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Introduction
Aedes aegypti mosquitoes originated from Africa but are now 
found in tropical regions around the world.1,2 Urbanization 
particularly has contributed to the increase of Aedes mosquito 
populations, especially A. aegypti and Aedes albopictus.1,2 
There has been a threefold increase in urban human popu-
lation densities in Africa since the 1950s, and even larger 
increases have occurred in Asia and the Americas.3 With 
the related increase in contact between urban-associated 
Aedes mosquito populations, arboviruses, especially dengue 
virus (DENV), have established endemic transmission in 
these areas.4

A. aegypti is found in the subtropical region of the United 
States and in popular tropical tourist destinations, and has 

been implicated in the recent chikungunya (CHIKV) outbreak 
in the Caribbean resulting in over 100 imported and several 
locally acquired cases in the US.5–7 Furthermore, A. aegypti 
has been implicated as the primary vector of DENV in the 
southern United States.8 A. aegypti are primarily anthrophillic, 
preferring to bite humans than other potential hosts, and have 
adapted their behavior and ecology to maximize contact with 
humans.9 For instance, they tend to be closely associated with 
human domiciles and breed in (often man-made) containers 
near houses.9,10

Koutango virus (KOUTV) was first isolated in 1968 in 
Somalia, and it has been suggested that this virus is a vari-
ant of West Nile virus (WNV).11–14 However, species of the 
main vector genus of WNV (Culex spp.) were not found 
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to be competent for KOUTV,13 indicating that questions 
regarding the transmission cycle of this virus remain. Early 
observations of transovarial transmission of KOUTV and 
subsequent competence of emerged A. aegypti females sug-
gest this as a potential vector in the transmission cycle as a 
real possibility15 and transmission of KOUTV by A. aegypti 
viruses has been observed.15 However, recent studies involv-
ing KOUTV have not focused on the mosquito, and there 
are still some questions regarding the potential transmission 
dynamics of this virus. To address this, we experimentally 
investigated the dynamics of KOUTV infectivity to the 
mosquito A. aegypti and determined the effective vector com-
petence (EVC)16 to characterize the threat this virus poses 
in areas where A. aegypti is present, such as in the southern 
United States.

Materials and Methods
Vector competence. Virus. The KOUTV strain uti-

lized in this experiment was the KOUTV DAK Ar D 5443 
received from Robert B. Tesh (CBEID-UTMB). Virus was 
propagated by inoculating 100 µL of viral stock into the T-75 
flask of confluent Vero cells. To determine titer, a plaque assay 
was developed and standard curves created for quantitative 
reverse transcription polymerase chain reaction (qRT-PCR) 
as previously described.16 Briefly, we utilized a SuperScript III 
One-step qRT-PCR kit (Invitrogen, Carlsbad, CA) with the 
primers and probes given in Table 1.

The presence of KOUTV viral RNA was detected via 
qRT-PCR using the following protocol: RT step (1 cycle) 
48° C for 2 minutes and 95  °C for 2 minutes, amplification 
and data recording step (40 cycles) 95 °C for 15 seconds and 
60 °C for 30 seconds. Primers were designed and obtained via 
Integrated DNA technologies with 5′-FAM fluorophore and 
3′-Black-Hole quencher. Prior to offering virus to mosquitoes, 
virus was propagated into Vero cells. Viral standard curves 
and concentrations were obtained via plaque assay as described 
previously before the beginning of the experiment.16

Mosquito Exposure and Detection of Disseminated 
Infection. A. aegypti (Linnaeus, 1762) Rockefeller strain were 
reared from the colony at Louisiana State University School of 
Veterinary Medicine. Mosquitoes were orally exposed to an 
artificial bloodmeal 3–5 days post emergence with 109 plaque 
forming units (PFU)/mL or 106 PFU/mL. Feeding occurred 
as previously described.16 Briefly, mosquitoes were reared 
and maintained at constant environmental parameters of 
28 °C, 75–80% humidity, and a 16:8 light:dark photoperiod.16 

Mosquitoes were then orally challenged using the Hemoteck 
((Discovery Workshops, Arrington, Lanceshire, UK) as in 
Supernatant from virus-infected cell culture was mixed with 
bovine blood (Hemostat, Dixon, CA) at a ratio of 2:1 and viral 
titers verified by qRT-PCR as in.16

After feeding, fully engorged females were placed into 
clean cartons and then sampled at days 3, 5, 7 and 11 post 
exposure (dpe) to test for dissemination status. It has been pre-
viously shown that detectable arbovirus in the legs is indica-
tive of a fully disseminated infection; thus the salivary glands 
are presumed to be infected as well.17 Mosquito legs were 
removed and analyzed separately for infection from the bod-
ies as previously described.16,18–21 RNA was extracted using 
the MagMax-96 kit (Ambion) on a King Fisher® nucleic 
acid extraction instrument according to the manufacturer’s 
instructions (Thermo Scientific). After extraction, the samples 
were tested for the presence of dengue viral RNA via qRT-
PCR using the following protocol: RT step (1 cycle) 48  °C 
for 2 minutes and 95 °C for 5 minutes; amplification and data 
recording step (40 cycles) 95 °C for 15 seconds and 60 °C for 
30 seconds.

Data analysis. Vector competence was calculated as the 
number of disseminated infections divided by the total num-
ber of mosquitoes that fed to repletion (number exposed), 
EVC was calculated as in Ref. 16. All analyses and modeling 
was performed in R (version 3.0.1). EVC is a cumulative mea-
sure of vector competence over a range of days, bounded and 
weighted by the mosquito lifespan. Briefly, define the rate of 
change of vector competence over days as b(N):

	 b(N) = β0 + β1N

where β1  =  rate of change of vector competence over time. 
EVC, represented by the phi (φ) is then given by:

	 φ = ∫pNb(N) dN

where N is the extrinsic incubation period, here a range of days 
defined by the study duration; b(N) is as above; and P = prob-
ability of daily survival. This is held constant so as to isolate 
the viral phenotypes and assess relative fitness.16 EVC gives 
a measure of viral fitness while entomological and vertebrate 
density parameters are held.

To obtain 95% confidence intervals (CIs), we employed a 
bootstrapping method as in Ref. 16. Per day of study, the num-
ber of mosquitoes with disseminated infections was coded as  
1 and those without as 0. We then resampled (with replacement) 
for n  =  1000 iterations for a bootstrapped distribution of 

Table 1. Primers and probe sequences.

Forward Primer
Sequence

Reverse Primer
Sequence

Probe Sequence

ACCAGGAGGCAAGA 
TTTACG

CGCTTTGGTTATC 
CGTGTG

ACAAGAGGCAAGATTTACGCAGACCGCT 
GGCTGGGACACACGGATAACCAAGCG

Notes: The sequences for the primers and probe used to amplify KOUTV and CHIKV are given. All sequences are 5′  3′.
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dissemination rates (for each set of N study days). The b(N) 
was then calculated for each 1000 sets of dissemination over 
N days. EVC (φ) was calculated for each set of replicated data 
and the distribution of bootstrapped φ was obtained (Fig. 1), 
from which we obtained the 95% CI.

Results
KOUTV vector competence. No mosquitoes had a dis-

seminated infection after exposure to 106 PFU/mL, indicat-
ing that at this titer, A. aegypti are not competent for KOUTV. 
However, the higher KOUTV titer exposure resulted in dis-
seminated infections as early as 3 days post exposure (Table 2). 
The dissemination rates were calculated as 2.22%, 8.51%, 
17.24%, and 55.56% on 3, 5, 7, and 11  days post exposure, 
respectively (Fig. 2).

The calculated EVC of KOUTV was 857 indicating that 
85.7% of mosquitoes achieved a disseminated infection and 
were still alive at the end of the 11-day period of the study. 
The calculated 95% CI of KOUTV EVC was [0.701,1.15]. For 
interpretative purposes, the upper confidence limit (UCL) is 
asymptomatically bounded by 1, because proportion has a range 
[0,1]. However, the function of φ is not based on a probability 
density function and thus mathematically has no upper asymp-
tote; therefore, the mathematical 97.5% quantile may exceed 1 
as it did here (Fig. 2). Figure 3 shows the relationship among 
the raw data, the b(N) for the data, and the curve resulting from 
weighting b(N) by the mortality rate of the mosquito vector.

Discussion
Vector competence is a critical determinant of the success of 
a transmission cycle. It is affected by both intrinsic (geneti-
cally determined virus and vector) and extrinsic (environmen-
tal and ecological) factors.22 Specifically, transmission success 
of a virus by arthropod vectors is dependent on factors such 
as population density of the mosquitoes, susceptibility of 

amplifying hosts, environmental temperature, and the feeding 
preferences and habits.23 In South Florida, this mosquito spe-
cies has already shown that it is competent for DENV and 
CHIKV, where local transmission has been reported.5,8

While we reported significant KOUTV dissemination 
rates in A. aegypti challenged with a high dose of KOUTV, it is 
important to consider other factors that would alter the vector 
competence of KOUTV. First, vector competence for DENV 
and CHIKV can vary significantly among populations of the 
same species of mosquito vector.24–26 It is likely that such vari-
ability would also be seen for KOUTV across A. aegypti popula-
tions. Second, genetic diversity among strains of DENV (within 
and among serotypes) and CHIKV affects vector competence 
and transmission potential.26,27 Likewise, this could affect 
KOUTV transmission, although there is a lack of data regard-
ing KOUTV diversity. Third, extrinsic factors such as seasonal-
ity and mosquito ecology can affect vector competence.23,28,29 
Little is known about the interface of KOUTV and A. aegypti 
ecology and remains to be intensively investigated. Lastly, as 
our methods are dependent on mosquito mortality, it is impor-
tant to recognize that laboratory conditions promote longev-
ity where field-mosquito mortality is likely highly variable and 
influenced by many extrinsic factors.
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Figure 1. Histogram of bootstrapped EVC values. The bootstrapped 
distribution of KOUTV EVC values from 1000 simulations demonstrates 
how the 95% CI is determined.
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Figure 2. A. aegypti vector competence for KOUTV. Dissemination 
rates of high-dose (109) KOUTV in A. aegypti at 3, 5, 7, and 11 days post 
exposure.

Table 2. A. aegypti vector competence for KOUTV.

Days post  
exposure

Legs Total  
testedUninfected Infected

3 44 1 45

5 43 4 47

7 24 5 29

11 15 21 36

Total 153 34 187

Note: Proportion of mosquitoes with uninfected or infected legs after oral 
challenge with 109 PFU/mL on 3, 5, 7, and 11 days post exposure.
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Lastly, KOUTV reached high dissemination rates after 
exposure to high titer (109 PFU/mL), but was undetected in the 
legs of mosquitoes challenged with a lower does (106 PFU/mL).  
This disparity in success of infection corresponding to the 
dose titer offered to mosquitoes indicates that the infectious-
ness of KOUTV may be limited to high doses. The epidemio-
logical relevance of this finding is that only periods of high 
viremia will render a human (or potentially other vertebrate 
reservoirs) infectious. Given the relatively high dose required 
to infect mosquitoes and the role of infectiousness of humans 
in the probability of emergence, it is unlikely that KOUTV 
poses the same threat as other arboviruses such as dengue 
and chikungunya.5,8,23 However, since little is known about 
the infectivity of KOUTV in vertebrates, it is possible that 
serum viremia levels reach high titers capable of transmitting 
to mosquitoes.

Conclusions
A. aegypti pose a major health threat as they are competent 
for several arboviruses. Given the repeated introductions and 
eventual emergence of DENV and CHIKV in the southern 
United States, it is important to understand the potential for 
other viruses to emerge. Critical to our preparedness is an 
understanding of the potential contributors to transmission 
cycle(s) capable of maintaining these viruses. Here, we show 
that A. aegypti is capable of supporting KOUTV transmis-
sion at high titers. Therefore, more data are needed to deter-
mine the viremia titers of people infected with KOUTV or to 
determine what other potential reservoir species could support 
adequate viral loads.
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