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A fundamental need in conserving species and their hab-

itats is defining distinct entities that range from individuals to 

species to ecosystems and beyond (Table ; Ryder , Moritz 

, Mayden and Wood , Haig and Avise , Hazevoet 

, Palumbi and Cipriano , Hebert et al. , Mace , 

Wheeler et al. , Armstrong and Ball , Baker , Ellis 

et al. , Winker and Haig ). Rapid progression in this inter-

disciplinary field continues at an exponential rate; thus, periodic 

updates on theory, techniques, and applications are important for 

informing practitioners and consumers of genetic information. 

Here, we outline conservation topics for which genetic informa-

tion can be helpful, provide examples of where genetic techniques 

have been used best in avian conservation, and point to current 

technical bottlenecks that prevent better use of genomics to re-

solve conservation issues related to birds. We hope this review will 

provide geneticists and avian ecologists with a mutually beneficial 

dialogue on how this integrated field can solve current and future 

problems.

TAXONOMY

If conservation strives to preserve as much variation as possible 

at all levels of biodiversity, then conservation depends upon tax-

onomy. Whether conservation priorities are based on species, 

subspecies, or evolutionarily significant units (ESUs), DNA is 

increasingly being used to determine the evolutionary and geo-

graphic boundaries of these entities. Far from merely academic 

considerations, these groupings are critically important in con-

servation prioritization and can have important legal ramifica-

tions for threatened and endangered species, subspecies, distinct 

population segments (DPSs), or ESUs (reviewed in Haig et al. 
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, Garnett and Christidis , Haig and D’Elia ). Despite 

the importance of defining these units, boundaries of species, sub-

species, and populations are not always clear, and hybridization 

can further conflate taxonomic analyses and conservation options 

(Haig and Allendorf ). Advances in conservation genetics 

have proved helpful in resolving some long-standing taxonomic 

questions in birds, but philosophical disagreements over funda-

mental taxonomic concepts remain.

Species.—Although birds are arguably the best-studied 

vertebrate group, vigorous debate continues over which spe-

cies definition best applies to them. The three top contenders 

include the biological species concept (BSC; see Tobias et al. , 

Winker a)—the most commonly used in avian taxonomy—

and two that have emerged from cladistics (the phylogenetic and 

monophyletic species concepts; Cracraft , ; Mishler and 

Brandon ; McKitrick and Zink ; Zink and McKitrick 

). In part because of the multiplicity of applied species con-

cepts, avian taxonomy is far from stable at any level, and this 

has real-world conservation implications. For example, patterns 

of endemism in the birds of Mexico (Peterson and Navarro-

Sigüenza ) and the Philippines (Peterson ) depend on 

whether a biological or phylogenetic species concept is used. The 

use of different species concepts has also been shown to affect 

the composition of lists of endangered birds in Mexico (Rojas-

Soto et al. ), and vigorous discussion regarding the appro-

priateness of splitting polytypic species continues (Christidis 

and Boles , Chesser et al. ). At the same time, new dia-

logues are emerging about the importance of studying specia-

tion patterns in migratory birds, given that differentiation and 

speciation appear to be common even in the absence of extended 

isolation (Winker b).
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TABLE 1. Issues addressed by avian conservation genetics.

Taxonomy (Meta) populations Landscapes

While debate over species concepts endures, the increasing 

ease and affordability of DNA sequence analysis provides new 

power for discriminating among morphologically similar taxa, 

and continues to change our understanding of avian taxonomy 

(insets  and ; Bickford et al. ). Nearly all easily recognized 

bird species were thought to be described decades or centuries 

ago, leading ornithologists to conclude by the s that there 

were few undiscovered bird species or geographic races (Zimmer 

and Mayr , Stresemann ). However, continued discovery 

of new avian taxa into the st century indicates that conclusion 

to have been premature. Just within the antbirds (Thamnophili-

dae), the American Ornithologists’ Union (AOU) has recognized 

an additional  species since  and elevated  subspecies to 

full species status while lumping just two species together (Remsen 

et al. ).

Genetic analyses have been critical to most recent discov-

eries of new birds because these are usually cryptic species with 

subtle or indistinguishable external characters resulting from 

evolutionarily conservative morphology, a reliance on nonvisual 

mating cues, or convergent morphological evolution (Bickford 

et al. , Trontelj and Fišer ). In the case of the Gray-crowned 

Palm-Tanager (Phaenicophilus poliocephalus), Sly et al.’s () 

identification of two taxa, with one being Haiti’s only endemic 

bird, led to renewed interest in protecting a threatened biodi-

versity hotspot on the Tiburon Peninsula. Studies of tapaculos 

in the genus Scytalopus (Rhinocryptidae) also demonstrate the 

ability of genetic data to reveal unrecognized biodiversity. These 

small mouse-like birds of the Andes and southeastern Brazil 

inhabit the dark undergrowth of forests and scrub. Scytalopus

song has often been used to define species’ limits because their 

morphology is so static over evolutionary time that they often 

vary more within than among species (Krabbe and Schulenberg 

). Thus, it was quite surprising when Maurício et al. () 

tested Scyatlopus monophyly with molecular data and discov-

ered a cryptic genus, Eleoscytalopus. Subsequently, Mata et al. 

() used mitochondrial and nuclear DNA sequences to reveal 

four potential cryptic species, one within the White-breasted 

Tapaculo (E. indigoticus) and three within the Mouse-colored 

Tapaculo (S. speluncae).

Once putative cryptic species are identified with genet-

ics, analyses of song and closer inspection of morphology often 

provide additional support for the species status. However, spe-

cies will not always diverge equally in all character systems, as 

demonstrated by recent studies of warbler finches (Certhidea)

in the Galápagos. These morphologically conservative birds are 

the most basal and widespread of Darwin’s finches and do not 

exhibit any premating isolation due to song, so they have tradi-

tionally been treated as one species (Grant and Grant ). Re-

cent discovery of large intraspecific genetic differences resulted 

in recognition of two species (C. olivacea and C. fusca; Freeland 

and Boag , Petren et al. ). These genetic differences 

were not correlated with geography, as in most cases of cryptic 

diversity, but were instead associated with habitat differences 

(Tonnis et al. ).

Many have pointed out that using multiple lines of evidence 

(DNA, song, morphology, ecology, etc.) in taxonomic decisions 

may lead to incongruent results (Zink , O’Brien and Mayr 

, Ball and Avise , Zink ), leading some to advocate 

use of mitochondrial DNA (mtDNA) over other data in making 

such delineations (Ball and Avise , Zink et al. , Zink 

). Others have emphasized the need for multilocus data 

(Edwards and Beerli ) and more inclusive approaches that 

combine genetic data with data from plumage, morphology, 

song, and behavior (Dizon et al. , Vogler and DeSalle , 

Haig et al. , Alström et al. ). Tobias et al. () took 

this a step further and proposed using a scoring system based 

on biometrics, plumage, and song to measure divergence be-

tween undisputed sympatric species as a yardstick for assess-

ing the taxonomic status of allopatric forms. Although it needs 

further testing, their approach yielded relatively few changes to 

avian taxonomy in Europe. They argued that the benefits of this 

approach include a systematic and defensible approach that can 
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HIGH-THROUGHPUT SEQUENCING AND SINGLE-NUCLEOTIDE POLYMORPHISMS

b or 

conservation genetic toolbox.

FIG

in a single nucleotide (AAGCCTA to AAGCTTA
C and T

be applied across taxa worldwide. This sort of methodology, ex-

panded to include genetic data, could benefit conservation by 

providing a consistent approach that includes multiple lines of 

taxonomic evidence by combining neutral genetic markers with 

phenotypic data that likely reflect the influence of reproduc-

tive isolation (Haig et al. , Garnett and Christidis ). 

Thus, one may capture variation due to multiple influences on 

speciation and move toward a taxonomy that best reflects likely 

separations among gene pools, even when it is not possible to 

demonstrate strict reproductive isolation.

Two recent investigations exemplify the use of multiple 

lines of evidence to assess taxonomic boundaries: studies of the 
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BARCODING
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to discriminate a small but important percentage (
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C. leucopterus

Spotted Bush-Warbler (Bradypterus thoracicus) complex by 

Alström et al. () and studies of the Stripe-headed Brush-

Finch (Arremon torquatus) complex by Cadena and Cuervo (). 

The former compared plumage, morphology, egg coloration, song, 

mtDNA haplotypes, habitat–altitudinal distribution, and behav-

ior and suggested that B. thoracicus, B. davidi, and B. kashmirensis

should be recognized as full species because they differ in most 

aspects. Similarly, Cadena and Cuervo () used data from song, 

morphology, ecology, and genetics to suggest recognition of eight 

full species in a group formerly treated as a conglomerate of  

subspecies.

Recent splitting of Greater Sage-Grouse (C. urophasianus)

into two species (now including Gunnison Sage-Grouse [C. mini-

mus]; Young et al. ) illustrates how recognition of cryptic spe-

cies can carry major conservation implications (Hazevoet ). 

The Gunnison Sage-Grouse comprises less than , individu-

als, and threats are considered imminent and of high magnitude, 

whereas the population of Greater Sage-Grouse, although sig-

nificantly reduced from historical numbers, is still estimated to 

exceed , individuals, and threats to this species are con-

sidered moderate in magnitude (U.S. Fish and Wildlife Service 

[USFWS] a, b). Although both species are now considered 
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candidates under the U.S. Endangered Species Act (ESA; i.e., they 

were found to warrant ESA protection but listing is currently pre-

cluded by higher-priority listing actions), the Gunnison Sage-

Grouse has a higher listing priority than the Greater Sage-Grouse, 

which means that it is likely to receive ESA protection sooner than 

the Greater Sage-Grouse, and sooner than it would have if it were 

listed as a subspecies or DPS. It is also possible, given the higher 

level of threats and smaller population size, that the Gunnison 

Sage-Grouse could ultimately receive a higher level of protection 

under the ESA than the Greater Sage-Grouse.

Subspecies.—While the goal of species conservation is shared 

by all who value biodiversity, the existence, identification, and 

conservation of subspecies has received mixed support (Zink 

, Haig et al. , Haig and D’Elia , Winker and Haig 

). A “subspecies” is generally defined as a breeding population 

that has measurably distinguishable genotypes or phenotypes (or 

both) and occupies a distinct geographic area within its species 

range (Mayr , Avise , Patten , Remsen ). Vari-

ation below the species level can embody evolutionary and de-

velopmental responses to heterogeneous geography, differential 

selection, or neutral processes such as bottlenecks and stochas-

ticity. Some of the strongest arguments about the validity of the 

subspecies concept describe attempts to delineate its upper and 

lower bounds (Winker a). That is, at what point is geographic 

variation suitably differentiated to justify subspecific status and at 

what level of differentiation do recognized subspecies achieve full 

species status?

Although ornithologists have traditionally defined avian 

subspecies (and species) using plumage, morphology, and behav-

ior, advances in molecular biology have led to the use of variation 

in discrete and presumably selectively neutral genetic markers 

(Winker and Haig ). These molecular data provide an addi-

tional avenue for taxon delineation, but in many cases the mo-

lecular data sets are not congruent with subspecies defined by 

traditional methods (Zink , ; O’Brien and Mayr ; 

Ball and Avise ; Burbrink et al. ; Funk et al. b; 

Draheim et al. ; Zink et al. ). Zink () argued that 

subspecies defined by traditional nonmolecular methods may 

actually misinform conservation efforts through misrepresenta-

tion of underlying patterns of intraspecific variation. This lack 

of concordance among approaches has led some to suggest that 

molecular methods (i.e., reciprocal monophyly among mito-

chondrial sequences) should be used preferentially to define con-

servation units (Moritz , Zink ). Others suggest that 

discordance should be expected when using neutral molecular 

data to examine shallow levels of divergence, as compared with 

phenotypic data sets that describe variation that is likely reflec-

tive of processes that are not selectively neutral (Greenberg et 

al. , Oyler-McCance et al. , Pruett and Winker , 

Winker a).

At present, so few described avian subspecies have received 

examination via modern molecular methods that it is difficult 

to draw general conclusions about the validity or utility of the 

subspecies concept (but see Klicka et al. ). Thus, new, ge-

netically informed attention to intraspecific variation across a 

greater taxonomic range is warranted (Haig and Winker , 

Remsen ). As the application of genomic methods become 

more widespread among avian taxa, examination of the genetic 

basis for adaptation and phenotypic variation may help sort out 

the issue (Hoekstra et al. , Mumme et al. , Mitchell-

Olds et al. ).

Decisions to recognize or not recognize subspecies have 

significant conservation implications under many endangered-

species classification and funding schemes (reviewed in Haig et al. 

, Haig and D’Elia ). For example, there would be no tax-

onomic units below the species level if the phylogenetic species 

concept (PSC) were adopted by the AOU. Thus, USFWS, IUCN, 

COSEWIC (Committee on the Status of Endangered Wildlife in 

Canada), and others would have to reconsider current avian sub-

species listings. In the United States, subspecies would have to 

be re-examined for listing as either species or some other entity 

such as a DPS or ESU. Elevation of subspecies to species (under the 

PSC) could aid conservation efforts because such entities could 

be given added weight corresponding to their elevated taxonomic 

status under the IUCN criteria. However, many other difficul-

ties could result. For one, the change could make it more difficult 

to add species to various endangered-species lists because of the 

added workload, cost, and, perhaps, public fatigue from hearing 

about many new species being listed simply because a new species 

concept has been applied. Furthermore, it could reopen litigation 

regarding the listings. Swamping the IUCN list with many new 

“species” could reduce the importance of a former “species” with a 

wider geographic range. Finally, adopting the PSC and recogniz-

ing many more avian species could exacerbate the difficulty of vi-

sual identification or differentiation of species by law-enforcement 

agents around the world who often struggle to identify particular 

species under even the BSC criteria. Overall, the changes to pol-

icy that would arise from adopting the PSC argue neither for nor 

against the biological validity of that concept, but effectively illus-

trate that the species-concept debate carries major implications 

for conservation.

Hybridization.—Hybridization and introgression can result in 

extinction of native fauna when nonindigenous species are intro-

duced or disperse into novel environments (Rhymer and Simberloff 

, McCarthy , Mallet ). Molecular methods are the 

fastest and most accurate means of revealing boundaries between 

known taxonomic entities that are permeable or under erosion, 

as in the case of hybridization. Allendorf et al. () developed 

hybrid categorization guidelines to assist with management deci-

sions. These are particularly useful for those species that receive 

protection under the ESA and where law-enforcement agents need 

to accurately identify taxa to decide whether or not a violation of 

the ESA’s prohibited acts (ESA section ) has occurred. Hybrids are 

not protected under the ESA, IUCN, or SARA (Species at Risk Act), 

which has caused numerous debates, especially for species listed 

under the ESA (for review, see Haig and Allendorf ). Problems 

arise when a listed species hybridizes with a nonlisted species and 

the hybrids are not visually distinguishable from the listed taxa, 

leaving law-enforcement agents unable to prosecute a person who 

has harmed or killed the listed species, unless they have access to 

molecular tools that can sort hybrids from listed species.

Owls in genus Strix exemplify the utility of genetic tools in 

resolving conservation issues complicated by hybridization. Hy-

bridization between threatened Northern Spotted Owls (Strix 

occidentalis caurina) and invasive Barred Owls (S. varia) occurs 

and viable offspring are produced (Hamer et al. , Kelly and 
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Forsman ). However, Strix hybrids that backcross with Spot-

ted Owls produce fewer offspring, which potentially reduces their 

fitness (Haig et al. , Kelly and Forsman ). Mitochondrial 

DNA and amplified fragment length polymorphism (AFLP) anal-

yses have proved to be reliable methods for accurate identifica-

tion of Strix hybrids (Haig et al. ). Additionally, Funk et al. 

(a) identified four diagnostic microsatellite loci that suc-

cessfully differentiated F

 hybrids from backcrosses where AFLP 

and field identification methods failed. These markers are use-

ful to law-enforcement officials who must be able to discern be-

tween “take” of Spotted Owls and hybrids to effectively protect 

the Spotted Owl.

Genetic markers may also be useful in identifying site-

specific management actions for removing hybrids. Hawaiian 

Ducks (Anas wyvilliana), or Koloa, are a Federal and State en-

dangered species endemic to the Hawaiian islands and readily 

hybridize with introduced feral Mallards (A. platyrhynchos)

(Fowler et al. ). Fowler et al. () used AFLPs and micro-

satellites to distinguish between hybrids and Hawaiian Ducks 

and then to evaluate the relative contributions of Mallards and 

Hawaiian Ducks to the hybrids. They found differences in the 

contribution of hybrids on different islands, suggesting that 

island-specific management actions may be warranted. Finally, 

because they were able to effectively differentiate hybrids and 

Hawaiian Ducks using molecular tools, a morphological field 

key is being created and tested with molecular data to help guide 

hybrid-removal actions.

Levels of hybridization and introgression of the critically en-

dangered New Zealand Black Stilt or Kaki (Himantopus novaeze-

landiae) with the self-introduced congener, the Pied Stilt or Poaka 

(H. himantopus leucocephalus), were documented using a Bayes-

ian admixture analysis of microsatellite data with mitochondrial 

DNA sequence data (Steeves et al. ). From this analysis it was 

demonstrated that hybrids could be identified by plumage charac-

teristics and that, despite extensive and bidirectional hybridiza-

tion, there was almost no evidence for introgression from Poaka to 

Kaki, which is likely attributable to reduced reproductive success 

in female hybrids and a transient male-biased Kaki sex ratio. Such 

a finding was counter to popular beliefs and critical to deciding 

whether or not to promote hybridization to facilitate genetic res-

cue, or whether to prevent it.

Conservation prioritization.—Even after taxa are delineated, 

limited resources force biologists, managers, and policymakers to 

implement triage when allocating funds for conservation (Bottrill 

et al. ). Various taxonomy-based prioritization schemes have 

been proposed. For example, phylogenetic diversity measures 

may be used to prioritize biodiversity conservation based on evo-

lutionary history, thereby affording increased protection to dis-

tinctive taxa (Vane-Wright et al. , Faith ) at any level of 

taxonomic hierarchy (Avise ). Phylogenetic approaches to 

conservation are flexible and powerful, but they are dependent on 

phylogenetic hypotheses that are themselves works in progress 

and can sometimes change considerably when new data or meth-

ods of analysis become available. For example, the last three an-

nual supplements to the AOU Check-list of North American Birds

(Banks et al. ; Chesser et al. , ) added four orders 

and  families to the previous list as a direct result of new stud-

ies on the avian tree of life (Hackett et al. ). Such changes 

greatly affect phylogenetic diversity measures when they result 

in long branches associated with higher taxa with few extant 

species, or even species that form monotypic families or genera. 

For example, in the New World, recent molecular studies have 

resulted in the erection or resurrection of monotypic families 

for the Osprey (Pandionidae: Pandion haliaetus), Magellanic 

Plover (Pluvianellidae: Pluvianellus socialis), Sharpbill (Oxy-

runcidae: Oxyruncus cristatus), and Black-capped Donacobius 

(Donacobiidae: Donacobius atricapilla) (Remsen et al. ). Di-

versity in the order Ciconiiformes has been reduced from  to 

 species with the transfer of Ardeidae, Scopidae, Balaenicipiti-

dae, and Threskiornithidae to the Pelecaniformes (Chesser et al. 

). Similarly, phylogenetic analysis of molecular data sets of 

New Zealand “honeyeaters” showed that the rare Stitchbird (No-

tiomystis cincta), extirpated from North Island and numbering 

fewer than , individuals on an offshore island, represents a 

monotypic family (Notiomystidae) with a divergence of  mil-

lion years ago (Ma) from its closest relatives, the New Zealand 

Wattlebirds (Callaeidae; Driskell et al. ). The Hawaiian Hon-

eycreepers (Mohoidae) are a similar case: all four species were 

lost before they were identified to science (Fleischer et al. ). If 

a goal of conservation is to preserve as much of the tree of life as 

possible, consideration should be given to protecting regions that 

harbor these highly divergent taxa. Molecular data can often pro-

vide a clear window into the true structure of that tree.

POPULATION STRUCTURE

Development of microsatellite markers in the s revolution-

ized our ability to understand population structure in birds. New 

sequencing technology has exponentially increased this capabil-

ity (inset ; Lerner and Fleischer ). Further, comparing mi-

crosatellite results with mitochondrial sequence data juxtaposes 

recent population processes with changes in population structure 

over evolutionary time. Thus, detailed estimates of genetic diver-

sity, population structure, effective population size, and gene flow 

are now possible and robust where previously such estimates were 

problematic in bird studies.

Consideration of demographic information with genetic data 

further strengthens our understanding of detailed population 

structure. Funk et al. () used this approach to identify recent 

population bottlenecks for Northern Spotted Owls (Strix occi-

dentalis caurina) and found that genetic results were correlated 

with long-term demographic trends from the same sites. A severe 

ancient bottleneck was also detected in the British Golden Eagle 

(Aquila chrysaetos), although in this case the bottleneck did not 

appear to affect demographic stability (Bourke et al. ). Con-

versely, Brekke et al. () found severe inbreeding depression 

among a reintroduced population of the endangered Hihi (Notio-

mystis cincta) in New Zealand.

Integration of ancient DNA (inset ) into analyses of popula-

tion structure can provide a more direct view of historical popu-

lation structure and identify otherwise cryptic phylogeographic 

patterns. For example, using ancient mtDNA from bones pre-

served in lava tube caves, Paxinos et al. () found a previously 

unknown radiation of geese in the Hawaiian archipelago associ-

ated with the independent evolution of flightlessness and gigan-

tism on different islands.
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ANCIENT DNA
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Comparing results across taxa can also help illuminate small 

population processes. Evans and Sheldon () analyzed micro-

satellite data from  bird species and found a significant decline 

in mean heterozygosity with increasing extinction risk. They sug-

gested that smaller population sizes of threatened species were 

largely responsible for this relationship and that bird species at risk 

were relatively depauperate in terms of neutral genetic diversity.

Ultimately, results of conservation genetic efforts for popu-

lations are used in defining units for conservation. These discus-

sions are often confusing because there are legal designations of 

populations under the ESA (i.e., DPSs; USFWS and National Ma-

rine Fisheries Service ) and there are overlapping terms used 

in the conservation literature to describe conservation units (e.g., 

Ryder , Moritz ). Molecular markers can greatly aid both 

efforts, but distinctions between the two aspects of describing 

populations of concern must be understood. Often broken down 

into ESUs and management units (MUs), there are many ways to 

describe conservation units, but none of these have a legal basis 

for protection (Fraser and Bernatchez ). Conversely, DPSs 

carry legal protection for the areas and species identified. The US-

FWS has come to depend more and more on molecular evidence 

for ESA–DPS decisions as the costs of generating the data decline 

and the need for better quantification of population boundaries 

increases (Fallon , Kelly ).

Small populations: Pedigree analyses.—Pedigree analyses, 

which combine direct observations, molecular markers, and 

pedigree models, have been underutilized in avian-conservation 

efforts for wild and captive populations (Haig and Ballou , 

Kruuk and Hill , Pemberton ). The paucity of microsat-

ellites identified in bird studies (Primmer et al. ) prior to de-

velopment of fast-throughput sequencing rendered this approach 

limiting for avian applications because there was not enough sta-

tistical power to differentiate among individuals, particularly 

closely related individuals. However, high-throughput sequencing 

technology now provides access to far more microsatellite mark-

ers and single-nucleotide polymorphisms (SNPs) for these impor-

tant analyses (inset ; Anderson and Garza , Backström et 

al. , Hauser et al. ). Field observations and sampling of 

many full families can also add confidence to molecular pedigree 

assessments; however, caution is warranted if the mating system 

is not well understood (Charmantier and Réale , Wang and 

Santure ).

Despite these cautions, molecular pedigree assessments have 

yielded important information about reductions in effective popu-

lation size in wild animals (Slate , Sillanpää ). Townsend 

() found disease-mediated inbreeding depression in a wild 

population of cooperative American Crows (Corvus brachy-

rynchus), and Ortego et al. () identified the importance of un-

derstanding individual genetic diversity as it is related to clutch 

size and egg volume in small populations. Inbreeding avoidance 

or lack thereof has also been investigated in a number of stud-

ies (e.g., Keller and Waller , Hansson et al. , Grant and 

Grant , Keller et al. , Jamieson et al. , Szulkin et al. 

, Bush et al. ).

In principle, once molecular markers identify genetic relat-

edness among pedigree founders and confirm parentage, pedi-

gree models use the subsequent pedigree to evaluate the current 

status of a population, investigate strategies for reintroduction or 

translocations, or predict potential changes in effective popula-

tion size as a result of better pedigree or population management 

(Haig and Ballou ). Recently, pedigree analyses have proved 

helpful in developing management plans for maintaining genetic 

variation in free-ranging populations of the Takahē (Porphyrio 

hochstetteri), an endangered flightless New Zealand rail (Grueber 

and Jamieson ), and in White Storks (Ciconia ciconia) in Sweden 

(Olsson ).

Population connectivity and metapopulations.—A metapo-

pulation is a group of spatially segregated, but demographically 

interacting (“connected”), populations. It is a useful concept for 

understanding avian population structure and dynamics, even 

in migratory species in which populations are not spatially dis-

crete throughout the annual cycle (Esler ). However, not 

all fragmented populations behave as metapopulations; thus, 

genetic data can be used to infer a population’s spatial organi-

zation (e.g., patchy populations, metapopulations, or isolated 

populations; Mayer et al. ). Estimating metapopulation 

connectivity or sex-biased dispersal patterns (recently reviewed 

for all taxa by Broquet and Petit ) is an important aspect of 

conservation genetics because it helps identify factors contrib-

uting to the decline of effective population size (i.e., species sta-

tus). In the past, avian dispersal has been measured indirectly, 

via analysis of band returns (Crochet ), or via use of mito-

chondrial DNA or limited numbers of microsatellite markers. 

Thus, the chance of finding markers that track specific popula-

tions or individuals within them was considered quite slim, even 

if there was some degree of population differentiation. However, 

fast-throughput sequencing changes this paradigm and opens 

a new chapter in our ability to track birds at multiple temporal 

and spatial scales.

Regardless of the marker, many bird species, particu-

larly migratory species, exhibit low levels of population genetic 

structure because their ability to fly makes them good dispers-

ers (Crochet ). Thus, although habitat fragmentation has 

been a major focus in conservation biology, it has had little de-

tectable effect on genetic structure in most recent avian studies 

(e.g., Brown et al. , Funk et al. b, Barnett et al. , 

Draheim et al. ). Barnett et al. () interpreted a lack of 

genetic structure among habitat fragments as evidence for ongo-

ing gene flow. However, potential “time lags” between the onset 

of habitat fragmentation and their ramifications for population 

connectivity were not considered. Care is required when evaluat-

ing evidence for ongoing connectivity of populations, especially 

if the populations in question are not at migration–drift equi-

librium (Crochet ). Segelbacher et al. () addressed this 

problem by sampling populations with different levels of spatial 

discontinuity (i.e., continuous range, metapopulations, isolated 

populations) and temporal isolation (recent vs. long isolated) to 

determine how much genetic differentiation had accumulated. 

By contrast, nonmigratory bird species may exhibit high levels of 

differentiation and thus be more amenable to “traditional” stud-

ies of population structure. For instance, Galbusera et al. () 

successfully used assignment tests with microsatellite loci to 

identify individuals descended from migrants in recently isolated 

populations of Taita Thrushes (Turdus helleri) and showed signif-

icant genetic differentiation between the only three remaining 

subpopulations.
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Recent reviews (Bossart and Prowell , Lowe and Allen-

dorf ) caution against making inferences about demographic 

connectivity solely from genetic data and recommend using te-

lemetry or mark–recapture data to validate such conclusions. 

For instance, Fedy et al. () employed genetic and telemetry 

methods to study connectivity among populations of White-

tailed Ptarmigan (Lagopus leucura) and found that although ge-

netic data suggested moderate gene flow between sites, telemetry 

data did not capture the movement of any individuals between 

populations. Mayer et al. () used banding surveys in con-

junction with nine microsatellite loci to quantify connectivity 

and identify which spatial model (patchy populations, metapop-

ulation, isolated populations) best explained movement patterns 

of Reed Buntings (Emberiza schoeniclus). Rollins et al. () 

used  microsatellite loci to study invasive European Starlings 

(Sturnus vulgaris) in Australia and were able to verify the source 

population of new invasions, validate the existence of a sex-bi-

ased dispersal system, and confirm that gene flow between sub-

populations would make complete eradication of a population 

difficult, necessitating continual management. Similarly, Barri-

entos et al. () used molecular markers to track movements 

of Trumpeter Finches (Bucanetes githagineus) throughout the 

annual cycle and across populations to document new popula-

tion formation. They determined that movements of individuals 

toward sites outside their current range during the nonbreed-

ing season are likely to precede the establishment of new breed-

ing sites at the periphery of the distribution range. Conversely, 

Funk et al. (b) measured adequate gene flow among Great 

Basin and Pacific Coast Snowy Plovers (Charadrius alexandri-

nus), but banding information suggested quite minimal move-

ment between these inland and coastal areas. As a result, a DPS 

was defined under the ESA on the basis of demographic isolation 

rather than genetics.

Dispersal abilities are particularly high among migratory 

birds, in which long-distance movements, high dispersal rates, 

and high rates of gene flow can minimize genetic differentiation 

of populations (Grinnell , Wetmore , Böhning-Gaese 

et al. , Belliure et al.  in Winker b). This is particu-

larly true in North America because repeated population isolation 

and expansion associated with Pleistocene climatic fluctuations 

has played an important role in structuring intraspecific genetic 

variation in northern temperate birds (Avise and Walker , 

Klicka and Zink , Milá et al. , Klicka et al. ). This 

has resulted in low resolution when using standard approaches for 

measuring connectivity, such as estimating gene flow among pop-

ulations or identifying individuals dispersed from other popula-

tions (called “migrants” in the population genetics literature) via 

population assignment tests.

In one of the first studies of avian population structure to 

use high-throughput sequencing, Li and Merilä () identified 

 microsatellite markers across the Siberian Jay (Perisoreus in-

faustus) genome and used them to examine sex-biased disper-

sal. They estimated the scale at which linkage disequilibrium 

among markers decayed for each sex. Because () males had 

lower heterozygosity and () linkage disequilibrium decayed 

much faster for females, they concluded that dispersal is female 

biased (but did not estimate the geographic distances over which 

this occurred).

Several recent connectivity studies have gone beyond infer-

ences based solely on genetic structure. Broquet et al. () pro-

posed a model to estimate direct migration rates by comparing 

genotypes of a population before and after dispersal. This model 

did not require migration–drift or Hardy-Weinberg equilib-

rium and was robust even when few microsatellite markers were 

available. However, it has not yet been applied to avian taxa and 

performs best when a high proportion of individuals from each 

population are sampled. Peery et al. () used parentage as-

signments and demographic simulations to evaluate the role of 

immigration in sustaining a threatened population of Marbled 

Murrelets (Brachyramphus marmoratus). Microsatellite geno-

types were used to estimate the number of parent–offspring pairs 

within the population compared to numbers expected under dif-

ferent models of immigration (i.e., a closed population versus a 

sink population). A related study compared historical and current 

genetic structure in those populations and found that migrants 

were significantly less likely than resident birds to be involved in 

parent–offspring pairs and, thus, unlikely to rescue the declining 

populations (Peery et al. ). By focusing on individuals rather 

than population genetic structure and not assuming equilibrium, 

such methods promise new insights into contemporary levels of 

connectivity (Palsbøll et al. ).

Genetic data can be used to infer whether the current spa-

tial organization of populations reflects historical population 

structure or results from anthropogenic habitat fragmentation 

(inset ; Segelbacher et al. , Miller and Haig ). More-

over, if we can measure the effect of historical habitat connec-

tivity or fragmentation on gene flow, we will be better equipped 

to make predictions regarding the effect of future climatic or 

habitat conditions on gene flow and population viability (Hoe-

lzel ).

By linking demographic data with genetic data, cryptic pop-

ulation processes may emerge that are not evident when looking 

at these factors in isolation (Peery et al. ). Genetic identi-

fication of a new and distinct population of the secretive Black 

Rail (Laterallus jamaicensis) in the Sierra Nevada of northern 

California resulted in reconsideration of conservation priorities 

for the species (Girard et al. ). Incorporating genetics into 

metapopulation viability analyses may also allow one to assess 

the extent to which facilitating gene flow may slow the loss of 

heterozygosity and alleviate the projected effects of inbreeding 

depression (Pienkowski et al. , Segelbacher and Storch , 

Schiegg et al. ).

Metapopulation management: Translocations and reintroduc-

tions.—Translocations and reintroductions can be used to () 

supplement small or declining populations; () re-establish popu-

lations within their historical range; or () establish populations 

in novel areas (i.e., assisted migration and colonization) because 

their historical range is, or is likely to become, uninhabitable as a 

result of climate change, invasive species, habitat destruction, or a 

nexus of other threats. From a conservation genetics perspective, it 

is best to augment or re-establish metapopulations with individu-

als from populations that were connected historically by gene flow 

to reduce the chances of outbreeding depression and to increase 

the chances of retaining genomic components that reflect local 

adaptation (Storfer ; but see Jacobsen et al. ). Currently, 

evidence of avian outbreeding depression is scarce (Frankham et al. 
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; but see Marr et al. ) and predicting the risk of its occur-

rence is one of the most important unmet scientific challenges in 

the field of conservation genetics (Frankham ). In small popula-

tions, reducing the risk of outbreeding depression must be balanced 

against the need to minimize inbreeding (Keller and Waller ) 

and manage genetic variation to facilitate long-term persistence of 

the source and target populations (Haig et al. ). In extreme cir-

cumstances (e.g., when a species would otherwise go extinct), in-

tercrossing different but closely related taxa or ESUs (i.e., genetic 

rescue; Tallmon et al. ) may be the only method for preserving 

portions of an imperiled species’ genome (Tarr and Fleischer , 

Tallmon et al. , Hedrick and Fredrickson ). In translocat-

ing individuals into small populations, one must always consider 

the potential for complete replacement of small gene pools by ge-

netically more diverse individuals that may be more fit (i.e., genetic 

swamping; Bouzat et al. ). Thus, demographic challenges need 

to be addressed prior to genetic considerations (Frankham et al. 

), and risk analysis of options is usually advisable.

Where there is significant uncertainty in the genetic makeup 

of source or donor populations for translocations, and where the 

effects may be irreversible, moving individuals can be tantamount 

to ecological gambling and counter to the precautionary princi-

ple in conservation biology (sensu Ricciardi and Simberloff ). 

Yet, in the crisis discipline of conservation biology, risk manage-

ment requires that one weigh the risk of inaction against the risk 

of action. A genetic assessment of intra- and interpopulation dif-

ferentiation prior to translocations can help quantify uncertainty 

and risk associated with artificially creating gene flow, evaluate 

the appropriateness of alternative population sources or targets 

(e.g., Haig et al. ; Tarr and Fleischer , ), and set pri-

orities for conservation of genetic diversity (Haig et al. , Boes-

senkool et al. ).

Following implementation of translocations, genetic assess-

ments can measure whether the movement of animals met ge-

netic or demographic management goals. For example, Bouzat 

et al. () found that translocations of Greater Prairie Chick-

ens (Tympanuchus cupido pinnatus) were an effective tool in de-

creasing inbreeding coefficients and increasing genetic diversity 

while not swamping the genetic makeup of the target population. 

Conversely, translocations of New Zealand’s South Island Rob-

ins (Petroica australis australis) to island refugia resulted in high 

levels of inbreeding, low levels of genetic diversity, and higher 

hatching failure rates, which suggests that future translocation 

efforts warranted more careful consideration of founder compo-

sition and numbers (Boessenkool et al. ). Talbot et al. () 

discovered that translocation of Dusky Canada Geese (Branta 

canadensis occidentalis) to augment a population on Middleton 

Island in the Gulf of Alaska was not effective because subsequent 

population increases were determined to be the result of immi-

gration from other islands rather than translocated geese. This 

finding would have gone undetected without an understanding 

of population structure from genetic markers. Finally, a severe 

population bottleneck suffered by captive White-headed Ducks 

(Oxyura leucocephala) led Muñoz-Fuentes et al. () to recom-

mend that more genetically diverse populations be established in 

captivity and the wild.

Migratory connectivity.—Migratory connectivity is the geo-

graphic linking of individuals or populations between stages of a 

life cycle or throughout an animal’s life cycle (Webster et al. , 

Marra et al. ; see www.migratoryconnectivityproject.org). 

Long seasonal migrations of many temperate bird species con-

found some of the traditional interpretations of connectivity ap-

plied to other taxa, in which it is primarily defined as movements 

between “suitable patches” that serve as year-round or breeding 

habitat (Hilty et al. ). By contrast, migratory birds may ag-

gregate differently in winter and breeding habitats, with poten-

tial for genetic structure depending on whether pairing occurs 

during migration or on the breeding grounds (Flint et al. , 

Winker b). Genetic approaches to investigating migratory 

connectivity have been most effective when integrated with band-

ing surveys, satellite telemetry, and isotope analysis (e.g., Clegg 

et al. , Hobson , Kelly et al. , Hellgren et al. ), 

although stock identification (matching individuals to breed-

ing populations based on genetic assignment) at overwintering 

grounds has succeeded in some cases (Haig et al. ). For exam-

ple, Sonsthagen et al. () identified hierarchical spatial genetic 

structure in Common Eiders (Somateria mollissima) breeding 

along a migratory corridor. Likewise, Wenink et al. () used 

mitochondrial DNA lineages of Dunlin (Calidris alpina) at winter 

sites to assign individuals to their population of origin. Pearce 

et al. () used microsatellite genotypes and mitochondrial 

DNA from Canada Geese (Branta canadensis) collected at hunter 

check stations to determine how harvest was affecting similar-

appearing subspecies or populations with different conservation 

status (i.e., declining or stable). Cadiou et al. () attempted to 

assign breeding origin to Common Guillemots (Uria aalge) that 

died in a massive oil spill at their wintering grounds using micro-

satellite data. The characteristic limitation imposed by weak genetic 

structure prevented accurate genetic assignment, but Cadiou et 

al. () concluded that the die-off was unlikely to cause loss of 

much genetic diversity, given that genetic structure was so weak. 

Flint et al. () used the lack of genetic structure, in combination 

with banding returns, to determine that populations of Pintails 

(Anas acuta) in North America and Asia routinely exchange mi-

grants in numbers irrelevant to demography but sufficient to allow 

gene flow and, perhaps, transmission of parasites.

On the other hand, Hall et al. (), in an extension of the 

novel approach employed by Peery et al. (), estimated the pro-

portion of migrants at different seasons in a peripheral population 

of Marbled Murrelets using assignment tests from  microsatel-

lite markers. They used simulations to determine threshold levels 

of significance for identifying migrants that balanced Type I and 

Type II error and estimated the reproductive contribution of those 

migrants by identifying possible parent–offspring pairs involving 

migrants and comparing those with expectations generated from 

demographic models. Despite low genetic structure between pe-

ripheral (central California) and source (Alaska) populations, which 

could have precluded direct estimation of migration rates from as-

signment tests, they concluded that most migrants were females 

and the population was composed of a high number of migrants in 

the winter, but few migrants were present during breeding seasons 

and there were few individuals of mixed ancestry. This approach re-

quired assumptions about the demographic history of the popula-

tion but demonstrated a potential solution to the typical problem 

that assignment tests are most reliable for detecting migrants only 

when there is strong genetic structure (i.e., very low migration).
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Because avian migrations have important implications for 

the transmission of disease, recent studies have also used genetic 

information from parasites to illuminate interactions among host 

populations. Waldenström et al. () sequenced mitochondrial 

DNA of hemosporidian parasites harbored by migratory songbirds 

and determined that some parasites were more likely acquired 

on African overwintering grounds than on European breeding 

grounds. Koehler et al. () conducted phylogenetic analyses 

of avian influenza strains isolated from migratory Northern Pin-

tails and concluded that transcontinental migration facilitated 

coinfection by, and reassortment of, multiple strains of influenza. 

Although those studies were more focused on determining the 

source of particular infections, other studies have attempted to 

identify breeding grounds on the basis of hemosporidian parasite 

assemblages in migratory birds (e.g., Fallon et al. , Pagenkopp 

et al. ). However, these studies require highly differentiated, 

geographically distinct parasite lineages and have had limited suc-

cess to date.

Finally, high-throughput sequencing and other high-resolu-

tion methods (e.g., microarrays) will increase our ability to find 

population-specific markers to track bird populations (inset ). 

Even so, analyses will be more successful if only markers that dif-

ferentiate or suggest population differentiation are used to search 

for migratory patterns. Often, all markers are used in assignment 

tests, which results in less than definitive patterns, although all 

variable markers will be informative if dispersal measures that 

rely on estimating kinship are employed.

LANDSCAPE GENETICS

Landscape genetics is a relatively new discipline that has gained 

tremendous popularity in recent years (Manel et al. , Storfer 

et al. ). Landscape genetic approaches extend numerous con-

ventional population genetic analyses in a manner that provides 

identification of the effects of landscape features and landscape 

heterogeneity on genetic diversity and structure patterns within 

or across species (Miller et al. , Safner et al. ). In addi-

tion to having conservation implications and improving our un-

derstanding of evolutionary ecology, landscape genetic analyses 

can further be used to examine topics such as disease transmis-

sion across a landscape (Ekblom et al. ) and climate change 

(see below). A November  search of the term “landscape ge-

netics” using ISI’s Web of Science revealed more than  papers 

since  that claimed to deal with this topic (as either self-

reported by authors’ key words or as annotated by ISI’s “keywords 

plus” feature). Storfer et al. () identified  published studies 

that included at least one landscape-level variable when interpret-

ing genetic structure patterns. Interestingly, fewer than  of these 

studies involved birds (A. Storfer pers. comm.).

Prospects for landscape genetic investigations in avian taxa.—

Many, if not most, avian taxa have the ability to circumvent or 

rapidly traverse landscape features that may disrupt or influ-

ence genetic structure patterns in less vagile organisms. Superfi-

cially, this attribute suggests that birds are not necessarily useful 

model species for landscape genetic investigations. Despite this 

assertion, we suggest that prospects exist to perform meaningful 

landscape genetic analyses for many avian taxa. As a conceptual 

framework, we consider two geographic extremes: taxa that breed 

in high-latitude geographic regions and those that inhabit more 

equatorial or tropical locales.

High-latitude locales.—Most avian species that use high-

latitude breeding areas migrate to lower latitudes during winter. 

The mobility of such taxa suggests that prospects for detecting 

interesting patterns of genetic structure across landscapes should 

be low. In these cases, if genetic investigations are performed, one 

of three possible outcomes may be observed: () complete pan-

mixia (no genetic structure; e.g., Veit et al. ); () isolation-by-

distance (i.e., significant correlations between geographic distance 

and genetic distances of breeding populations; e.g., Draheim et al. 

); or () subspecies-level differences among groups of breed-

ing populations, coupled with the potential for either panmixia or 

isolation-by-distance within each subspecies group (e.g., Miller et 

al. ). In the latter case, genetic structure across space may be 

more likely to result from geographic separation of populations 

rather than particular aspects of landscapes per se. Inevitably, the 

likelihood of each outcome depends on the degree of natal- and 

breeding-site fidelity demonstrated by the species under investi-

gation. Furthermore, these patterns may be apparent only when 

breeding population samples encompass extremely large (e.g., 

continent-wide) spatial extents. Thus, landscape-level features will 

probably not have a tremendous influence on species that inhabit 

high latitudes.

Despite this assertion, several studies have successfully im-

plemented landscape genetic concepts and approaches, indicat-

ing that exceptions to the three scenarios stated above can occur. 

For example, analyses of the Golden-cheeked Warbler (Dend-

roica chrysoparia) by Lindsay et al. () identified significant 

associations between genetic structure patterns and variables 

that encompassed population connectivity, forest fragmenta-

tion, and the percentage of agricultural land between breeding 

populations in Texas. Although the Golden-cheeked Warbler is 

a migratory species, the patterns observed in that study may be 

attributable to highly specific breeding-habitat requirements, a 

low overall number of breeding adults, and short dispersal dis-

tances between natal sites or the previous year’s breeding sites. 

Furthermore, patterns from D. chrysoparia contrast starkly with 

the absence of genetic structure in the Cerulean Warbler (D. ce-

rulea; Veit et al. ), a congener that migrates over longer dis-

tances to breed throughout the more heavily forested regions of 

central and northeastern North America. Genetic structure in 

Wrentits (Chamaea fasciata) across habitat fragments isolated by 

urbanization in southern California was surprisingly strong and 

concordant with levels of structure found in other, less mobile, 

vertebrates (Delaney et al. ).

Among avian taxa that inhabit higher latitudes, galliforms 

may be the best candidates for landscape genetic investigations, 

because of their low dispersal compared with other avian taxa 

(Barrowclough et al. ; Oyler-McCance et al. a, b; Spauld-

ing et al. ; Fedy et al. ) and strong associations with spe-

cific habitat types in some species of grouse (Braun et al. , 

; Zwickel and Bendell ; Hoffman ). For example, 

landscape genetic analyses applied to Capercaillies (Tetrao urogal-

lus; Braunisch et al. ) in the Black Forest of Germany revealed 

numerous loose correlations between genetic structure and land-

cover variables, including forest habitat quantity, forest edges, ag-

ricultural lands, and roads.
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Equatorial and tropical locales.—At lower latitudes, most 

bird species are nonmigratory and demonstrate low dispersal ten-

dencies and, sometimes, reduced flight capabilities (Wallace , 

Janzen , Moore et al. , Kerr et al. , Ibarra-Macias 

et al. ). Many of these species also demonstrate higher levels 

of genetic differentiation across geographic space than taxa from 

more temperate climates, despite often inhabiting smaller geo-

graphic ranges (Brown et al.  and references therein, Fran-

cisco et al. , Burney and Brumfield ). These patterns 

reflect the generalized “latitudinal biodiversity gradient,” which 

occurs at the interspecific level (Stevens ), among subspecies 

(Martin and Tewksbury ), and even within individual popu-

lations (Wikelski et al. ). Latitudinal diversity gradients are 

increasingly being addressed with the use of molecular markers 

(e.g., Martin and McKay ), and the results suggest that mo-

lecular diversity may parallel taxonomic and phenotypic diver-

sity. Explanations for latitudinal diversity gradients encompass 

a variety of factors, including () historical climatic oscillation 

(Dynesius and Jansson ), () temperature kinetics (Wikelski 

et al. , Allen et al. ), and () the greater efficacy of riv-

ers and mountains as barriers in the tropics than in temperate 

locales (Janzen , Brumfield and Capparella , Bates et al. 

). Of these factors, the last will most likely have the great-

est effect within species. Consequently, in addition to potentially 

observing panmixia, isolation-by-distance patterns, and subspe-

cies-level differences at different spatial scales, we suggest that 

analyses of tropical and equatorial avian taxa will harbor greater 

prospects for identifying signatures of landscape attributes on ge-

netic structure patterns.

Despite recent interest in landscape genetic approaches, rela-

tively few studies have applied these concepts and techniques to 

tropical and equatorial bird species. That said, molecular mark-

ers have highlighted the effects of forest fragmentation in several 

cases (Bates , ; Brown et al. ; Reding et al. ). 

The potential effect of deforestation in tropical systems is well es-

tablished. However, human-induced forest fragmentation will, 

in most cases, result in relatively new sets of landscape features. 

Consequently, studies that include historical and current range 

patterns in analyses (e.g., Pavlacky et al. , Reding et al. ) 

may not only shed light on the genetic consequences of fragmen-

tation itself, but also provide unique opportunities to discern the 

time scales over which the effects of such perturbations become 

detectable within natural populations.

Why perform landscape genetic investigations?—Given the 

growing application of landscape genetic approaches, we antici-

pate that there likely will be an appreciable increase in the number 

of such studies performed on avian species in the near future. As 

with all landscape genetic investigations, these efforts will provide 

more detailed insights into the factors that influence genetic di-

versity and structure at different spatial scales. We suggest numer-

ous additional benefits, including identification of cryptic species, 

ESUs, subspecies, etc., that help prioritize important habitat for 

conservation. Of particular importance will be the identification 

of habitat types that can help promote connectivity and minimize 

population fragmentation (Braunisch et al. ). These insights 

may be enhanced if composite patterns from multiple species are 

considered simultaneously, because such efforts may help priori-

tize habitat requirements for entire suites of taxa within a geo-

graphic region (Vandergast et al. , Miller and Haig ).

Outcomes from landscape genetic investigations may ad-

vance evolutionary ecology theory and promote development of 

new hypotheses. For example, identification of associations be-

tween landscape characteristics and patterns of genetic structure 

should generate hypotheses to explain the occurrence of such as-

sociations. We know, for example, that limited dispersal across 

tropical mountains or large rivers can create substantial spatial ge-

netic structure (Capparella , Brumfield and Capparella ) 

and that different species have varying abilities to move across 

some habitats (Moore et al. , Ibarra-Macias et al. ). Those 

patterns lead to questions about what inhibits movements of some 

taxa across geographic space (i.e., neophobia) while not limiting 

movement of other taxa (Stratford and Robinson , Burney 

and Brumfield ). Identification of ecological characteristics 

associated with limited movement can predict levels of genetic 

structure, even without extensive genetic data, and can help iden-

tify taxa that are likely to be sensitive to the effects of isolation, for 

example that resulting from forest fragmentation (Stratford and 

Robinson ). A wide variety of interesting behavioral or physi-

cal mechanisms could account for limited movements and may 

result from lower visual acuity of forest birds entering pasture or 

grassland habitats, limited physiological capacity for sustained 

flight, behavioral aversion to open habitats because of perceived 

predation risk, or even limited plasticity of physiological capacity 

when moving through unusual habitats (Harris and Reed , 

Stratford and Robinson ).

Finally, because landscape genetic studies provide insights 

toward the degree of population connectivity and factors that 

promote it, results can help develop a better understanding of the 

dynamics of disease vectors and the spread of human and avian 

diseases (Archie et al. ). The classic example of this is the 

spread and effect of malaria on the birds of Hawaii (e.g., Beadell 

et al. , Foster et al. , Eggert et al. , Jarvi et al. ). 

The introduced Southern House Mosquito (Culex quinquefascia-

tus) is the principal vector of avian malaria (Plasmodium relic-

tum; Fonseca et al. ). Endemic birds of Hawaii have variable 

and relatively low resistance to this introduced malaria (van Riper 

, Atkinson and Samuel ), although for most non-native 

species it is relatively benign. Currently, this mosquito occurs at 

or below , m, and nearly all native Hawaiian bird species that 

once occurred at or below this elevation no longer do. As the mos-

quito moves to higher elevations because of climate change, in-

trogression from more cold-tolerant mosquito species, or both 

(Fonseca et al. ), more species will likely become exposed to 

this disease (Atkinson and Samuel , State of the Birds ). 

Genetic sampling of mosquitoes across landscapes of varying el-

evations could provide a key to the location and direction of ex-

pansion of infected mosquitoes (Fonseca et al. , Keyghobadi 

et al. ).

EMERGING APPLICATIONS

Climate change.—Measuring, predicting, and planning to miti-

gate the effects of climate change on wildlife species is of para-

mount importance (Intergovernmental Panel on Climate Change 

). Fortunately, there are a number of genetic approaches that 

can offer direct and indirect contributions to this aspect of avian 

conservation. A directionally changing environment capable of 

producing massive demographic shifts is also capable of producing 
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a massive selection event (Skelly et al. ). Although the rapid 

phenotypic and behavioral changes we are witnessing may be a 

function, in many cases, of phenotypic plasticity rather than adap-

tive evolution (Gienapp et al. ), there are growing examples 

of rapid adaptive evolution in response to climate change in birds 

(reviewed in Sheldon ). In a selection experiment with Black-

caps (Sylvia atricapilla), Pulido and Berthold () demonstrated 

that nonmigratory Blackcaps were found in a completely migra-

tory population after only two generations of directional selection 

for lower migratory activity. The strong evolutionary reduction in 

migration distance found in that study is in line with the expected 

adaptive changes in bird migration in response to environmen-

tal alterations caused by climate change (Bradshaw and Holzapfel 

, ).

Molecular markers that track genetic patterns across popula-

tions or landscapes can help predict future rates of genetic changes 

in modified landscapes. One might predict that species (lineages) 

with higher genetic diversity would respond more rapidly to envi-

ronmental variations along “leading” edges of ranges as climate 

changes. For example, climate predictions for the Pyrenees Moun-

tains of Western Europe include further fragmentation of the “sky 

island” alpine habitat used by Rock Ptarmigan (Lagopus muta). Beck 

et al. () discovered genetically isolated and depauperate popu-

lations that may need translocation if current habitat fragmenta-

tion continues. A multispecies study currently underway examines 

the effects of climate change on wetlands and waterbirds in the 

Great Basin (S. M. Haig et al. unpubl. data). Genetic structur-

ing in highly vagile waterbird populations across this region is not 

strong enough to use molecular markers to monitor changes over 

a short time frame, but examining how ecological shifts across the 

landscape may affect the distribution, dispersal, and genetics of 

their aquatic prey species can be informative.

Despite advances in many areas of genetics, the potential for 

evolutionary responses is rarely considered in bioclimatic mod-

els of species’ range shifts (Pearson and Dawson , Skelly et 

al. ), even though such models are among the primary tools 

being used to assess potential effects of climate change on spe-

cies distributions (e.g., Stralberg et al. ). Assuming that there 

will be no evolutionary response to climate change may result in 

overly pessimistic predictions, especially for species that disperse 

long distances, are under selection at range margins, or have short 

generation times that facilitate more rapid intergenerational se-

lection. Therefore, the most appropriate application of predictive 

bioclimatic envelope models may be for long-lived species that are 

poor dispersers (Pearson and Dawson ), although Tingley et 

al. () found that % of bird distributions resurveyed after  

years in the Sierra Nevada of California indicated changes in their 

climatic niches. Development of more mechanistic models that 

incorporate the potential for an evolutionary response and predict 

evolutionary responses in tandem with ecological responses may 

provide additional realism and improve predictive strength (Skelly 

et al. , La Sorte and Jetz ); however, doing so will require 

that we develop better molecular tools for measuring a species’ 

potential for adaptive variation in novel environments (Scoble and 

Lowe ). Recent technological advances in genomics allow for 

not only the expansion of the amount of the genome examined 

but also the detection and characterization of functional genes 

that are responsible for survival and adaptation in such cases. This 

knowledge could help managers determine which species could be 

at greater risk or those that might be more likely to succeed using 

approaches such as translocations or reintroductions.

Ecotoxicology.—Ecotoxicological research has linked a broad 

taxonomic spectrum of avian population declines with exposure 

to numerous classes of contaminants, including (but not limited 

to) DDT and other organochlorine compounds (Ratcliffe ), 

mercury (Burgess and Meyer ), lead (Meretsky et al. ), 

selenium (Ohlendorf and Hothem ), agricultural pesticides 

(Goldstein et al. , Mora ), and polycyclic aromatic hydro-

carbons (Iverson and Esler ). Although the mitigation of ex-

posure sources subsequently facilitated recoveries in some cases, 

the potential long-term effects on population structure, particu-

larly population bottlenecks, are unclear. Modern genetic tech-

niques (as described throughout this review) offer powerful tools 

to quantify a range of effects related to contaminant exposure 

and identify groups of birds that may face substantial risk of 

deleterious effects.

Although originally focused on narrow, single-species stud-

ies and overt symptoms of toxicity resulting from ecologically ir-

relevant exposures, the field of ecotoxicology has experienced a 

renaissance in developing a broader, more integrated understand-

ing of the direct and indirect effects of contaminants on ecosys-

tem function that span molecular to ecosystem scales of biological 

organization (Snape et al. , Newman and Clements ). 

Yet despite these advantages, applications of genetic techniques 

to population- or landscape-scale ecotoxicological issues has 

lagged far behind other disciplines traditionally addressed in con-

servation genetics. Furthermore, avian taxa have been relatively 

neglected with respect to conservation genetic approaches to con-

taminant effects in comparison with other taxonomic groups, 

such as fish, amphibians, and invertebrates. The specific reasons 

for these research patterns are unclear but are likely attribut-

able in part to the reductionist history of ecotoxicology (focus on 

mechanisms of damage as opposed to emergent effects of expo-

sure) as well as the seeming intractability of linking contaminant 

exposure with latent responses in avian population genetic struc-

ture, particularly in the face of numerous other influencing fac-

tors related to avian vagility. However, substantial progress could 

be made in our understanding of how long-term contaminant ex-

posure may influence population-level processes in wild birds by 

merging many of the conservation genetic approaches described 

throughout this review with a robust assessment of contaminant 

exposure at various life stages within an evolutionary toxicology 

framework (Staton et al. ).

Contaminants can influence individual and population genetic 

structure by directly damaging genetic material (Skarphedinsdottir 

et al. ) or through selective effects of chemicals on gene fre-

quencies within exposed populations (Theodorakis et al. ). 

It is the latter effect to which conservation genetic approaches are 

most aptly applied. Because individuals often vary in their sen-

sitivity to various contaminants, chronic exposure may result in 

fitness costs (e.g., reduced survival, impaired reproduction, or 

compromised immune response; Belfiore and Anderson ) in 

sensitive individuals. Thus, one would expect to see directional 

selection for tolerant genotypes if such susceptibility had a ge-

netic basis. Unfortunately, attributing these types of responses 

to contaminant exposure among avian populations is exceed-

ingly difficult because of their relatively long life spans and high 

dispersal abilities.
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Contaminant exposure may reduce overall genetic diver-

sity within populations by reducing the effective population size, 

especially if barriers to gene flow exist (Evenden and Depledge 

). Possible approaches for evaluating these potential effects 

require a general understanding of background population ge-

netic structure and comparisons of genetic diversity between nu-

merous exposed and unexposed populations or along gradients 

of exposure. Whitehead et al. () employed this approach us-

ing AFLP and microsatellite markers in native fish species to test 

whether patterns of genetic variation were consistent with long-

term pesticide exposure or with expectations based on biogeog-

raphy. Agricultural systems are particularly promising areas in 

which to apply these approaches because they support a broad 

range of avian taxa, regularly receive generous doses of various 

herbicides and insecticides, and can often be studied with suit-

able replication. However, assessing population-level risk from 

exposures on the basis of genetic diversity may be the most prom-

ising application of conservation genetic tools to contaminant re-

search. Small, isolated populations that already have low genetic 

variability are likely to be more vulnerable to external stressors 

such as toxic compounds, particularly if coupled with other bar-

riers to gene flow. Integrating contaminant exposure research 

with assessments of genetic structure can help prioritize man-

agement efforts to preferentially reduce exposure in those popu-

lations that are least likely to have the genetic capacity to deal 

with chemical stressors.

Application of other emerging genetic tools, such as microar-

rays (Lettieri ), will help further our understanding of the 

mechanisms of contaminant effects. A deeper insight into how 

various classes of contaminants induce or alter gene expression 

and the associated phenotypic responses will provide better un-

derstanding of individual-level effects, identify species-specific 

sensitivity profiles, and help develop effective biomarkers of both 

exposure and effects. These approaches are now relatively com-

mon among fish, amphibian, and invertebrate taxa and merely 

await application to avian species.

The abundance of published avian conservation genetic and 

avian ecotoxicology studies highlights the importance of these 

two disciplines. Yet the dearth of current research linking them 

suggests the existence of a critical information gap and a clear area 

for research merging these issues. A logical starting point is to pair 

comparisons of genetic diversity among populations with a range 

of tissue contaminants in order to build data sets that can be used 

to test some of these hypotheses. Species with broad monitoring 

networks to build upon (e.g., Tree Swallows [Tachycineta bicolor], 

Wood Ducks [Aix sponsa], and Purple Martins [Progne subis]) 

may be particularly useful for these initial efforts. However, care-

ful study design is imperative to sufficiently address other drivers 

of fitness or genetic diversity and minimize the potential for spu-

rious results.

PERSPECTIVE

Molecular technology continues to evolve at an ever increasing 

pace. Recent development of high-throughput DNA sequencing 

has revolutionized our ability to examine hundreds of thousands 

of variable markers, whereas less than  years ago, avian geneti-

cists were content with analyzing  to  variable microsatellite 

loci. Furthermore, over the past two decades, developments in ex-

amining ancient DNA have opened a completely new window into 

examining avian evolutionary and demographic history. The near 

future promises that an understanding of the complete genome 

of an individual or individuals across space and time will provide 

a deeper understanding of issues related to the effects of disease, 

toxins, population bottlenecks, and other processes on species, 

populations, and landscapes. The challenge for avian conserva-

tion geneticists is to understand how this new technology can be 

applied to answering critical questions related to avian conserva-

tion. We offer the following insights and perspectives for moving 

forward.

() Taxonomy is critical to conservation because it defines el-

ements of biodiversity. Since its inception as a field of study, ge-

netics has played a critical role in identifying and grouping taxa, 

and we expect that this role will continue to expand with advances 

in genomics. However, philosophical differences regarding how to 

recognize and define species, subspecies, and appropriate popula-

tion units for conservation need to be resolved.

() Traditional genetic tools have been, and continue to be, 

successfully applied to a host of avian conservation issues, includ-

ing improved assessment of population structure, gene flow, and 

pedigrees. Genomic approaches like the use of SNPs are likely 

to increase the discriminative power of these analyses by or-

ders of magnitude, but a new wave of bioinformatic approaches 

will likely be necessary to handle the coming deluge of genetic 

information.

() Multiple data sets should be used to define taxa and 

population structure. These temporal and scalar comparisons 

can be key to understanding what type of conservation action is 

warranted.

() Incorporation of historical specimens (e.g., museum skins 

and subfossils) into genetic studies has revolutionized all major 

subdisciplines of taxonomy and population genetics that benefit 

from a direct historical perspective.

() Molecular markers can identify cryptic species and 

population processes that cannot be observed in any other 

way. Thus, they warrant consideration in most conservation 

investigations.

() The emerging field of landscape genetics can play a critical 

role in determining the effects of past, present, and future climatic 

and land-use changes on species and their populations.

() Ecotoxicological and genetic approaches to studying con-

taminant issues have yet to be widely integrated into avian studies 

but could prove insightful.

Ultimately, biodiversity conservation requires preservation 

of as much variation as possible at all taxonomic levels. To real-

ize that goal, conservationists and geneticists need to maintain 

open lines of communication to design and implement strategies 

to help the world’s marvelously rich assemblage of birds endure 

the current and future state of biodiversity triage.
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