasaAja21TR1MF804211Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804212Enchisthenes hartiiEmilio RabasaEha03TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasCso25TV2MF804218
Carollia sowelliNuevo San Juan ChamulaCso02TN1MF804212Enchisthenes hartiiEmilio RabasaEha03TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasCso25TV2MF804218
Enchisthenes hartiiEmilio RabasaEha03TR1MF804213Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasCso25TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218
Artibeus jamaicensisEmilio RabasaAja25TR1MF804214Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasCso25TV2MF804218Sturnira hondurensisVeinte CasasCso25TV2MF804218
Enchisthenes hartiiVeinte CasasEha01TV1MF804215Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasCso25TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218
Mormoops megalophyllaVeinte CasasMme02TV3MF804216Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasCso25TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218
Sturnira hondurensisVeinte CasasSho23TV2MF804217Carollia sowelliVeinte CasasCso25TV2MF804218Sturnira hondurensisVeinte CasasSho23TV2MF804218
Carollia sowelli Veinte Casas Cso25TV2 MF804218
Sturning handuraneis Vointe Cases SL-21TV2 ME004210
sturning hondurensis veince Casas Shozi i vz i reoutzzi s
Sturnira parvidens Nuevo San Juan Chamula Spa02TNI MF804220
Sturnira hondurensis Nuevo San Juan Chamula Sho01TN2 MF804221
Desmodus rotundus Veinte Casas Dro01TV2 MF804222
Sturnira hondurensis Veinte Casas Sho25TV2 MF804223
Sturnira hondurensis Emilio Rabasa Sho10TR1 MF804224
Sturnira parvidens Emilio Rabasa Spa03TRI MF804225
Artibeus jamaicensis Veinte Casas Aja38TV2 MF804226
Artibeus jamaicensis Nuevo San Juan Chamula Aia01TN1 MF804227
Carollia sowelli Veinte Casas Cso02TVI MF804228
Dermanura tolteca Nuevo San Juan Chamula Dto01TN1 MF804229
Sturnira hondurensis Emilio Rabasa Sho06TR I MF804230

Continued

Species	Locality	Laboratory code	GenBank accession number
Sturnira hondurensis	ra hondurensis Veinte Casas Sho02TV3		MF804231
Sturnira hondurensis	Emilio Rabasa	ShollTRI	MF804232
Sturnira hondurensis	Nuevo San Juan Chamula	Sho02TN3	MF804233
Sturnira parvidens	Veinte Casas	Spa01TV1	MF804234
Sturnira hondurensis	Emilio Rabasa	Sho09TR I	MF804235
Sturnira hondurensis	Emilio Rabasa	Sho08TR I	MF804236
Artibeus lituratus	Veinte Casas	Ali01TV3	MF804237
Glossophaga morenoi	San Joaquín	Gmo02TS2	MF804238
Artibeus jamaicensis	Veinte Casas	Aja09TV3	MF804239
Artibeus lituratus	San Joaquín	Ali01TS1	MF804240
Mormoops megalophylla	Veinte Casas	Mme01TV3	MF804241
Artibeus jamaicensis	Veinte Casas	Aja31TV2	MF804242
Artibeus jamaicensis	San Joaquín	Aja03TS2	MF804243
Artibeus jamaicensis	Nuevo San Juan Chamula	Aja3TN2C	MF804244
Desmodus rotundus	San Joaquín	Dro04TS2	MF804245
Artibeus lituratus	Veinte Casas	Ali04TV3	MF804246
Artibeus jamaicensis	Emilio Rabasa	Aja20TR I	MF804247
Artibeus jamaicensis	Emilio Rabasa	Aja28TR I	MF804248
Artibeus jamaicensis	Veinte Casas	Aja04TV3	MF804249
Artibeus jamaicensis	Veinte Casas	Aja32TV3	MF804250
Dermanura tolteca	Veinte Casas	Dto01TV1	MF804251
Carollia sowelli	Nuevo San Juan Chamula	Cso01TN2	MF804252
Artibeus jamaicensis	Veinte Casas	Aja39TV3	MF804253
Artibeus jamaicensis	Emilio Rabasa	AjalITRI	MF804254
Artibeus jamaicensis	Veinte Casas	Aja04TV2	MF804255
Artibeus lituratus	Veinte Casas	Ali02TV3	MF804256
Carollia sowelli	Emilio Rabasa	Cso01TR1	MF804257
Artibeus jamaicensis	Veinte Casas	Aja02TV3	MF804258
Artibeus jamaicensis	Emilio Rabasa	Aja24TR I	MF804259
Artibeus lituratus	Nuevo San Juan Chamula	Ali01TN1	MF804260
Carollia sowelli	Veinte Casas	Cso06TV3	MF804261
Artibeus jamaicensis	Emilio Rabasa	Aja I 2 TR I	MF804262
Artibeus jamaicensis	Emilio Rabasa	Aja26TR I	MF804263
Artibeus jamaicensis	San Joaquín	Aja02TS2	MF804264

Acknowledgments

The authors are grateful to the communities of El Ocote Biosphere Reserve and the *Comisión Nacional de Áreas Naturales Protegidas* (National Commission of Protected Natural Areas) for their assistance in the development of this work. The authors are also grateful to Maurilio Jiménez Hernández for his assistance in sample processing in the laboratory and Dario Navarrete Gutiérrez for his support in the drafting of the location map. María Elena Sánchez-Salazar translated the manuscript into English.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was funded by the CONACYT project PDCPN-2013/214650-Biological and Social Vulnerability to Climate Change in El Ocote Biosphere Reserve.

References

Aguirre, L. F., Montaño-Centellas, F. A., Gavilanez, M. M., & Stevens, R. D. (2016). Taxonomic and phylogenetic determinants of functional composition of Bolivian bat assemblages. *Plos One*, 11, 1–15.

- Akaike, H. (1974). A new look at the statistical model identification. *IEEE Transactions on Automatic Control*, 19, 716–723.
- Arboleda, B. C. E. (2008). Polimorfismo y divergencia en genes implicados en la resistencia al frío en Drosophila [Polymorphism and divergence in genes involved in cold resistance in Drosophila] (Tesis de Doctorado). Universitat de Barcelona, Barcelona.
- Arita, H. T. (2005). Glossophaga morenoi. In G. Ceballos & G. Oliva (Eds.), Los maníferos silvestres de México (pp. 216–217). México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Fondo de Cultura Económica.
- Arroyo-Cabrales, J., Álvarez-Castañeda, S. T., Cuarón, A. D., & de Grammont, P. C. (2015, May 2017). *Glossophaga morenoi* (The IUCN Red List of Threatened Species). Retrieved from www.iucnredlist.org.
- Ávila-Flores, R., & Fenton, M. B. (2005). Use of spatial features by foraging insectivorous bats in a large urban landscape. *Journal* of Mammalogy, 86, 1193–1204.
- Avolio, M. L., Beaulieu, J. M., Lo, E. Y. Y., & Smith, M. D. (2012). Measuring genetic diversity in ecological studies. *Plant Ecology*, 213, 1105–1115.
- Barquez, R., Perez, S., Miller, B. & Diaz, M. (2015). Artibeus lituratus (The IUCN Red List of Threatened Species). Retrieved from http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T2136A21995720.en.
- Bilgin, R., Karatas, A., Coraman, E., Disotell, T., & Morales, J. C. (2008). Regionally and climatically restricted patterns of distribution of genetic diversity in a migratory bat species, *Miniopterus* (Chiroptera: Vespertilionidae). *BMC Evolutionary Biology*, 8, 1–14.
- Blum, M. J., Bagley, M. J., Walters, D. M., Jackson, S. A., Daniel, F. B., Chaloud, D. J., & Cade, B. S. (2012). Genetic diversity and species diversity of stream fishes covary across a land-use gradient. *Oecologia*, 168, 83–95.
- Burns, L. E., & Broders, H. G. (2014). Correlates of dispersal extent predict the degree of population genetic structuring in bats. *Conservation Genetics*, 15, 1371–1379.
- Calonge, C. B. E. (2009). Dieta y estructura trófica del ensamble de murciélagos en un sistema de ganadería extensiva en remanentes de bosque seco tropical en Córdoba (Colombia) (Tesis de licenciatura). Pontificia Universidad Javeriana, Facultad de Ciencias, Carrera de Biología, Bogotá, Columbia.
- Carstens, B. C., Sullivan, J., Dávalos, M., Larsen, P. A., & Pedersen, C. (2004). Exploring population genetic structure in three species of Lesser Antillean bats. *Molecular Ecology*, 13, 2557–2567.
- Castillo-Cobián, A. (2007). La selección natural a nivel molecular. In L. E Eguiarte, V. Souza, & X. Aguirre (Eds.), *Ecología molecular* (pp. 11–48). México: Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
- Castro-Castro, F. F., Muñoz-Flores, J. E., & Uieda, W. (2016). Análisis filogenético del murciélago hematófaco *Desmodus rotundus* en el Valle del Cauca Colombia. *Acta Agronómica*, 65, 65–71.
- Ceballos, G., & Ehrlich, P. R. (2002). Mammal population losses and the extinction crisis. *Science*, 293, 904–907.

- Csergö, A. M., Hufnagel, L., & Höhn, M. (2014). Positive relationship between genetic- and species diversity on limestone outcrops in the Carpathian Mountains. *Ecological Complexity*, 20, 233–239.
- Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. *Molecular Ecology*, 9, 1657–1660.
- Cosson, J. F., Pons, J. M., & Masson, D. (1999). Effects of forest fragmentation on frugivorous and nectarivorous bats in French Guiana. *Journal of Tropical Ecology*, 15, 515–534.
- Cottontail, V. M., Wellinghausen, N., & Kalko, E. K. V. (2009). Habitat fragmentation and haemoparasites in the common fruit bat, *Artibeus jamaicensis* (Phyllostomidae) in a tropical lowland forest in Panamá. *Parasitology*, *136*, 1133–1145.
- Crawford, K. M., & Rudgers, J. A. (2013). Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community. *Ecology*, 94, 1025–1035.
- Crutsinger, G. M., Collins, M. D., Fordyce, J. A., Gompert, Z., Nice, C. C., & Sanders, N. J. (2006). Plant genotypic diversity predicts community structure and governs an ecosystem process. *Science*, 313, 966–968.
- Duckworth, J. C., Kent, M., & Ramsay, P. M. (2000). Plant functional types: An alternative to taxonomic plant community description in biogeography? *Progress in Physical Geography*, 24, 515–542.
- Espinoza, M. E., Núñez, H., González, P., Luna, R., Navarrete, D., Cruz, E., & Guichard, C. (1999). Lista preliminar de los vertebrados terrestres de la Selva "El Ocote", Chiapas.Tuxtla Gutiérrez, Chiapas, México: Instituto de Historia Natural del Estado de Chiapas [Preliminary list of vertebrates of the forest "El Ocote", Chiapas, Mexico]. Publicaciones Especiales del Instituto de Historia Natural No. 2.
- Fenton, B., & Ratcliffe, J. M. (2010). Bats. *Current Biology*, 24, 1–3.
- Fenton, M. B., Bernard, E., Bouchard, S., Hollis, L., Johnston, D. S., Lausen, C. L., ... Zigouris, J. (2001). The bat fauna of Lamanai, Belize: Roosts and trophic roles. *Journal of Tropical Ecology*, 17, 511–524.
- Flamenco-Sandoval, A., Martínez, R. M., & Masera, O. R. (2007). Assessing implications of lands-use and land-cover change dynamics for conservation of a highly diverse tropical rain forest. *Biological Conservation*, 138, 131–145.
- Fleming, T. H., Geiselman, C., & Kress, W. J. (2009). The evolution of bat pollination: A phylogenetic perspective. *Annals of Botany*, 104, 1017–1043.
- Frankham, R. J., Ballou, D., & Briscoe, D. A. (2002). *Introduction to conservation genetics*. Cambridge, England: Cambridge University Press.
- Freeland, J. (2005). The evolution of population biology: Past, present and future. *Journal of Biogeography*, *32*, 2039–2040.
- Galindo-González, J., & Sosa, V. J. (2003). Frugivorous bats in isolated trees and riparian vegetation associated with humanmade pastures in a fragmented tropical landscape. *The Southwestern Naturalist*, 48, 579–589.
- Genung, M. A., Schweitzer, J. A., Úbeda, F., Fitzpatrick, B. M., Pregitzer, C. C., Felker-Quinn, E., & Bailey, J. K. Genetic variation and community change – Selection, evolution, and feedbacks. *Functional Ecology*, 25, 408–419.

- Gorresen, M., & Willig, M. R. (2004). Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. *Journal* of Mammalogy, 85, 688–697.
- Hamilton, M., Pincus, E., Di Fiore, A., & Fleischer, R. C. (1999). Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. *BioTechniques*, 27, 500–507.
- He, T., Lamont, B. B., Krauss, S. L., Enright, N. J., & Miller, B. P. (2008). Covariation between intraespecific genetic diversity and species diversity within a plant functional group. *Journal of Ecology*, 96, 956–961.
- Hedrick, P. W. (2000). *Genetics of populations*. Boston, MA: Jones and Bartlett Publishers.
- Hernández-Baños, B. E., Honey-Escandón, M., Cortés-Rodríguez, M. N., & García, D. G. (2007). Filogeografía de aves mexicanas. In L. E. Eguiarte, V. Souza, & X. Aguirre (Eds.), *Ecología molecular* (pp. 467–495). México: Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
- Hernández-Mijangos, L. A., Gálvez-Mejía, R., Díaz-Negrete, M., & Cruz-Durante, C. M. (2008). Nuevas localidades en la distribución de quirópteros filostómidos (Chiroptera) en Chiapas, México. *Revista Mexicana de Mastozoología*, 12, 163–169.
- Hoehn, P., Tscharntke, T., Tylianakis, J. M., & Steffan-Dewenter, I. (2008). Functional group diversity of bee pollinators increases crop yield. *Proceedings of the Royal Society*, 275, 2283–2291.
- Hughes, A. R., Inouye, M., Johnson, T. J., Underwood, N., & Vellend, M. (2008). Ecological consequences of genetic diversity. *Ecology letters*, 11, 609–623.
- Jackson, N. D., & Fahrig, L. (2014). Landscape context affects genetic diversity at a much larger spatial extent than population abundance. *Ecology*, 95, 871–881.
- Kaplan, N. L., Darden, T., & Hudson, R. R. (1989). The coalescent process in models with election. *Genetics*, 120, 819–829.
- Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. *Journal of Molecular Evolution*, 16, 111–120.
- Lamy, T., Laroche, F., David, P., Massol, F., & Jarne, P. (2017). The contribution of species-genetic diversity correlations to the understanding of community assembly rules. *Oikos*, 126, 759–771.
- Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. *Bioinformatics applications note*, 25, 1451–1452.
- Llaven, M. V., Ruiz, M. L., García, B. M., Lesher, G. J., & Machkour, M. S. (2017). Diversidad y estructura genética de *Artibeus jamaicensis* (Chiroptera: Phyllostomnidae) en Chiapas, México. *Acta Zoológica Mexicana*, 33, 55–66.
- Martínez, N. D. (1996). Defining and measuring functional aspects of biodiversity. In: K. J. Gaston (ed.) *Biodiversity: A biology of numbers of difference* (pp. 114–148). Oxford, England: Blackwell Science.
- Martins, F. M., Ditchfield, A. D., Meyer, D., & Morgante, J. S. (2007). Mitochondrial DNA phylogeography reveals marked population structure in the common vampire bat, *Desmodus rotundus* (Phyllostomidae). *Journal of Zoological Systematics and Evolutionary Research*, 45, 372–378.
- McCarthy, C. (1996). Chromas (Version 1.5). Queensland, Australia: School of Health Science, Griffith University.

- Medellín, R. A., Arita, H. T., & Sánchez, O. (1997). *Identificación de los murciélagos de México* [Identification of Mexican bats]. México: Asociación Mexicana de Mastozoología A. C.
- Medellín, R. H. A., & Sánchez, O. (2008). Identificación de los quirópteros de México: Clave de campo [Identification of chiroptera in Mexico: Field code] (2nd ed.). Ciudad de México, México: Asociación Mexicana de Mastozoología.
- Mendoza-Sáenz, V. (2016). Patrones de diversidad taxonómica y funcional de murciélagos en la Reserva de la Biosfera Selva El Ocote, Chiapas, México [Patterns of taxonomic and functional diversity of bats in the Selva El Ocote Biosphere Reserve, Chiapas, Mexico] (Tesis de maestría, 73 pp.). El Colegio de la Frontera Sur, Chiapas, México.
- Merritt, J. (2010). *The biology of small mammals*. Baltimore, MD: Johns Hopkins University.
- Meyer, C. F. J., Struebig, M. J., & Willig, M. R. (2016). Responses of tropical bats to habitat fragmentation, logging, and deforestation. In: C. C. Voigt, & T. Kingston (Eds.). Bats in the Antropocene: Conservation of bats in a changing world (pp. 63–103). Cham, Switzerland: Springer International Publishing.
- Miller, B. Reid, F., Arroyo-Cabrales, J., Cuarón, A. D., & de Grammont, P. C. (2008). *Micronycteris microtis* (The IUCN Red List of Threatened Species). Retrieved from http:// dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T136424A4289824.en.
- Miller, B., Reid, F., Arroyo-Cabrales, J., Cuarón, A. D. & de Grammont, P. C. (2016). *Artibeus jamaicensis* (The IUCN Red List of Threatened Species). Retrieved from http:// dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T88109731A2199 5883.en.
- Mooney, H., Larigauderie, A., Cesario, M., Elmquist, T., Hoegh-Guldberg, O., Lavorel, S., ... Yahara, T. (2009). Biodiversity, climate change, and ecosystem services. *Environmental Sustainability*, *1*, 46–54.
- Moreira, X., Abdala-Roberts, L., Parra-Tabla, V., & Mooney, K. A. Positive effects of plant genotypic and species diversity on antiherbivore defenses in a tropical tree species. *PLoS ONE*, 9, e105438.
- Navarrete, G. D. A., Alba, M. P., March, I. J., & Espinoza, E. (1996). Mamíferos de la Selva El Ocote, Chiapas [Mammals of the El Ocote Forest, Chiapas]. In M. Vázquez-Sánchez & I. March (Eds.), *Conservación y Desarrollo Sustentable en la Selva El Ocote, Chiapas* [Conservation and Sustainable Development in El Ocote Forest, Chiapas] (pp. 197–207). México: El Colegio de la Frontera Sur-Comisión Nacional para el Conocimiento y Uso de la Biodiversidad-ECOSFERA.
- Ortega, J., & Steers, G. (2005). Artibeus jamaicensis. In G. Ceballos & G. Oliva (Eds.), Los mamíferos silvestres de México [The wild mammals of Mexico] (pp. 228–229). México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Fondo de Cultura Económica.
- Park, K. J. (2015). Mitigating the impacts of agriculture on biodiversity: Bats and their potential roles as bioindicators. *Mammalian Biology*, 80, 191–204.
- Patterson, B., Willig, M., & Stevens, R. (2003). Trophic strategies, niche partitioning, and patterns of ecological organization. In: T. Kunz, & M. Fenton (Eds.). *Bat ecology*. University of Chicago Press, Chicago, IL.
- Pedro, W. A., & Taddei, V. A. (1997). Taxonomic assemblage of bats from Panga Reserve, southeastern Brazil: Abundance

patterns and trophic relations in the Phyllostomidae (Chiroptera). *Boletim do Museu de Biologia Mello Leitão*, 6, 3–21.

- Perfectii, F., Picó, F. X., & Gómez, J. M. (2009). La huella genética de la selección natural [The genetic fingerprint of natural selection]. *Ecosistemas*, 18, 10–16.
- Piaggio, A. J., Navo, K. W., & Stihler, C. W. Intraspecific comparison of population structure, genetic diversity, and dispersal among three subspecies of Towsend's big-eared bats. Corynorhinus towsendii townsendii, C. t. pallescens, and the endangered C. t. virginianus. Conservation Genetics, 10, 143–159.
- Preciado-Benítez, O., Gómez, G. B., Navarrete-Gutiérrez, D. A., & Horváth, A. (2015). The use of commercial fruits as attraction agents may increase the seed dispersal by bats to degraded areas in southern Mexico. *Tropical Conservation Science*, 8, 301–317.
- Redondo, R. A. F., Brina, L. P. S., Silva, R. F., Ditchfield, A. D., & Santos, F. R. (2008). Molecular systematics of the genus *Artibeus* (Chiroptera: Phyllostomidae). *Molecular Phylogenetics and Evolution*, 49, 44–58.
- R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
- Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1997). From tropics to tundra: Global convergence in plant functioning. *Proceedings of the National Academy of Sciences*, 94, 13730–13734.
- Reid, F. (2009). A field guide to the mammals of Central America y Southeast Mexico. New York, NY: Oxford University Press.
- Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. *Ecology Letters*, 7, 1–15.
- Riechers, P. A. (2004). Análisis mastofaunístico de la Zona Sujeta a Conservación Ecológica Laguna Bélgica, Chiapas, México [Mastofaunal analysis of the zone subject to ecological conservation Laguna Bélgica, Chiapas, Mexico]. Anales del Instituto de Biología, Universidad Autónoma de México. *Serie Zoología*, 75, 363–382.
- Riechers, P. A. (2009). Mamíferos [Mammals]. In A. Riechers P., J.
 E. Morales-Pérez, & E. Hernández-García (Eds.), Laguna Bélgica: Patrimonio natural e interpretación ambiental. Instituto de Historia Natural [Laguna Belgium: Natural heritage and environmental interpretation. Institute of Natural History] (Chapter 9, pp. 35–160). Tuxtla Gutiérrez, Mexico: Fondo Mixto de Fomento a la Investigación Científica y Tecnológica CONACYT-Gobierno del Estado de Chiapas.
- Ripperger, S. P., Tschapka, M., Kalko, E. K. V., Rodríguez-Herrera, B., & Mayer, F. (2013). Life in a mosaic landscape: Anthropogenic habitat fragmentation affects genetic population structure in a frugivorous bat species. *Conservation Genetics*, 14, 925–934.
- Ruiz, E. A., Vargas-Miranda, B., & Zúñiga, G. (2013). Late-pleistocene phylogeography and demographic history of two evolutionary lineages of *Artibeus jamaicensis* (Chiroptera: Phyllostomidae) in Mexico. *BioOne*, 15, 19–33.
- Sahu, P. K., Sagar, R., & Singh, J. S. (2008). Tropical forest structure and diversity in relation to altitude and disturbance in a Biosphere Reserve in central India. *Applied Vegetation Science*, 11, 461–470.

- Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution*, 4, 406–425.
- Secretaria de Medio Ambiente y Recursos Naturales-Comisión Natural de Áreas Naturales Protegidas. (2001). Programa de manejo de la Reserva de la Biosfera Selva El Ocote [Management program of the El Ocote Forest Biosphere Reserve]. Chiapas, México: Ocozocoautla de Espinosa.
- Simental-Rodríguez, S. L., Quiñones-Pérez, C. Z., Moya, D., Hernández-Tecles, E., López-Sánchez, C. A., & Wehenkel, C. (2014). The relationship between species diversity and genetic structure in the rare *Picea chihuahuana* tree species community, Mexico. *PloS ONE*, 9, 1111623.
- Simmons, N. B, Seymour, K. L, Habersetzer, J., & Gunnell, G. F. (2008). Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. *Nature*, 451, 818–822.
- Soriano, P. (2000). Functional structure of bat communities in tropical rainforest and Andean cloud forest. *Ecotropicos*, 13, 1–20.
- StatSoft, Inc. (2007). STATISTICA (version 8.0) [data analysis software system]. Retrieved from www.statsoft.com.
- Steers, G., & Flores, M. J. J. (2005). Artibeus lituratus. In G. Ceballos & G. Oliva (Eds.), Los mamíferos silvestres de México (pp. 231–232). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Fondo de Cultura Económica, México.
- Suzán, G. (2005). Desmodus rotundus. In G. Ceballos & G. Oliva (Eds.), Los mamíferos silvestres de México [The wild mammals of Mexico] (pp. 193–194). México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Fondo de Cultura Económica.
- Swofford, D. L. (2002). PAUP* (Version 4.0a147) [Phylogenetic Analysis Using Parsimony (*and Other Methods)]. Sunderland, MA: Sinauer Associates.
- Symstad, A. J. (2000). A test of the effects of functional group richness and composition on grassland invasibility. *Ecology*, *81*, 99–109.
- Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics*, 123, 585–595.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution*, 30, 2725–2729.
- Téllez-Girón, G., & Ceballos, G. (2005). Micronycteris microtis. In G. Ceballos & G. Oliva (Eds.), Los mamíferos silvestres de México [The wild mammals of Mexico] (pp. 190–191). México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Fondo de Cultura Económica.
- Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research*, 25, 4876–4882.
- Vellend, M. (2005). Species diversity and genetic diversity: Parallel processes and correlated patterns. *The American Naturalist*, 166, 199–215.
- Vellend, M. (2006). The consequences of genetic diversity in competitive communities. *Ecology*, 87, 304–311.
- Vellend, M. (2008). Effects of diversity: Consequences of competition and facilitation. *Oikos*, 117, 1075–1085.
- Vellend, M., & Geber, M. A. (2005). Connections between species diversity and genetic diversity. *Ecology Letters*, 8, 767–781.

- Vleut, I., Levy-Tacher, S. I., de Boer, W. F., Galindo-González, J., & Vázquez, L.-B. (2013). Tropical secondary forest management influences frugivorous bat composition, abundance and fruit consumption in Chiapas, Mexico. *Plos One*, 8, 1–10.
- Vleut, I., Levy-Tacher, S. I., Galindo-González, J., & de Boer, W. F. (2015). Positive effects of surrounding rainforest on composition, diversity and late-successional seed dispersal by bats. *Basic and Applied Ecology*, 16, 308–315.
- Wehenkel, C., Bergmann, F., & Gregorius, H-R. (2006). Is there a trade-off between species diversity and genetic diversity in forest tree communities? *Plant Ecology*, 185, 151–161.
- Wei, X., & Jiang, M. (2012). Contrasting relationships between species diversity and genetic diversity in natural and

disturbed forest tree communities. *New Phytologist*, 193, 779-786.

- Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, M. S., Bangert, R. K., LeRoy, C. J., ... Wooley, S. C. (2006). A framework for community and ecosystem genetics: From genes to ecosystems. *Nature Review Genetics*, 7, 510–523.
- Whitlock, R. (2014). Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: A meta-analysis. *Journal of Ecology*, 102, 857–872.
- Wilkinson, G. S., & Chapman, A. M. (1991). Length and sequence variation in evening bat D-loop mtDNA. *Genetics*, 128, 607–617.