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Amphibian Disease Ecology: Are We Just Scratching the Surface?

JOE-FELIX BIENENTREU AND DAVID LESBARRÈRES
1

Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada

ABSTRACT: Pathogen-induced population declines and extinction events have been recognized as main threats to amphibian species
around the globe. However, the ecological drivers underlying epidemiological patterns are still poorly understood. In an attempt to assess
the current knowledge on the ecological drivers of amphibian diseases, we identified 832 peer-reviewed publications on the ecology of
amphibian pathogens and diseases published between 2009 and 2019. The vast majority of publications investigated either chytrid or
ranavirus infections (79% of the articles), whereas other pathogens such as bacteria and helminths received considerably less attention. Just
over half of the studies we reviewed included field research and 40% were experimental in nature, yet only 8% combined field and
experimental approaches. More than half of the literature (56%) investigated postmetamorphic stages, whereas premetamorphic stages were
considered in 23% of the reviewed studies, and only 13% included both life stages. Susceptibility and mortality have been assessed in almost
every study (91%) whereas 37% of them tested for cellular, physiological, or immunological responses. However, other host characteristics
such as growth/development, behavior, and specific mucosome/microbiome were considered in only one of four studies. Most research
included at least one biotic factor (e.g., host and pathogen identity, species diversity, genetic adaptations), but only one-third considered
environmental factors (e.g., temperature, landscape features, inorganic chemicals). Furthermore, there is no general consensus about the
factors driving epidemiological patterns of pathogens in amphibian communities, and it is clear that the complexity and specificity of
interactions between ecological factors and host–pathogen dynamics make conservation implications difficult and management decisions
challenging. To this end, our review identifies some research gaps and proposes future directions to better understand one of the major
threats to this class of vertebrates.
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WORLDWIDE reports on emerging infectious diseases of
ectothermic vertebrates have significantly increased over
the last 30 yr (Dobson and Foufopoulos 2001; Gray and
Chinchar 2015). By causing morbidity and mortality among
populations, sometimes leading to the extinction of a whole
species, some of these diseases are a serious threat to global
biodiversity (Cunningham et al. 2017). The scientific
community has been alarmed by disease-associated de-
clines in amphibian populations all over the world (Daszak
et al. 2003; Muths and Hero 2010; Grant et al. 2016; Cohen
et al. 2019; Scheele et al. 2019), but the true scale of
declines is unknown and knowledge on the spatiotemporal
pattern remains limited (Brunner et al. 2015; Duffus et al.
2015; Scheele et al. 2019; McMillan et al. 2020). A key
finding emerging from the literature is that environmental
heterogeneity can strongly shape interactions between
pathogens and their potential hosts by physiologically
limiting vital processes of both host and parasite including
growth, dispersal, and survival (Ostfeld et al. 2005; Altizer
et al. 2013; McMillan et al. 2020), thus potentially driving
disease outcomes in various ecological and evolutionary
trajectories (Echaubard et al. 2014; Savage et al. 2015).
However, the literature reveals multifaceted and even
conflicting patterns (Smalling et al. 2019), providing a
complex framework often difficult to translate into actions
for conservation management. In this manuscript, we
present results from a literature review designed to assess
the current knowledge of amphibian disease ecology
including the studied pathogens, common study designs,
and the ecological factors associated with these host–
pathogen relationships (Fig. 1).

MATERIALS AND METHODS

To assess the current knowledge on the ecological drivers
of amphibian diseases, we conducted a systematic literature
search for relevant articles published between 2009 and 2019
on PubMed Central and Google Scholar on 2 September
2019. This time frame was chosen because in the years 2008
and 2009 several comprehensive modeling and reviews in
the field of amphibian disease ecology, in particular on
Batrachochytrium dendrobatidis (Bd) and ranaviruses, were
published (e.g., Gahl and Calhoun 2008; Fisher et al. 2009;
Gray et al. 2009; Lötters et al. 2009).

We used the following search terms: (‘‘amphibia’’ AND
‘‘ecology’’) AND (‘‘disease’’ OR ‘‘pathogen’’ OR ‘‘parasite’’).
In addition we searched for common amphibian pathogens
and pathogen groups: (‘‘amphibia’’) AND (‘‘chytrid’’ OR
‘‘Bd’’ OR ‘‘Bsal’’ OR ‘‘Ranavirus’’ OR ‘‘ATV’’ OR ‘‘BIV’’ OR
‘‘CMTV’’ OR ‘‘FV3’’ OR ‘‘helminth’’ OR ‘‘trematode’’ OR
‘‘nematode’’ OR ‘‘Ribeiroia’’ OR ‘‘fungus’’ OR ‘‘Achlya’’ OR
‘‘Saprolegnia’’ OR ‘‘protist’’).

We initially gathered approximately 12,000 search hits. We
then excluded duplicates and scanned remaining titles for
relevance to the topic. Subsequently, we excluded reviews,
opinions, and synthesis articles, as well as studies based
exclusively on modeling. We then applied the following
selection criteria to the roughly 1400 remaining studies: (1)
include amphibian host(s) and pathogen(s), (2) contain a field
or experimental (e.g., lab or mesocosm) component, and (3)
investigate ecological factors in the context of host–pathogen
dynamics (listed below). After further inspection we were left
with a pool of 832 peer-reviewed articles (hereafter, the
literature; see Supplemental Materials available online for full
list) for our review. From each of the included studies, we
recorded journal, pathogen group (e.g., chytrid fungi,
ranaviruses), and study design (field or experimental). We
also scored the studies for the following ecological factors: (a)
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abiotic factors, including temperature, humidity, and precip-
itation; water parameters (e.g., salinity, pH, conductivity;
dissolved oxygen); and light (e.g., ultraviolet [UV]B radiation,
light:dark cycle); (b) biotic factors, including host community
assemblage, population genetics, resources and predation, and
density and abundance; (c) factors associated with landscape
features, including slope, elevation, vegetation, and connec-
tivity; and (d) factors of anthropogenic nature, including
organic and inorganic chemicals, habitat fragmentation,
infrastructural and industrial development, and trade and
farming. We also included variables associated with (e) the
host, such as species identity; life-history stage; susceptibility
and mortality; growth and development; physiological,
cellular, and immunological responses; behavior and host
ecology; host microbiome or mucosome; and (f) the pathogen,

such as species identity, transmission mode, replication, and
environmental persistence/viability.

WHAT PATHOGENS HAVE BEEN STUDIED?

Between 2009 and 2019, the most commonly investigated
pathogens were chytrid fungi and ranaviruses, covering 78%
of the publications examined. However, chytrid fungi (56%
of all publications) received significantly more attention than
ranaviruses (18% of all publications). Four percent of these
publications investigated both pathogens, and only 3% were
associated with more than two pathogen classes. Helminths,
and in particular Ribeiroia ondatrae, were investigated in
15% of the publications and other pathogens such as protists/
protozoans, bacteria, and other fungi were investigated in
only 4% of the publications (Fig. 2A). Remarkably, more

FIG. 1.—Flow diagram of basic relationships between amphibian host–pathogen systems and environmental factors. Adapted from Gray et al. 2009.

FIG. 2.—Percentage distribution of investigated pathogens (A) and host life stage (B) in the amphibian disease literature between 2009 and 2019.
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than a third (35%) of all literature was published in only four
journals (13%, 12%, 6%, and 4% for Diseases of Aquatic
Organisms, PLoS One, EcoHealth, and Journal of Wildlife
Diseases, respectively), although 173 journals have published
research on amphibian diseases over this 10-yr period. This
large diversity of journals shows the multidisciplinary
research associated with these threats and accentuates the
complex interplay between host, pathogens, and their
environment in shaping disease dynamics (Echaubard et al.
2014; Kärvemo et al. 2018).

The chytrid fungi Bd and B. salamandrivorans (Bsal)
belong to the phylum Chytridiomycota (Longcore et al.
1999; Martel et al. 2013), a group of heterotrophic and
ubiquitous fungi, predominantly found in aquatic and
semiaquatic habitats, as well as in moist soils (Sparrow
1960; Karling 1977). Many chytrids are obligate parasites of
plants, fungi, and invertebrates, degrading substrates such as
chitin, cellulose, and keratin (Berger et al. 1998). In

particular, Bd and Bsal affect keratinized tissue such as the
superficial epidermis in juvenile and adult amphibians, as
well as the mouth parts in tadpoles (Berger et al. 1998;
Longcore et al. 1999; Fellers et al. 2001). Chytrid infections
can be associated with multifocal erosion, irregular thicken-
ing of the epidermis, and severe ulcerations, which can
disrupt osmotic regulation and cause cardiac arrest (Voyles
et al. 2009; Martel et al. 2013). At least 500 amphibian
species are affected by chytrid-related declines and extinc-
tions, even in pristine environments (Olson et al. 2013;
Becker et al. 2016; Scheele et al. 2019). The majority of the
literature involving chytridomycota investigated Bd (94%),
whereas only 2% considered Bsal, and 3% addressed both
species together (Fig. 3A). Less than half (43%) of the
literature identified chytrid lineages, which is somewhat
surprising, considering more than 600 different isolates on
GenBank and four main lineages are known (Bataille et al.
2013; Olson et al. 2013; O’Hanlon et al. 2018). This becomes

FIG. 3.—Percentage distribution of investigated pathogens and associated host life stage in chytridomycota (A, B), ranaviruses (C, D), and helminths (E,
F) in the amphibian disease literature between 2009 and 2019.
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critical in the context of risk assessments when considering
the variability in pathogenicity among different strains
(Berger et al. 2005; Retallick and Miera 2007). Furthermore,
strain identification would help to identify the source and
origin of infection, subsequently aiding the implementation
of measures to prevent further transmission and mitigate the
outcomes of epizootics.

Ranavirus is a genus of viruses within the nucleocyto-
plasmic large deoxyribonucleic acid virus family Iridoviridae.
Three species of Ranavirus are known to infect amphibians:
Ambystoma tigrinum virus (ATV), Common midwife toad
virus (CMTV), and Frog virus 3 (FV3; for further taxonomy
see Chinchar et al. 2017, 2018). They have been found in at
least 105 species in 18 families of amphibians worldwide
(Duffus et al. 2015) and are responsible for the majority of
pathogen-associated amphibian die-off events in temperate
climate regions such as North America and Europe (Kik et
al. 2011; Lesbarrères et al. 2012). By inducing a potentially
lethal systemic disease that involves organ necrosis and
hemorrhages, ranaviruses have the potential to cause severe
population declines, possibly leading to extirpation (Earl and
Gray 2014; Price et al. 2014; Miller et al. 2015). Almost half
of the research on ranaviruses (44%) focused on the FV3
lineage, whereas the other two species CMTV and ATV
received considerably less attention (8% and 5% respective-
ly; Fig. 3C). Yet, in 33% of the literature, ranaviruses
remained unassigned to a lineage or unidentified despite
being considered FV3-like isolates, and only 7% of the
literature investigated multiple isolates.

Helminths are often detected in amphibians of all life
stages, but the infection can be considered incidental since
amphibians are normally not the target host (Miller et al.
2004). However, infestations may have severe consequences
for infected hosts. In particular, the trematode R. ondatrae is
known to induce severe limb malformations and mortality in
developing amphibians (Johnson and McKenzie 2009;
Roberts and Dickinson 2012). The majority of the helminth
literature investigated either multiple species (43%) or did
not specify the species (35%). One in five studies (22%)
reported either Echinostoma sp. or R. ondatrae (Fig. 3E).

Among other pathogens, bacteria such as Aeromonas
hydrophila, Pseudomonas aeruginosa, and Klebsiella pneu-
moniae can induce lethal dermatosepticemia, potentially
leading to mass mortalities (Schadich 2009), and have been
studied in 2% of the literature. However, these bacteria are
often part of the natural internal and external microbiome of
amphibians, only causing disease when the overall health and
related immune functions of the host decrease (Schadich
and Cole 2010). Finally, a limited number of papers
investigated the role of water molds (1%), such as
Saprolegnia sp. and Achlya sp., which can induce saproleg-
niasis in amphibians (Kiesecker et al. 2001; Ault et al. 2012).
Water molds are ubiquitous saprotrophic oomycetes that can
parasitize live and dead amphibians of all life stages
(Romansic et al. 2011), potentially leading to death in
embryonic and larval stages (Romansic et al. 2009;
Fernández-Benéitez et al. 2011; Ault et al. 2012). Fungal
infections can also have a negative impact on host conditions,
thus increasing vulnerability to secondary infections by other
pathogens (Romansic et al. 2011).

WHAT STUDY DESIGNS HAVE BEEN USED?

More than half of the published studies included field
sampling components, and slightly fewer were experimental
in nature, but only a small number of these included both
components, and even fewer conducted statistical modeling
(Table 1). The same ratios were observed when considering
chytrid fungi and helminths only, whereas for ranaviruses,
slightly more experimental than fieldwork has been con-
ducted (Table 1). It is interesting to note that for chytrid
fungi, which received more and earlier attention than the
ranaviruses, the majority of research is still fieldwork based,
rather than conducted through specific experimental studies,
as seen in ranavirus literature, highlighting both the
geographical and knowledge gaps that remain.

WHAT ECOLOGICAL FACTORS HAVE BEEN STUDIED?

Overall, a large variety of ecological factors has been
studied in amphibian disease research over the last decade.
Besides specific host and pathogen characteristics, studies
often included several environmental or anthropogenic
factors. In general, studies often considered only a small
suite of ecological factors, rather than taking a more holistic
approach (Table 2), and the effects of host life stage and
phylogeny, as well as community and density effects,
received little attention.

Pathogen Characteristics

In general, the outcomes of epizootics in amphibian
communities strongly depend on the respective pathogen
strain (Brunner et al. 2015; Berger et al. 2016). Different
pathogens are highly variable in their virulence (commonly
measured as the time to the host’s death; Berger et al. 2005;
Brunner and Collins 2009; Farrer et al. 2011; Echaubard et
al. 2014; Morrison et al. 2014), and recent studies have
identified the circulation of highly recombinant pathogen
lineages in wild populations (Farrer et al. 2011; Claytor et al.
2017; O’Hanlon et al. 2018; Vilaça et al. 2019). The origins of
the different Bd lineages, as well as Bsal, are in northeast

TABLE 1.—Study design by major pathogen groups in the amphibian
disease literature between 2009 and 2019, sorted by experimental studies,
field studies, and a combination of approaches. Rows sum to 100%.

Experiment Field Field þ experiment

All pathogens 40% 52% 8%
Chytrid 41% 51% 9%
Ranaviruses 49% 46% 5%
Chytrid þ ranaviruses 2% 96% 2%
Helminths 40% 49% 11%
Others 21% 68% 11%

TABLE 2.—Relative number of studies investigating zero, one, two, or
more than two ecological factors in the amphibian disease literature between
2009 and 2019. Factors are separated into abiotic and biotic factors, and host
and pathogen characteristics. Columns sum to 100%.

No. of factors Abiotic factors Biotic factors
Host

characteristics
Pathogen

characteristics

Zero 65% 10% 6% 38%
One 21% 51% 15% 51%
Two 8% 33% 46% 10%
More than two 6% 6% 33% 1%
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Asia, where they infect native amphibians without causing
severe epizootics, and most individuals sustain sublethal
infections (Martel et al. 2014; O’Hanlon et al. 2018). This is
likely explained by a coevolutionary history of the hosts and
the pathogen, further supported by the detection of the fungi
in museum specimens at least 100 yr old (Martel et al. 2014;
Lips 2016). The geographical origin of ranaviruses is not
clear, but phylogenetic analyses suggest that ranaviruses
have been a natural part of amphibian host–pathogen
systems in Asia for an extended period of time, and have
been introduced into North America within the last 100 yr
(Vilaça et al. 2019).

However, only half of the literature determined pathogen
identity (e.g., Bd lineage or Ranavirus strain). Given the
advancements in sequencing techniques and significant
decrease in associated time and costs, we suggest routinely
conducting isolate identification and providing sequences on
GenBank. This would drastically increase the comparability
among studies and provide a greater insight into the identity
and diversity of pathogen strains circulating in wild and
captive amphibian populations. Furthermore, this knowl-
edge would greatly advance management and conservation
strategies.

Other key factors for the outcomes of an epizootic in an
amphibian population are the pathogen-specific replication
and transmission modes (Kriger and Hero 2007; Gray et al.
2009). Bd infection occurs predominately through motile
free-swimming zoospores in aquatic habitats, shed by
infected individuals, but also through direct transmission
(Rowley and Alford 2007; Chestnut et al. 2014). Similar
routes of transmission are expected for the salamander
fungus Bsal (Gray et al. 2015; Schmidt et al. 2017).
Ranaviruses can be transmitted directly through contact
with infectious individuals, but also through virions in water
and on environmental substrates (Brunner et al. 2007;
Cunningham et al. 2007; Robert et al. 2011; Brenes et al.
2014). Another plausible route of transmission, in particular
for larval amphibians, is cannibalism (Brunner et al. 2015).
This transmission route has been demonstrated in anurans
(Pearman et al. 2004; Harp and Petranka 2006) and
salamanders (Brunner et al. 2007). Vector-borne transmis-
sion can explain the spread of amphibian pathogens across
the landscape, in particular over longer distances. Bd
zoospores have been found on the feet and feathers of
waterfowl (Garmyn et al. 2012; Burrowes and De la Riva
2017). A similar mode of landscape-level transmission would
be plausible to expect for ranaviruses; however, there is no
peer-reviewed literature testing this hypothesis. Interesting-
ly, Bd as well as ranaviruses were found in mosquitos at sites
with infected turtles (Ranavirus, Kimble et al. 2015; Bd,
Gould et al. 2019). In addition, Bd has been found on lizard
feet (Kilburn et al. 2011). For ranaviruses as a multiclass
vertebrate pathogen there is a wide range of potential vector
species including fish, reptiles, and amphibians (Duffus et al.
2015).

Host Characteristics

In general, amphibians exhibit high interspecific variation
in susceptibility to pathogen infections (Schock et al. 2008;
Hoverman et al. 2011; Searle et al. 2011; Ohmer et al. 2013).
Therefore, host-identity can be a driving factor in the
epidemiology of emerging pathogens in amphibian commu-

nities (e.g., chytrid in various North American amphibian
species, Gahl et al. 2011; Ranavirus in Californian amphib-
ian communities, Tornabene et al. 2018; Ranaviruses in
amphibian communities in the boreal forest of northwestern
Canada, Bienentreu 2019). Because of varying susceptibil-
ities, some species experience devastating mortality events,
whereas others sustain sublethal infections and potentially
act as a reservoir for pathogens (Reeder et al. 2012; Scheele
et al. 2016; Bacigalupe et al. 2017; Bienentreu 2019). In
Australian amphibian communities, a high abundance of
Common Eastern Froglets (Crinia signifera), a reservoir for
Bd, amplified prevalence in sympatric Northern Corroboree
Frogs (Pseudophryne pengilleyi, Scheele et al. 2017). A
similar pattern has been found by Bienentreu (2019), where
the presence of Canadian Toads (Anaxyrus hemiophrys) in a
community of up to three hosts drastically increased
ranavirus loads in Wood Frogs (Lithobates sylvaticus, or
Rana sylvatica) and Boreal Chorus Frogs (Pseudacris
maculata). With reservoir hosts potentially sustaining
sublethal infections and acting as superspreaders for a
pathogen, it becomes critical to consider host identity in
epidemiological studies.

Additionally, the behavior and ecology of host species can
have direct and indirect effects on pathogen dynamics in
communities, and vice versa (Lips et al. 2003; Han et al.
2008; Daly and Johnson 2011; Haislip et al. 2012). Contact
frequency with other individuals, as well as habitat
preferences, can affect transmission (e.g., ATV in Tiger
Salamanders [Ambystoma tigrinum], Brunner et al. 2004; Bd
in Boreal Toads [Anaxyrus boreas], Hossack et al. 2013). For
example, breeding aggregations can facilitate ranavirus
transmission (Miller et al. 2011), and chytrid infection
probability can be directly linked to thermal preferences of
the host species (Rowley and Alford 2013).

Infected individuals (in particular, sublethally infected)
may exhibit behavioral changes due to changes in morphol-
ogy or physiology, subsequently altering transmission
dynamics in a host community (Han et al. 2008). Such
mechanisms were observed in relation to antipredator
behavior, where Wood Frog tadpoles exposed to predator
cues exhibited reduced Bd loads, likely due to a stress-
induced upregulation of the immune system (Groner and
Relyea 2015). When exposed to visual and chemical predator
cues, Northern Leopard Frog (Lithobates pipiens, or Rana
pipiens) tadpoles infected with Bd exhibited behavioral
changes that decreased their risk of being preyed upon, as
compared with uninfected individuals (Parris et al. 2006). In
contrast, predator cues seemingly do not interact with
disease dynamics in the amphibian–ranavirus system. Four
larval North American anuran species did not experience
elevated mortality or viral loads when exposed to predator
cues (Haislip et al. 2012). Another study could not find any
relationship between predator cues, resource availability,
and ranavirus susceptibility of Wood Frog tadpoles (Reeve et
al. 2013). It is also noteworthy that Tiger Salamander larvae
infected with ATV, a Ranavirus species commonly found in
salamanders, showed drastically increased mortality when
exposed to predator cues (Kerby et al. 2011). For
echinostomes, however, research showed that increased
resource availability can be indirectly linked to the severity of
infection in larval anurans by influencing host body size
(Marino 2016). Therefore, infection-induced changes in
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antipredator behavior become relevant when investigating
predator–prey systems, where both parts are susceptible to
the pathogen (e.g., Bd in frog–salamander system, Han et al.
2011). The vast majority of the literature (91%) included
host-specific infection rates, susceptibility, or mortality.
However, although 40% of the literature reported patho-
gen-induced changes in physiology, morphology, or at the
cellular level, only 11% investigated effects on growth or
development, another 6% investigated behavioral traits and
specific host ecology, and only 4% focused on the effects of
resource type and availability, as well as predation.

Intraspecific variation in susceptibility plays an important
role in pathogen transmission and infection outcome
(Echaubard et al. 2010, 2016; Tobler and Schmidt 2010).
Such variation typically reflects phylogeny and life history of
the host species and their related innate and adaptive
immune responses (Grayfer et al. 2015a; Grogan et al. 2018),
but also the number and timing of exposures to the pathogen
(Hanlon and Parris 2014; Echaubard et al. 2016; Kirschman
et al. 2018). The different amphibian life stages present
distinct morphologies and physiologies, and their suscepti-
bility to infection changes throughout development (Haislip
et al. 2011; Warne et al. 2011). Premetamorphic and
metamorphic stages (tadpoles and metamorphs) often
exhibit reduced and delayed immune responses to infection
in relation to postmetamorphic (juveniles and adults)
individuals (Rollins-Smith 1998; Andino et al. 2012; Grogan
et al. 2018). Therefore, late-stage tadpoles and metamorphs
often show a high susceptibility and commonly succumb to
ranavirus infection (Hoverman et al. 2011; Reeve et al. 2013;
Grayfer et al. 2014), whereas postmetamorphic individuals
can harbor considerably higher pathogen loads than
premetamorphic individuals, sustaining sublethal infections
without experiencing a terminal outcome (Landsberg et al.
2013; Grayfer et al. 2015b; An and Waldman 2016). The
respective amphibian life stage at the time of exposure to a
pathogen plays a significant role in infection outcome
(Johnson et al. 2011; Echaubard et al. 2016; Kirschman et
al. 2018) and despite the differences based on life history
stage, only 25% of the literature assessed both pre- and
postmetamorphic phases together. Overall, the postmeta-
morphic stages are more studied, with 63% of the literature
compared with only 25% for premetamorphic stages, and
only 14% invetigating both stages (Fig. 2B). In studies of
chytrid fungi, many studies focus on postmetamorphic host
stages (72%), with only 15% of the literature investigating
premetamorphic stages and 13% combining both stages (Fig.
3B).

In contrast, in the ranavirus literature, pre- and post-
metamorphic stages are balanced (37% each), with 26% of
the studies having both life stages combined (Fig. 3D). For
helminths, approximately half of the literature (49%)
investigated effects on premetamorphic individuals, in
comparison with 43% for postmetamorphic individuals, and
8% for both stages (Fig. 3F). For other pathogens such as
bacteria and water molds, the majority of the literature
(94%) investigated infections in postmetamorphic individu-
als, and no study included both life stages.

Another important factor in the outcome of pathogen
emergence is the phylogeny of the affected host population
(Hoverman et al. 2011; Echaubard et al. 2014; Bradley et al.
2015; Bacigalupe et al. 2017). A repeated emergence of a

pathogen in a host population will lead to selection toward
more resistant genotypes, overall increasing the resilience of
the population against new or reintroduced pathogen
lineages (Pearman and Garner 2005; Bacigalupe et al.
2017; Puschendorf et al. 2019). The rediscovery of relict
amphibian populations of species that were believed to be
extirpated or extinct due to epizootics and devastating die-
offs (e.g., Armored Mist Frogs [Litoria lorica] and Waterfall
Frogs [Litoria nannotis] in Australia, Puschendorf et al.
2011; amphibian communities in the Costa Rican highlands,
Garcı́a-Rodrı́guez et al. 2012; Harlequin Toads [Atelopus
varius] in Costa Rica, González-Maya et al. 2013) may
further indicate the coevolutionary history of the host–
pathogen system. In fact, pathogens are often present in the
host community, but positive individuals show no signs of
disease, presumably sustaining sublethal infections (Whit-
field et al. 2013; Warne et al. 2016; Puschendorf et al. 2019).
However, the phylogenetic backgrounds of the hosts have
only been investigated in 11% of the literature.

Host Community and Density

The diversity and dynamics of a community of host
species can have a significant influence on pathogen
dynamics and vice versa (Becker et al. 2014; Han et al.
2015; Bienentreu 2019; Johnson et al. 2019). Pathogen
transmission and infection prevalence are influenced by
diversity, density, and abundance of suitable host species
(and life stages) in the affected system (Miller et al. 2011;
Venesky et al. 2014; Brunner et al. 2015; Muths et al. 2020).
In the field of disease ecology, so-called dilution and
amplification effects received a great deal of attention in
recent years, whereby high host diversity dilutes disease risk
and low diversity has amplifying effects (Ostfeld and Keesing
2012; Halliday et al. 2017). However, such relationships have
been infrequently investigated in amphibian host–pathogen
systems, and the sparse literature shows highly context-
dependent interactions. For example, dilution effects were
linked to specific tadpole feeding behavior, where the Bd
zoospore abundance significantly decreased with an increase
in filter-feeding Green Treefrog (Hyla cinerea) and Eastern
Narrowmouth Toad (Gastrophryne carolinensis) tadpole
diversity (Venesky et al. 2014). A more general relationship
was shown in wild Californian amphibian communities of up
to six hosts, where an increase in community richness
decreased the number of competent host species for the
trematode R. ondatrae, reducing the overall infection risk
(Johnson et al. 2013). Interestingly, the opposite pattern has
been observed for Ranavirus in the same system, where an
increase in community richness was positively correlated
with ranavirus prevalence (Tornabene et al. 2018).

The effects of community composition become relevant
when considering human-mediated species translocations, as
well as climate change-induced migration of amphibian
species to previously unsuitable habitats. Predictive model-
ing showed that climate-driven amphibian migrations are
expected to be more rapid and advancing farther north than
most other vertebrates (Araújo et al. 2006; Lawler et al.
2009). Changes in community diversity can thus lead to the
introduction of new pathogens, but also change the dynamics
of the pathogens present, by an increase or decrease in
competent host species. (Schock et al. 2010; Johnson et al.
2013). In addition, the majority (.80%) of amphibian
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pathogens is capable of infecting multiple host species within
a community, and hosts in natural communities are likely to
be infected with multiple pathogens (Blaustein et al. 2011;
Olori et al. 2018). In addition, pathogen diversity and
abundance in amphibian communities can be increased or
decreased by human-mediated habitat fragmentation (King
et al. 2007, 2008; McKenzie 2007). Yet, less than half of the
literature assessed more than one host species (44%) and
only 9% reported more than one pathogen. Furthermore,
most of these studies did not directly address potential
combined effects of multiple pathogens, and simply stated
their co-occurrence. Therefore, epidemiological studies, risk
assessments, and management strategies should routinely
consider potential effects of host community assemblage and
pathogen diversity.

Host density can potentially affect disease dynamics, but
only 3% of the literature has considered such effects. In the
Sierra Nevada system, higher densities of Mountain Yellow-
legged Frogs (Rana muscosa) were positively correlated with
a higher number of environmental Bd zoospores and
increased infection and mortality (Rachowitz and Briggs
2007; Briggs et al. 2010). Experimental trials with Northern
Leopard Frog tadpoles showed that higher density had
negative effects on the overall fitness (growth and develop-
ment), and as a result, animals died faster and at a higher
rate when exposed to Ranavirus (Echaubard et al. 2010). By
contrast, ranavirus epizootics in Wood Frog populations in
Connecticut were strongly influenced by tadpole develop-
mental stage and water temperature, rather than by density
(Hall et al. 2018). Similarly, in amphibian communities in
Missouri, there was no correlation between Bd presence and
community density or species density (Strauss and Smith
2013). Overall, these contradicting patterns show our limited
knowledge of density effects on amphibian host–pathogen
systems and underline the necessity for further research.

Environmental Factors

Environmental factors influence amphibian host–patho-
gen systems (Kiesecker 2002; Blaustein et al. 2003), further
contributing to population declines (Daszak et al. 2003;
Kiesecker et al. 2004; Lips et al. 2006). Over the last decade,
environmental factors were considered in 41% of the
research on amphibian pathogens. In particular, a third of
these studies (32%) investigated landscape features such as
slope and elevation, habitat characteristics such as vegetation
type and canopy cover, and also natural disturbances such as
wildfires and severe weather events, which can potentially
affect pathogen dynamics in amphibian communities (Beck-
er et al. 2012; Hossack et al. 2013; Muths et al. 2020). These
alterations are mediated by changes in temperature,
environmental humidity, and light intensity. At amphibian
breeding sites in Maine, low canopy cover was positively
associated with ranavirus presence and mortality (Gahl and
Calhoun 2010), likely due to a higher mean water
temperature. The opposite effects have been observed in
endangered rain-forest frogs (Litoria rheocola) in Australia,
where the reduction of canopy cover drastically decreased
the Bd infection risk for the frogs, mediated by an increase in
microhabitat mean temperature and related decrease in
environmental humidity (Roznik et al. 2015).

In general, climate is considered a major factor driving
amphibian disease dynamics (Rohr et al. 2013). In particular,

temperature received increased attention and is a factor in
37% of the literature. Temperature is believed to directly
influence the dynamics of emerging pathogens such as Bd in
wild amphibian populations (Kiesecker et al. 2001; Wood-
hams et al. 2003; Berger et al. 2004). Chytrid fungi and
ranaviruses are extremely temperature dependent, as
reflected in their spatiotemporal distribution patterns (Olson
et al. 2013; Feldmeier et al. 2016; Hall et al. 2018; Youker-
Smith et al. 2018). Chytrid fungi occur mostly in regions with
low mean temperatures and Bd-related declines occur
predominantly at higher altitudes (Ron 2005; Woodhams
and Alford 2005), whereas Bsal-related declines are cur-
rently restricted to forested areas in central Europe
(Feldmeier et al. 2016; Watts et al. 2019). Chytrid fungi
show optimal growth at temperatures between 108C and
208C and decreased growth between 258C and 288C, with
temperatures over 308C killing the fungus (Piotrowski et al.
2004; Martel et al. 2013; Stevenson et al. 2013). Ranavirus
epizootics often occur in mid- to late summer in temperate
regions of the Northern Hemisphere when water tempera-
tures surpass 258C (Brunner et al. 2015). In fact, ranaviruses
show optimal growth at temperatures of 288C but do not
replicate over 318C (Ariel et al. 2009; Nazir et al. 2012). At
temperatures below 128C, infection loads are low and
mortality is drastically reduced (Brand et al. 2016).

Environmental substrates and humidity strongly influence
the environmental persistence of pathogens (Nazir et al.
2012; Kolby et al. 2015a) and have been investigated in 20%
of the literature. In particular, the type of substrate (e.g.,
inorganic and organic) as well as humidity (e.g., precipita-
tion, water connectivity, substrate moisture) affect the short-
term viability of the pathogens (Johnson and Brunner 2014;
Kolby et al. 2015b; Munro et al. 2016; Stoler et al. 2016).
Therefore, it is unlikely that pathogens show long-term
persistence in environmental substrates. Ranaviruses and
chytrid fungi may rely therefore on reservoirs, such as
sublethally infected individuals, for long-term persistence in
amphibian communities (Gray et al. 2009; Blaustein et al.
2011; Bosch et al. 2015; Schmidt et al. 2017; Brannelly et al.
2018). In fact, the amphibian-reservoir hypothesis is strongly
supported by reoccurring pathogen emergence in amphibian
communities inhabiting semipermanent and ephemeral
wetlands (Hunter et al. 2010; Hall et al. 2018; McMillan et
al. 2020), as well as after environmental chemical disinfec-
tion (Bosch et al. 2015). Furthermore, Bd and ranaviruses
can persist in overwintering individuals (Brunner et al. 2004;
Narayan et al. 2014).

UVB radiation can also cause an increased vulnerability to
infection by impairing growth and development and possibly
inducing malformations (Blaustein et al. 2003; Searle et al.
2010). Ambient UVB radiation significantly decreased Bd
prevalence in infected larval Common Toads (Bufo bufo) and
European Midwife Toads (Alytes obstetricans, Ortiz-Santa-
liestra et al. 2011), but no such connection was found for
ranaviruses (Gahl and Calhoun 2010). However, only 1% of
the literature assessing environmental factors associated with
amphibian pathogens considered UVB radiation as a potential
explanatory variable for epidemiological patterns. Similarly, as
little as 4% of the literature has assessed water parameters
such as salinity, conductivity, pH, or dissolved oxygen.
Elevated salinity significantly reduced pathogen transmission
and infection loads and increased survival rates among Bd-
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infected amphibians in Australia (Stockwell et al. 2015a,b;
Clulow et al. 2018). The opposite pattern was observed in a
Wood Frog–ranavirus system, whereby an increase in chloride
concentrations slightly increased the chances for a mortality
event (Hall et al. 2018). Other factors such as pH and
conductivity had no significant effects on amphibian host–
pathogen systems (e.g., Ranavirus in Wood Frogs in
Connecticut, Hall et al. 2018; Bd in ranids in Missouri,
Strauss and Smith 2013). However, in a study across the
continental United States, Bd loads of swabbed frogs were
lower at sites with elevated pH levels (Battaglin et al. 2016).

Overall, there is very little support for general effects of
natural water characteristics such as pH, conductivity, and
salinity on pathogen dynamics. The literature clearly shows
that interactions are highly context dependent. Yet, water
characteristics can indirectly influence pathogen dynamics
through alteration of the microbiome involved in Bd
tolerance (Varela et al. 2018) or by directly affecting hosts’
overall body condition and related resilience and immunity,
making additional research on these relationships necessary.

Anthropogenic Factors

There is substantial evidence for a direct correlation
between anthropogenic factors and epidemiological patterns
in amphibian populations (e.g., Schotthoefer et al. 2011;
Koprivnikar and Redfern 2012; Tornabene et al. 2018).
Sixteen percent of the literature investigated such relation-
ships and found that industrial and infrastructural develop-
ment has strong effects on host–pathogen dynamics by
altering habitats and host community structures (St-Amour
et al. 2008; Belasen et al. 2018; Davis et al. 2019).

Highly virulent pathogen lineages from commercial trade
and breeding facilities (Farrer et al. 2011; Claytor et al. 2017;
Vilaça et al. 2019) and human-mediated species translocation
(e.g., use as bait) accompanied by the introduction of new
pathogens represents a severe threat to naı̈ve populations, and
can lead to fast and devastating mass mortality events (Picco
and Collins 2008; Price et al. 2014; Earl et al. 2016). Research
showed that commercial frog farms facilitated strain recom-
bination events (Bd, Schloegel et al. 2012; Greenspan et al.
2018; Ranaviruses, Claytor et al. 2017; Vilaça et al. 2019) and
can release ecologically relevant amounts of infectious agents
in the adjoining ecosystem by discharge of untreated
wastewater (e.g., Bd zoospores, Ribeiro et al. 2019). Similar
mechanisms of pathogen spread were suggested for the
amphibian–ranavirus system (Saucedo et al. 2019). In addition,
ranavirus isolates collected from epizootics in commercial frog-
breeding facilities (Majji et al. 2006; Miller et al. 2007) showed
significantly increased virulence in a variety of different
amphibian species in comparison with wild-type isolates
(Hoverman et al. 2010, 2011; Peace et al. 2019).

In addition to breeding facilities, the associated trade of
the animals contributes significantly to the global spread of
amphibian pathogens such as Bd and ranaviruses (Picco and
Collins 2008; Kolby et al. 2014). A study investigating the
presence of common pathogens in commercially traded
amphibians at the Hong Kong International Airport revealed
that about 1 in 10 individuals was infected with Bd, and more
than half tested positive for ranaviruses (Kolby et al. 2014).
High densities during import and export can amplify
virulence and transmission among individuals (Pavlin et al.
2009). For example, Tiger Salamanders in the North

American fishing bait trade were infected with highly
virulent strains of the Ranavirus species ATV (Jancovich et
al. 2005; Picco and Collins 2008; Epstein and Storfer 2016).
Furthermore, invasive Bullfrogs (Lithobates catesbeianus, or
Rana catesbeiana) can act as reservoir hosts and can
contribute to the emergence and spread of common
amphibian pathogens Bd (Garner et al. 2006; O’Hanlon et
al. 2018) and ranaviruses (Schloegel et al. 2009).

Pollution from fertilizer, herbicides, and pesticides may
indirectly affect pathogen dynamics in aquatic communities
by eutrophication and subsequent increase in host density and
prevalence (Johnson et al. 2007). Furthermore, many of the
commonly used herbicides and pesticides negatively affected
the body condition of amphibians (Egea-Serrano et al. 2012),
and therefore can influence disease dynamics in host
communities. For example, Northern Leopard Frogs exposed
to environmentally relevant doses of the insecticide carbaryl
harbored significantly higher trematode loads than unexposed
individuals (Pochini and Hoverman 2017a). Interestingly, the
authors did not observe any direct effects on infection rates.
Another study used larval Wood Frogs to investigate the
effects of the insecticides carbaryl and thiamethoxam on
ranavirus transmission and susceptibility (Pochini and Hover-
man 2017b). The animals experienced increased mortality;
however, the effects on pathogen transmission and prevalence
were negligible. In contrast, five North American anuran
species exposed to mixtures of commonly used insecticides or
herbicides did not experience increased mortality rates, but
showed alterations of Bd loads (Buck et al. 2015). Another
study conducted across the United States showed a positive
correlation of Bd prevalence in amphibian hosts and total
fungicide concentrations in the environment (Battaglin et al.
2016). Furthermore, Bd zoospore loads in ranid and hylid
frogs increased with dissolved organic carbon, nitrogen, and
phosphorus (Battaglin et al. 2016). Although their impacts on
the overall health of amphibians are known, certain pesticides
have been used in disease control and outbreak management.
Bd was eliminated at several wetlands in Spain through a
combination of artificial draining, environmental chemical
disinfection, and ex situ treatment of individuals with
fungicides (Bosch et al. 2015).

A major threat to amphibian populations worldwide,
anthropogenic habitat fragmentation can also control host–
pathogen interactions by modifying host community struc-
ture and density (Beasley et al. 2005; King et al. 2007; Greer
and Collins 2008; St-Amour et al. 2008; Becker et al. 2016).
For example, deforestation can directly influence amphibian
community diversity, richness, and density by alteration of
microhabitat climate and species interactions, in turn
variously increasing or decreasing the infection risk for Bd
(Becker et al. 2016). Increased microhabitat temperatures
can suppress the growth of the fungus and negatively affect
its environmental persistence (Raffel et al. 2010; Becker et
al. 2012). Similarly, spatial and temporal variation of
ranavirus transmission and prevalence was indirectly influ-
enced by land use pattern in Tiger Salamanders (Greer and
Collins 2008). An increase in ranavirus infection was
correlated with the increase in contact rates between hosts,
induced by anthropogenic modifications of the wetland
structure (Greer and Collins 2008). Amphibian populations
inhabiting fragmented habitats in urban settings in the UK
also showed an increased ranavirus prevalence influenced by
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various anthropogenic factors (e.g., level of urbanization, use
of chemicals, invasive species; North et al. 2015), and a
direct relationship between industrial and infrastructural
activity and ranavirus prevalence was observed in Green
Frogs (Lithobates clamitans, or Rana clamitans) in Canada,
yet not with Bd (St-Amour et al. 2008). A large study among
amphibian populations across the United States revealed a
similar relationship (Battaglin et al. 2016).

Overall, anthropogenic factors play a significant role in
amphibian disease ecology by directly and indirectly altering
host–pathogen dynamics. This underlines the importance of
comprehensive ecological assessments and subsequent
implementation of management and mitigation strategies
when conducting infrastructural and industrial development.
Furthermore, biosafety measures, such as disinfection
protocols at recreational and commercial facilities (e.g.,
marinas and harbors), should be implemented to limit
pathogen spread through contaminated equipment. Finally,
stricter regulations need to be imposed on commercially
bred and traded amphibians to prevent the further spread of
pathogens and their establishment into wild populations.

PERSPECTIVES AND CONCLUSIONS

Emerging infectious diseases are a serious threat to global
amphibian diversity as well as to the economy (e.g.,
aquaculture: Gilbert et al. 2012; Waltzek et al. 2014; Saucedo
et al. 2019). Despite an extensive suite of intrinsic (host and
pathogen) and environmental (biotic and abiotic) factors
investigated in the amphibian disease literature over the last
10 yr, the specific factors driving epidemiological patterns and
processes remain unknown for the majority of amphibian
pathogens. This can be attributed to the complexity of host–
pathogen systems, but also to the lack of standardization in
approaches. Nonetheless, factors such as temperature and
humidity are directly associated with epidemiological patterns
of amphibian diseases (Bustamante et al. 2010; Brunner et al.
2015; Roznik et al. 2015), and landscape features such as
slope, elevation (Kriger and Hero 2007; Gahl and Cahloun
2008), and vegetation (canopy cover; Becker et al. 2012) drive
differences in microclimate and microhabitat conditions, in
turn influencing pathogen dynamics in host communities.
These relationships become of particular importance in a
climate-change context, when considering the potentially
rapid and extensive northward migration of amphibian species
(and their pathogens) into naı̈ve amphibian communities
(Araújo et al. 2006; Lawler et al. 2009; Schock et al. 2010).
There is also accumulated evidence that the variation in
virulence among pathogen species and strains and the inter-
and intraspecific variations in infection susceptibility are key
factors for emergence and transmission of most amphibian
diseases (Hoverman et al. 2011; Ohmer et al. 2013;
Echaubard et al. 2016; Grogan et al. 2018). Despite this,
many studies fail to identify their pathogen(s) of study at the
molecular level, and do not consider the full host community
but rather focus on selected host species.

Anthropogenic pressures such as industrial/infrastructural
development have been shown to influence pathogen
dynamics, in particular through habitat fragmentation (Becker
and Zamudio 2011; Becker et al. 2016), and may thus lead to
epizootics. Interestingly, inorganic chemicals (e.g., pesticides
and herbicides) seem to only have negligible effects on chytrid

dynamics (Buck et al. 2015), but show significant effects on
other common amphibian pathogens such as ranaviruses
(Pochini and Hoverman 2017a) and helminths (Pochini and
Hoverman 2017b). Therefore, inorganic chemicals should
more often be taken into consideration when conducting
studies on amphibian populations in anthropogenically
disturbed environments (e.g., industrial activity; St-Amour et
al. 2008). Furthermore, most of the aforementioned factors
influence epidemiological patterns on a local scale, but fail to
fully explain how pathogens spread across the landscape and
globally. At a local scale, the spread of infectious agents is
likely mediated by human activities (e.g., Ranavirus on
contaminated equipment, Casais et al. 2019; and fishing bait,
Picco et al. 2010; Wimsatt et al. 2014), but waterfowl can
facilitate pathogen translocation in more complex landscapes
(e.g., Bd; Garmyn et al. 2012; Burrowes and De la Riva 2017;
Hanlon et al. 2017). At a continental scale, amphibian
pathogens are regularly spread through commercial activities
(pet and food trade; Kolby et al. 2014; Wombwell et al. 2016;
O’Hanlon et al. 2018; Yuan et al. 2018), and this needs to be
rigorously prevented.

Overall, the complex and context-dependent interactions
of amphibian host–pathogen systems with ecological drivers
are often difficult to disentangle, and knowledge gaps
remain. Decision analysis and quantitative modeling can
help to develop, evaluate, and compare disease management
strategies for amphibian communities threatened by disease
(Grant et al. 2017; Smalling et al. 2019). We recommend that
future studies of amphibian disease ecology routinely include
(1) characterization of the host community assemblage, (2)
life stage and species-specific effects therein, (3) the
identification of the pathogen(s) at a molecular level, and
(4) an assessment of environmental factors potentially
contributing to pathogen emergence. In addition, experi-
mental trials to determine the specific role of different hosts
(e.g., reservoir host) as well as to test the persistence of
pathogens in the ecosystem should be considered. Such
standardized and comprehensive approaches are ultimately
required to allow the identification of key factors driving
epidemiological patterns and advance the successful devel-
opment and implementation of proactive disease manage-
ment as well as conservation strategies, rather than solely
reactive outbreak management.

Acknowledgments.—We thank David Green, the Redpath Museum
and the Canadian Herpetological Society for organizing the symposium
‘‘Global Amphibian Population Declines—30 yr of Progress in Confronting
a Complex Problem’’ from which this publication stems.

SUPPLEMENTAL MATERIAL

Supplemental material associated with this article can be
found online at https://doi.org/10.1655/Herpetologica-D-19-
00064.S1.

LITERATURE CITED

Altizer, S., R.S. Ostfeld, P.T. Johnson, S. Kutz, and C.D. Harvell. 2013.
Climate change and infectious diseases: From evidence to a predictive
framework. Science 341:514–519.

An, D., and B. Waldman. 2016. Enhanced call effort in Japanese Tree Frogs
infected by amphibian chytrid fungus. Biology Letters 12:20160018.

Andino, F.D.J., G. Chen, Z. Li, L. Grayfer, and J. Robert. 2012.
Susceptibility of Xenopus laevis tadpoles to infection by the Ranavirus
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