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ABSTRACT
Raising nestlings to fledging is energetically demanding for songbirds, requiring parents to balance several major
tradeoffs. Nestling growth rates are highly susceptible to variation in environmental conditions and parental
investment, and highly variable environments with short breeding seasons such as the Arctic magnify these tradeoffs.
Arctic-nesting passerines provide a good model system in which to explore variation within and between species in
growth rates with regard to environmental conditions and the timing of clutch initiation. Here we investigated
interannual and interspecies variation in nestling mass gain for 2 species of Arctic-breeding passerine, Gambel’s White-
crowned Sparrow (Zonotrichia leucophrys gambelii) and Lapland Longspur (Calcarius lapponicus), across 2 years. The
nestling period of 2014 was both colder (with lower minimum and maximum temperatures) and wetter (with 73%
more rainfall) than 2013. Arthropod biomass was also reduced in shrub tundra in 2014 compared to 2013. Both species
showed reductions in rate of daily mass gain of nestlings in 2014 compared to 2013, but we observed no significant
difference between species. Furthermore, we found that in 2014 early nesting birds had higher rates of nestling
growth than those initiating clutches later in the season. These findings suggest that overall environmental conditions
were more challenging for raising nestlings in 2014 compared to 2013 and that these differences were manifested in a
reduced rate of nestling mass gain in both species. Furthermore, both species showed a negative correlation between
precipitation and growth rates, whereas only Lapland Longspur showed a positive correlation between growth rates
and temperature.

Keywords: arthropods, environment, temperature, clutch timing, climate change, phenology, White-crowned
Sparrow, Lapland Longspur

Tasas de crecimiento de polluelos con relación a la abundancia de alimentos y el clima en el Ártico

RESUMEN
La crı́a de polluelos a volantones es energéticamente demandante para las aves canoras, requiriendo que los padres
balanceen varios costos-beneficios importantes. Las tasas de crecimiento de los polluelos son altamente susceptibles a
la variación en las condiciones ambientales y a la inversión parental; los ambientes altamente variables con estaciones
reproductivas cortas como en el Ártico magnifican estos costos-beneficios. Las aves paserinas que anidan en el Ártico
brindan un buen sistema modelo en el cual explorar la variación intra- e inter-especı́fica en las tasas de crecimiento
con respecto a las condiciones ambientales y a la fecha de inicio de la nidada. Aquı́ investigamos la variación inter-
anual e inter-especı́fica en el aumento de la masa de los polluelos para dos especies de aves paserinas que anidan en el
Ártico: Zonotrichia leucophrys gambelii y Calcarius lapponicus a lo largo de dos años. El perı́odo de anidación de 2014
fue más frı́o (con temperaturas más bajas mı́nimas y máximas) y húmedo (con 73% más de precipitaciones) que el
2013. La biomasa de artrópodos también fue menor en los arbustales de la tundra en 2014 en comparación con el
2013. Ambas especies mostraron reducciones en la tasa de aumento de la masa de los polluelos en 2014 en
comparación con el 2013, pero no observamos una diferencia significativa entre las especies. Más aún, encontramos
que en 2014 las aves que anidaron más temprano tuvieron tasas de crecimiento de los polluelos más altas que las de
aquellas que iniciaron sus nidadas más tarde en la estación. Estos hallazgos sugieren que las condiciones ambientales
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generales fueron más desafiantes para criar a los polluelos en 2014 en comparación con el 2013, y que estas
diferencias se manifestaron en forma de una tasa reducida de aumento de la masa de los polluelos en ambas especies.
Más aún, ambas especies mostraron una correlación negativa entre la precipitación y las tasas de crecimiento, mientras
que solo C. lapponicus mostró una correlación positiva entre las tasas de crecimiento y la temperatura.

Palabras clave: ambiente, artrópodos, Calcarius lapponicus, cambio climático, fecha de inicio de la nidada,
fenologı́a, temperatura, Zonotrichia leucophrys gambelii

INTRODUCTION

Breeding birds face a multitude of challenges including

finding a quality mate, avoiding predation, and successfully

raising their offspring to independence. Life history theory

predicts a tradeoff between investment in current repro-

duction, self-maintenance/survival, and future reproduc-

tion to maximize lifetime fitness (Williams 1966). Success

or failure of the nest is often governed by the amount of

parental investment that can be provided, which in turn

determines growth rates and ultimately fledging success

(Ricklefs 1968). The degree of parental investment during

the incubation and nestling phases is dependent on both

parental quality and environmental variation (Lack 1954,

Conway and Martin 2000, Cresswell et al. 2004). Thus,

differences in nestling growth rates between individuals

and across years can be attributed to the environmental

conditions, timing of clutch initiation, and parental quality.

Two key environmental factors play critical roles in

determining the rate of nestling growth: weather condi-

tions (Ricklefs 1968, Hedd et al. 2002) and food availability

(Lack 1954, Drent and Daan 1980, Emlen et al. 1991, Gard

and Bird 1992, Naef-Daenzer and Keller 1999, Tremblay et

al. 2005). Major changes in weather conditions, such as

storms or fluctuations in temperature, directly influence

the allocation of energy by nestlings to growth (Williams

and Prints 1986, Dawson et al. 2005), whereas variation in

food availability can limit the rate at which parents can

acquire and deliver food to nestlings. Parental provisioning

of nestlings is dependent on the parents having the

necessary energy and time to meet their own metabolic

demands and those of their nestlings. In the event of low

resource abundance (regardless of cause) and/or weather

perturbations, there is an inherent tradeoff between self-

maintenance (and potential future reproduction) vs.

parental investment in the current brood (Williams

1966). Individual responses to low resource availability

are highly variable and dependent on a large number of

factors, but when environmental conditions deteriorate

sufficiently, a threshold is reached, regardless of invest-

ment decisions by the parents, at which available resources

prevent ‘‘adequate’’ investment in each nestling.

Parental investment tradeoffs are particularly acute in

highly seasonal and/or unpredictable environments, thus

heightening the importance of maintaining maximal

nestling growth rates. Unpredictable weather conditions

can alter food availability and costs associated with

parental behavior (such as brooding or foraging efficiency)

and self-maintenance for adults (Wingfield et al. 1983,

Morton 2002, Ardia et al. 2010, Angelier et al. 2013,

Ropert-Coudert et al. 2014). At high latitudes, short

breeding seasons and highly variable environments com-

bine to create rearing environments with conditions

ranging from highly conducive to nearly impossible

between years.

Variation in timing of clutch initiation may lead to

variation in environmental conditions experienced by

nestlings in a particular nest. For migrants, the arrival

time hypothesis suggests that the time of arrival on the

breeding grounds determines parental success, with early

arriving individuals having first choice of breeding

territories, leading to the acquisition of higher quality

territories (Ketterson and Nolan 1976, Lozano et al. 1996,

Morton 2002). Clutch initiation date can be a strong

predictor of reproductive output, with early compared to

late laying birds having higher reproductive success

(Sydeman et al. 1991, Winkler and Allen 1996). Clutch

initiation date has also been shown be a viable proxy for

parental quality (Ardia and Clotfelter 2007).

Previous studies of nestling growth rates in Gambel’s

White-crowned Sparrow (Zonotrichia leucophrys gambelii)

have been limited to geographic comparisons within and

across subspecies/species (King and Hubbard 1981, Nor-

ment 1992). Similarly, previous work on Lapland Longspur

(Calcarius lapponicus) has been limited to basic descrip-

tions (Grinnell 1944), relation to onset of endothermy

(Maher 1964), and parental behavior following experimen-

tal manipulation (Hunt and Wingfield 2004). Only Fox et

al. (1987) examined nestling growth rates in Lapland

Longspur in relation to environmental conditions, al-

though their examination was limited. At present we are

unaware of a study exploring multiple factors including

environmental variation and clutch timing simultaneously

in multiple species.

The aim of this study was to examine growth rates for

nestlings of 2 species of Arctic-nesting passerines, the

White-crowned Sparrow and the Lapland Longspur, with

regard to multiple components of environmental variation.

We hypothesized that variation in weather, food availabil-

ity, and parental quality would affect nestling growth rates.

Specifically, we predicted that: (1) variation in growth rates

would be positively correlated with ambient temperature
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and/or arthropod availability and negatively correlated

with precipitation during the nestling period; (2) nestlings

from clutches laid earlier in the season would have higher

growth rates than those from later clutches; and (3)

Lapland Longspur would have higher rates of growth than

White-crowned Sparrow (due to the Lapland Longspur’s

larger body size and its status as an Arctic specialist). This

study provides a comparison of intraspecies and interspe-

cies nestling growth rates under variable environmental

conditions in the Arctic while exploring effects of clutch

initiation date.

METHODS

Study Species and Sites
Long-distance migratory passerines Gambel’s White-

crowned Sparrow and Lapland Longspur typically arrive

on their Arctic breeding grounds in mid to late May,

beginning nesting by early June (N. T. Boelman personal

communication). Both raise a single brood during the

short Arctic summers, although re-nesting does occur

following failure early in the season (Wingfield and Farner

1979, Hunt et al. 1999, Hussell and Montgomerie 2002).

Both species are considered to be socially monogamous,
with female-only incubation and biparental care (Chilton

et al. 1995, Hunt et al. 1999, Hussell and Montgomerie

2002). Although both are ground-nesting species, they

differ significantly in their preferred nesting habitats and

breeding ranges. The White-crowned Sparrow nests in

erect and riparian deciduous shrub communities (Oakeson

1954, Norment 1992, 1993, Boelman et al. 2014) from

northernWashington state to the Arctic tundra (Chilton et

al. 1995) whereas the Lapland Longspur is a circumpolar

breeder (Hussell and Montgomerie 2002) that nests in

tussock tundra communities dominated by graminoids,

mosses, dwarf shrubs, and forbs (Rodrigues 1994, Boelman

et al. 2014).

Our study nests were primarily located in the immediate

vicinity of Toolik Lake Field Station on the North Slope of

the Brooks Range, Alaska (68838 0N, 1498360W), with

additional nests observed at 3 nearby field sites along the

Dalton Highway: Sagavanirktok Department of Transpor-

tation (688450N, 1488530W), Imnaviat Creek (688370N,

149817 0W), and Roche Mountonee Creek (68822 0N,

1498180W). Each site contained both ‘‘tussock tundra’’

and ‘‘shrub tundra’’ plots in which the arthropod sampling

(described later) was conducted. The vegetation composi-

tion of both tussock tundra and shrub tundra plots has

been described previously (Boelman et al. 2014).

Nests were found throughout the breeding season (early

June through mid-July) in 2013 and 2014 by observation of

female behavior. Briefly, nests were found either by

flushing incubating birds from their nests or by following

females until they returned to their nests. These data

represent 246 individual nestlings, 110 Gambel’s White-

crowned Sparrow (2013: 19 fledged, 0 depredated, 0 dead

other causes; 2014: 82 fledged, 0 depredated, 9 dead other

causes) and 136 Lapland Longspur (2013: 19 fledged, 0

depredated, 2 dead other causes; 2014: 74 fledged, 4

depredated, 37 dead other causes). The nestlings came

from 58 separate nests, with 30 of the 58 nests monitored

daily from hatch through fledge. In 2013, 6 Lapland

Longspur and 4 White-crowned Sparrow nests were

monitored daily, and in 2014, 10 Lapland Longspur and

10 White-crowned Sparrow nests were monitored daily.

Measurements for the remaining 28 nests were only made

once when nestlings were 5 to 7 days of age. These

additional nestlings were included because they improved,

but did not change, model predictions.

Nestling Measurements
On the day of hatch, nestling age was defined as 0. Starting

on day 1, nestling morphometrics were collected. Body

mass was measured to the nearest 0.1 g using an electronic

balance (YA Gold, Oshaus, Parsippany, NJ). Abdominal

and furcular fat scores were assigned by visual estimation

on a scale from 0 (no fat) to 5 (bulging deposits; Wingfield

and Farner 1978). Skull size (back of the skull to the tip of

the beak) and tarsus were measured to the nearest 0.1 mm

with calipers.

Climate Data
Meteorological data were obtained from the Environmen-

tal Data Center at Toolik Lake Field Station (Environmen-

tal Data Center Team 2014). Wind speed (MET-ONE
sensor: Campbell Scientific, Logan, UT), precipitation

(Pluvio N Rain Gauge: OTT, Kempten, Germany), and

temperature (Copper-Constantan wire: Omega Engineer-

ing, Stamford, CT) data were collected and saved using a

CR3000 data logger (AM25T Multiplexer: Campbell

Scientific, Logan, UT). All values are presented as daily

means.

Arthropod Biomass
Ground-dwelling arthropod biomass was measured weekly

during both years using pitfall traps at Toolik Lake Field

Station. Each pitfall trap consisted of a plastic cup (~7.5 cm

in diameter by 10 cm deep) buried in the ground so that the

lip of the cup was flush with the surrounding ground surface

(Norment 1987, Rich et al. 2013). Traps were filled 2 cm

deep with 50% ethanol and were retrieved 48 hours after

being set. At each plot there were two 100 m transects, each

containing 10 pitfall traps spaced 10 m apart. On returning

to the laboratory, each sample was placed in a 20 mL

scintillation vial containing ~70% ethanol. To preserve the

samples for future curation and entomological studies, pitfall

biomass was determined using an alternative allometric

approach, using published length–mass regression
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equations for each taxon captured as opposed to drying and

weighing samples (see Appendix A).

A sweep net was used weekly at all 4 research sites to

collect canopy-dwelling arthropods on both tussock and

shrub tundra. The center point of each transect was

marked with an iron rod. For every sampling session, a

random direction for the sampling transect was chosen by

spinning a pen. Ten samples consisting of 10 back-and-

forth sweeps (20 passes in total) were collected every 10 m

along the transect. The contents of each sample were

placed in a plastic bag with a 1 cm2 piece of Hot Shot No-

pest strip (Spectrum Brands: Middleton, WI) to euthanize

the arthropods and stored at �208C until sorting.

Arthropods were separated from debris; a subset of 2013

samples were analyzed using the allometric approach

previously described, and the remainder were dried for 24

hours in Petri dishes at 408C and then weighed to the

nearest milligram.

Statistical Analyses

All statistical analyses were performed in R 3.1.1 (R Core

Development Team 2014) with the lme4 (Bates et al. 2014),

lmerTest (Kunznetsova et al. 2014), and lsmeans (Lenth

and HervÃc 2015) packages.

For the primary comparison of nestling growth rates

between species and years, nestling mass was assessed with

a linear mixed-effects model in which nestling identity (ID)

and nest were modeled as random to account for repeated

measures and clustering. The model incorporated the main

effects of species, year, nestling age (‘‘age’’ hereafter), and all

2-way interactions as well as their 3-way interaction.

Additionally, a predictor for final status of the nestling,

either death or fledge, was tested. Final model selection

was performed by Akaike Information Criterion (AIC).

The best-fit model included random effects of individual

and nest, a 2-way interaction between age by final status,

and a 3-way interaction of age, species, and year (Table 1).

To assess the effects of reproductive timing on nestling

growth rates, nests were divided into early and late groups

based on clutch initiation date such that half the nests fell

into each group. For each species, nestling mass was

modeled with a linear mixed-effects model with fixed

effects of age, timing, and their interaction. The analysis

was conducted independently for each species. Nestling ID

was again incorporated as a random effect to account for

repeated sampling of individuals. This analysis was

restricted to nests in 2014 that were monitored daily.

Temperatures across years were analyzed using linear

regression models. Precipitation between years was

compared by Welch Two Sample t-tests. All tests were

conducted for the nestling period, a 28-day window

defined as Julian dates 170 (June 19) to 198 (July 17) for

2013 and 165 (June 14) to 193 (July 12) for 2014. This

period was chosen because it represents the maximum

period each year during which eggs or nestlings are present

in nests, based on known or estimated clutch initiation

dates for all nests at all field sites.

Dry arthropod biomass was analyzed using linear mixed

effects models following a natural logþ1 transformation of

the data. Pitfall and sweep-net biomass were analyzed

independently using a linear mixed effects model with

fixed effects of year, plot, and their interaction. Julian day

and sample number were included as random effects to

control for sampling location and the seasonal phenology

of arthropods, respectively. As with previous analyses, the

sampling window was restricted to the nestling period

outlined previously for temperature. Least squared means

contrasts were used to explore significant interactions.

The direct effects of temperature and precipitation on

growth rates were assessed by linear mixed effect modeling

of individual growth rates against observed environmental

parameters. Individual nestling growth rates were gener-

ated by simple linear regression of mass against age for

each bird observed for at least 3 days. The following

TABLE 1. The effects of age, mortality (final status), species and year on nestling mass from a linear mixed effects model. The random
effect of nestling ID had a variance of 1.75 with standard deviation of 1.32, and the random effect of Nest had a variance of 1.71 with
a standard deviation of 1.31; the residuals had a variance of 2.46 and standard deviation of 1.57. The variable Final Status is a dummy
predictor coding whether an individual successfully fledged or died; the estimated effect is for nestlings that die prior to fledge.
Species (LALO) indicates model predictions for Lapland Longspur.

Variable Estimate SE df T p-value

Intercept 1.899 0.785 44 2.418 0.020
Final Status (Dead) �0.500 0.480 403 �1.043 0.298
Age 2.500 0.068 872 36.734 ,0.001
Species (LALO) �1.885 1.027 46 �1.835 0.073
Year (2014) 0.896 0.876 47 1.023 0.312
Final Status * Age �0.291 0.067 963 �4.358 ,0.001
Age * Species (LALO) 0.178 0.089 878 1.993 0.047
Age * Year (2014) �0.367 0.077 880 �4.757 ,0.001
Species (LALO) * Year (2014) 0.533 1.160 51 0.459 0.649
Age * Species * Year �0.026 0.105 900 �0.251 0.802
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environmental parameters were calculated for the obser-

vation window for each individual: mean daily maximum

temperature, mean minimum daily temperature, mean

daily rainfall, and total rainfall. Linear mixed effects

models containing nest as random to account for

clustering by nest were conducted for each variable

independently. All values are reported as means 6SEM.

RESULTS

Nestling Growth Rates

The main effects of age and the interactions of final status

by age, age by year, and age by species significantly

predicted changes in nestling growth rates (Figure 1, Table

1). Estimated growth rates were significantly higher for

both species in 2013 compared to 2014. Lapland Longspur

had higher estimated growth rates than White-crowned

Sparrow in both years (Table 2). Birds that died prior to

fledge had lower growth rates than those that fledged.

Meteorological Conditions
Both maximum (F1,54¼ 4.27, p¼ 0.04) and minimum daily

air temperatures (F1,54¼7.54, p � 0.01) were lower in 2014

than in 2013 (Figure 2). Both years had 14 days of rain

during the nestling period and showed no difference in

average daily rainfall (t21¼�1.37, p¼ 0.19); however, total

rainfall during the nestling period was 73% greater in 2014

(68.8 mm) than in 2013 (39.8 mm).

Increases in maximum daily air temperatures had no

effect on growth rates of White-crowned Sparrow (t14 ¼
0.60, p ¼ 0.56; Figure 3A) but increased growth rates of

Lapland Longspur (t15¼2.67, p¼0.02). Minimum daily air

temperature had no effect on growth rates in either species

(t30¼ 0.81, p¼ 0.43). Increased daily precipitation led to a

decrease in growth rates for both species (t65¼�3.72, p �
0.001; Figure 3B).

Arthropod Biomass
Arthropod biomass caught using pitfalls was slightly lower

during the 2014 nesting period relative to 2013, but this

difference was not significant (Table 3). As evidenced by a

significant year by plot interaction, the reduction in pitfall

biomass due to conditions in 2014 depended on the plot

FIGURE 1. Daily nestling mass (g) for (A) Gambel’s White-crowned Sparrow and (B) Lapland Longspur from hatch (Age¼0) to fledge
in 2013 and 2014. Both species showed decreased rates of growth in 2014 compared to 2013. Data presented as means 6 SEM.

TABLE 2. Estimated rates of daily mass gain (g d�1) from linear
mixed effects model for Gambel’s White-crowned Sparrow and
Lapland Longspur. Growth rates are estimated separately for
nestlings surviving to fledge (Fledged) and those that died of
non-predation related causes (Died).

Gambel’s
White-crowned

Sparrow
Lapland

Longspur

2013 2014 2013 2014

Fledged 2.50 2.13 2.68 2.29
Died 2.21 1.84 2.39 1.99
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(shrub tundra or tussock tundra; Table 3). In both years,

shrub tundra plots tended toward lower arthropod

biomass; however, this plot-to-plot difference was only

significant in 2014 (t76 ¼ 3.51, p , 0.001). The highest

values for arthropod biomass in both years generally

corresponded to a peak in activity-density of wolf spiders

(family Lycosidae) and ground beetles (family Carabide; A.

Asmus personal observation). The peak in pitfall arthropod

biomass occurred ~1 week (1 sampling interval) later in

2014 relative to 2013 (Figure 4). In contrast with ground-

dwelling arthropods, sweep-net biomass was significantly

greater in shrub plots than tussock tundra (Table 4; t169¼
2.13, p ¼ 0.04). A significant interaction of year and plot

was also detected (t169¼�2.64, p , 0.01). The interaction

of year and plot was explored via post hoc testing and

found to only be significant for the shrub plot (t170¼ 2.84,

p , 0.01) and not the tussock tundra plot (t170¼ 0.54, p¼
0.59). In both years, sweep-net biomass peak generally

corresponded to the mass emergence and activity of

mosquitoes (A. Asmus personal observation). This peak

was about 1 week later in 2014 relative to 2013 (Figure 3).

Timing of Clutch Initiation

A comparison of early vs. late nesting birds (clutch

initiations) found significant effects of both nestling age

(t648 ¼ 48.47, p , 0.001) and early hatching by age

FIGURE 2. Daily min and max air temperatures (8C) for Toolik Lake, Alaska, for 2013 and 2014 from June 1 to July 19. The horizontal
lines represent the defined ‘‘nesting period’’ for 2014 (black) and 2013 (gray).

FIGURE 3. The relationship between daily growth rates and (A) maximum temperature and (B) mean precipitation for nestlings from
Toolik Lake, Alaska, for Gambel’s White-crowned Sparrow (filled circle and solid line) and Lapland Longspur (open triangles and
dotted line). Fitted lines indicate predictions from linear mixed-effects models.
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interaction (t645¼ 5.63, p , 0.001) on nestling mass (Table

5). Model estimates predicted a growth rate of 2.34 g d�1

for nestlings from early nests and only 1.99 g d�1 for those

from late nests.

DISCUSSION

In alignment with our prediction that poorer conditions

would lead to reductions in nestling growth rates, we

found that conditions for nesting birds were harsher in

2014 than 2013. Both species showed significant reduc-

tions in growth rates in 2014 compared to 2013, correlated

with lower temperatures, more rain, and lower arthropod

biomass. This decrease persisted even when controlling for

nonpredation-related mortality among nestlings. Further-

more, we found that across-year nestling growth rates

were positively correlated with temperatures for Lapland

Longspur and negatively correlated with precipitation.

FIGURE 4. Arthropod biomass (mg) by Julian date for 2013 (dotted line) and 2014 (solid line) at Toolik Lake, Alaska. Data are
presented for open and shrub tundra plots and for both pitfall and sweep-net sampling methods. Data presented as means 6 SEM.

TABLE 3. The fixed effects modeling pitfall arthropod biomass
via linear mixed effects model.

Variable Estimate SE df T p-value

Intercept 3.92 0.45 9 8.74 ,0.001
Year 2014 0.24 0.64 8 0.37 0.72
Plot Shrub �0.24 0.27 62 �0.88 0.38
Year 2014 * Plot Shrub �0.76 0.28 309 �2.71 ,0.01
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These findings are consistent with nestling growth rates

being dependent on environmental weather conditions

(e.g., temperature and precipitation) and food availability,

which are mediated through the quality and degree of

parental investment provided.

Low temperatures result in tradeoffs with greater energy

devoted toward self-maintenance as opposed to parental

investment (McEwen and Wingfield 2003, Ardia et al.

2010, Wingfield and Ramenofsky 2011) for 2 reasons. First,

reductions in ambient temperatures are known to result in

increased costs of self-maintenance in adults because their

thermoregulatory costs rise (Kendeigh 1969, Custer et al.

1986) Second, prior to the development of endothermy,

nestlings are dependent on parental brooding to maintain

appropriate body temperature, and therefore low temper-

atures require parents to spend more time brooding

(Johnson and Best 1982, Lyon and Montgomerie 1987,

Ardia et al. 2009). This investment reduces time available

for both foraging for nestlings and for self-maintenance

(Custer et al. 1986). Even after the onset of endothermy,

low ambient temperatures still pose a thermal challenge

because nestlings are predicted to require more food due

to their own thermoregulatory costs (Geiser et al. 2008).

Interestingly, our findings suggest that Gambel’s White-

crowned Sparrow is not affected by temperature while

Lapland Longspur is, likely as a result of their different

nesting habitats. The shrub-based nests of the White-

crowned Sparrow may serve to reduce heat loss by

providing a more sheltered microclimate, reducing the

effects of temperature (Rauter and Reyer 2000). Our

finding that maximum but not minimum temperatures

were correlated with observed increased growth rates in

Lapland Longspur suggests that consistently cold temper-

atures rather than short-term drops (daily or otherwise)

are more important, likely a result of the ability of the

parents to compensate for short term drops in tempera-

ture by brooding without major reductions in investment.

Alternately, aerial insect activity has been shown to

increase with temperature, particularly .188C (Winkler

et al. 2013).

Rain seems to be the primary environmental limiter of

growth rates in both species, with increased precipitation

resulting in decreased growth rates. Although we found no

statistical differences in mean precipitation levels when

comparing the nestling periods between years, total rainfall

in 2014 was 73% higher than in 2013. This difference (29

mm over the nesting period), although small in absolute

terms, may be highly relevant ecologically given that

average rainfall for the Arctic is low; average annual

rainfall for Toolik Lake from 1977 to 1994 was ~144 mm

(Zhang et al. 1996). Furthermore, the historic precipitation

data for the region reveals that June and July of both 2013

and 2014 were wetter than the previous 26-year average,

with 2014 being significantly wetter than 2013. Higher

precipitation has been shown to reduce nestling growth

rates in Pied Flycatcher (Ficedula hypoleuca; Siikamäki

1996). Additionally, indirect effects of precipitation,

through reduced parental foraging efficiency leading to

reduced provisioning rates, have been observed in the Gray

Catbird (Dumetella carolinensis; Johnson and Best 1982)

and Eurasian Hoopoe (Upupa eopops; Arlettaz et al. 2010).

Although we did not measure foraging efficiency directly

in this study, we suspect that the combination of greater

precipitation and lower temperatures in 2014 likely acted

synergistically to reduce growth rates by negatively

influencing arthropod activity and parental foraging

efficiency.

The second major environmental factor that potentially

affected nestling growth rates is food availability. Both

Lapland Longspur and White-crowned Sparrow feed

nestlings primarily on insects and spiders (Seastedt 1980,

Chilton et al. 1995, Hussell and Montgomerie 2002,

Norment 2003). Given the strong dependence of nestling

growth on parental investment, the availability of sufficient

arthropod prey is critical. For example, the White-fronted

Bee-eater (Merops bullockoides) showed decreased nestling

growth rates in response to food shortages, and severe food

shortages lead to starvation (Emlen et al. 1991). Similar

results have been found in seabirds (Bertram et al. 2001).

Our prediction that arthropod biomass would be positively

correlated with growth rates was only partially supported.

Although biomass tended to be lower in 2014 across plots

and sampling methods, these differences were only

significant for sweep-net biomass in shrub plots. We

acknowledge that our coarse weekly sampling interval may

have been unable to resolve differences in arthropod

availability at a scale meaningful to growth rates in nesting

birds. Given the observed results, we believe shorter

sampling intervals would likely detect significant differ-

ences between years in arthropod biomass during the

TABLE 4. The fixed effects modeling sweep-net arthropod
biomass via linear mixed effects model.

Variable Estimate SE df T p-value

Intercept 3.19 0.43 8 7.40 ,0.001
Year 2014 �0.15 0.28 170 �0.55 0.58
Plot Shrub 0.35 0.17 169 2.13 0.04
Year 2014 * Plot Shrub �0.66 0.25 169 �2.64 ,0.01

TABLE 5. The fixed effects modeling early vs. late nesting birds
in 2014.

Variable Estimate SE df T p-value

Intercept 2.36 0.29 256 8.08 ,0.001
Age 1.99 0.04 648 48.47 ,0.001
Early �1.45 0.43 240 �3.35 ,0.001
Age * Early 0.34 0.06 645 5.63 ,0.001
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critical nesting stage. In addition, these findings must be

interpreted with caution because pitfall trap catches in the

Arctic are known to vary with temperature and solar

radiation (Hoye and Forchhammer 2008, Bolduc et al.

2013). Given the differences in weather between years and

only 2 years of data, our analysis was unable to separate

correlations between weather conditions and food avail-

ability with respect to their effects on nestling growth.

Assessment of timing of clutch initiation was limited by

the availability of temporally spaced nestling measure-

ments to a subset of nests in 2014, precluding a

comprehensive understanding of how ‘‘clutch timing’’ or

investment decisions may be modulated by environmental

variation. However, our analysis was able to detect a strong

effect of early vs. late clutch initiation on nestling growth

rates. These findings are consistent with the generally

observed pattern of decreasing nestling growth rates with

later clutch initiation date (Birkhead and Nettleship 1982,

Gaston et al. 1983, Winkler and Allen 1996, Morbey and

Ydenberg 1997, Morton 2002). Although these findings

support the arrival time hypothesis, our design does not

allow the elimination of competing hypotheses regarding

decreasing growth rates with later laying dates (Morbey

and Ydenberg 2000). These findings are also consistent
with the idea that early nesting birds may be higher quality

parents than later nesting individuals.

Final status of nestlings (dead or fledged) was a

significant predictor of nestling growth rates. Nestlings
that ultimately died in the nest, presumably caused by

starvation, sickness, or hypothermia, had lower rates of

growth than those that survived until fledge. Because our

model was unable to directly test for an interaction among

final status, age, and species, we cannot test predictions for

differences in effects of mortality on growth rates between

species or years. We did observe a higher incidence of

mortality in 2014 and, in particular, higher mortality

among Lapland Longspur relative to White-crowned

Sparrow; however, sample sizes were insufficient to draw

firm conclusions (J.H. Pérez personal observation). We

speculate that Lapland Longspur nestlings may be more

severely affected by precipitation due to the lower

abundance (or absence) of protective shrub cover.

Exposure to rain would dramatically increase thermoreg-

ulatory costs if the nestlings became wet and may explain

the higher nestling mortality observed in 2014. Although

merely speculative at this point, future studies should

directly assess the relationship among vegetation cover

characteristics, precipitation, and nestling growth rates/

fledging success. Potential methods include photographic

assessment of percent vegetation cover overhanging the

nest or other similar quantitative methods of assessing nest

sites.

In keeping with our predictions, we found Lapland

Longspurs to have higher estimated growth rates than

White-crowned Sparrow in both years. This difference is

likely due to the significantly larger body size of Lapland

Longspur (27.27 g) compared to Gambel’s White-crowned

Sparrow (25.74 g; t67¼ 3.65, p , 0.001) because variation

in passerine growth rates has been attributed to differences

in adult body size (Ricklefs 1968). Alternatively, the

observed difference may be due to specialization to the

Arctic (Confer and Knapp 1981). Lapland Longspur breeds

exclusively in Arctic habitats (Hussell and Montgomerie

2002) and can be considered an Arctic specialist, whereas

Gambel’s White-crowned Sparrow is widely distributed,

breeding predominately in boreal habitats except at the

northern end of their range.

The dependence of nestling growth rates not only on

parental investment decisions but on abiotic environmen-

tal factors, as demonstrated by our findings, is of particular

concern with regard to the ongoing effects of global

climate change. The Arctic has been warming at an

accelerated rate (Anisimov et al. 2007). Although the

predicted increases in spring temperatures (Serreze and

Francis 2006, Overland et al. 2008) will favor higher

nestling growth rates, provided breeding birds are able to

maintain a phenological match to the timing of prey

resources, the frequency of unpredictable storms and

annual precipitation are predicted to increase (Finnis et al.

2007, Kattsov et al. 2007). Increased precipitation and

occurrence of spring snow storms will presumably lead to

reductions in nestling growth rates and perhaps increased

mortality. Ultimately, the coupling of these two climate

factors may lead to a system with boom–bust cycles,

depending on the combination of environmental factors in

any given year.

Conclusions
This study presents nestling growth rates for 2 species of
Arctic nesting passerines in relation to variation in

environmental conditions: weather and availability of

arthropod prey. 2014 was shown to be a harsher year with

lower temperatures and increased precipitation than

2013. These unfavorable environmental conditions were

correlated with reduced rates of nestling growth for both

the shrub-tundra–nesting White-crowned Sparrow and

the tussock-tundra–nesting Lapland Longspur in 2014.

Rainfall in particular seemed to drive the observed

decreases in growth rates, suggesting that environmental

variation is a major driver of nestling growth and, in turn,

post-fledge survival in both Arctic-nesting species,

regardless of their contrasting nesting habitat character-

istics. This strong dependence on environmental condi-

tions may be critical to species success in the future

because environmental variability, especially rainfall in

the Arctic, is predicted to increase. Future studies should

investigate the relationship between weather conditions

and food availability. Given the strong correlation
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J. H. Pérez, J. S. Krause, H. E. Chmura, et al. Arctic nestling growth rates 269

Downloaded From: https://bioone.org/journals/The-Auk on 24 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



between food and weather conditions, particularly for

arthropods, longitudinal studies alone will likely prove

ineffective. Experimental manipulations such as food

supplementation or manipulation of nest microclimate

may yield further insights.
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Appendix A: Pitfall allometry methods

To determine total pitfall sample biomass without drying

and weighing the samples, we first counted and identified

the arthropods in each sample. Arthropods were identified

to family wherever possible; however, to expedite sample

sorting, flies (Diptera) were lumped into 4 main groups:

Tipulomorpha (Tipulidae and Trichoceridae), mosquitoes

(Culicidae), other Nematocera (e.g., midges), and Bra-

chyera (e.g., house flies). In addition, parasitic wasps were

identified as such (Hymenoptera: Parasitica). Our samples

also captured a terrestrial slug, which was identified as

such (class Gastropoda).

During identification the total body length of the first 5

individuals of each taxonomic group were measured. To

reduce biasing measurements (i.e. measuring only the

largest individuals first), samples were spread in a large

petri dish that was then rotated either clockwise or left-to-

right while sorting. Body lengths were measured to the

nearest 0.01 mm using a digital microscope camera and

software (AmScope Mu035, www.amscope.com). The

number of body measurements was limited to 5 for each

taxon to expedite the process, but usually all the

individuals of each taxonomic group were captured using

this method, or an average 97% of individuals per sample.

Finally, the raw length and abundance data were

processed to derive biomass estimates by taxonomic

group. The 5 body lengths of each taxon were averaged

for each sample. To these body length averages we applied

published allometric (length–mass) equations (Collins

1992, Sample et al. 1993, Hódar 1997, Gruner 2003),

producing the average biomass of an arthropod from a

given taxonomic group and sample. These biomass

averages were then multiplied by the total number of

individuals captured in each sample, which generated the

total biomass of each arthropod group in each sample.

Values presented here represent total summed biomass of

all taxonomic groups captured. All data processing steps

were performed in R.
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