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Abstract

To date glacial and periglacial landforms, lichenometry is a valuable method but, to

improve efficiency, the estimated surface dates derived from traditional methods

need to be more accurate. In other words, the statistical uncertainty associated with

inferred dates has to be reduced. How to perform such a reduction is the main

question that we will address in this paper. An interdisciplinary approach

(lichenometry and statistics) allows reduction in the main sources of uncertainty:

lichen diameters and their associated ages. Around 2600 lichen measurements

collected on moraines from the Charquini glacier in Bolivia (Cordillera Real) are

used to illustrate the advantages of our approach over past studies.

As for any statistical estimation procedure, the error analysis in lichenometry is

directly linked to the type of observations and the statistical model used to represent

accurately these data. The attribute of lichenometry studies is that the measurements

are not averages but maxima; only the largest lichen diameters provide information

about the surface ages. To take this characteristic into account, we propose a novel

statistical way to model maximum lichen diameters. Our model, based on the

extreme value theory, allows us to compute small confidence intervals for the

inferred surface ages. In addition, it offers three other advantages: (1) a global

statistical model, as all our data (dated surfaces and all lichen maximum diameters)

are represented with a unique function; (2) a mathematical framework within which

the maximum lichen distribution is derived from a statistical theory; and (3)

flexibility, as different types of growing curves can be investigated.

Introduction

Lichenometry has principally been used to date periglacial

and glacial landforms. Since the pioneering work of Beschel

(1961), this technique has been applied to a large variety of

environments. It is especially well suited for arctic and alpine

regions because other dating methods are either difficult to

implement or even fail at these high altitudes. For example, the

sparsity of vegetation near glaciers makes the use of dendrochro-

nology problematic. Although lichenometry may be used to date

old surfaces (e.g. the late Holocene in South America; Rodbell,

1992), it is best suited to analyze recent centuries for which

classical 14C dating techniques are tainted with a low precision.

The basic premise of lichenometry is that the diameter of the

largest thalli growing on a surface is proportional to the length of

time that the surface has been exposed to colonization and growth

in a specific environmental context. Hence, if one can establish

a temporal link between lichen sizes and their ages, i.e. construct

a growth curve, it is then possible to date moraines. However, this

relationship between the lichen size and its age varies with the

characteristics of the surroundings. Lichen growth depends on the

climate (Benedict, 1967, 1990, 1991), the lithology (Rodbell, 1992),

as well as the orientation of the colonized surface (Pentecost,

1979). The most popular approach that involves measurements of

the largest lichens is assuming that the largest individual lichens

are among the first to colonize a surface. Although there is

a common agreement among geomorphologists about the basic

concepts of this method, there is still controversy concerning its

implementation, e.g. the number of lichens sampled, the design of

the experiment, and the choice of a robust statistic.

Recently, McCarroll (1994) proposed a new strategy where

only the largest lichen on a block is selected. This procedure is then

repeated many times on different blocks. However, McCarroll

incorrectly assumed that the largest lichen sizes are near normally

distributed (see figures 2 and 7 in McCarroll, 1994). This

assumption was only based on a visual inspection of histograms,

and neither statistical tests were provided to confirm this choice

nor mathematical concepts employed to justify this approach. The

latter point is important because probability theory dedicated to

extreme values (largest lichen diameters belonging to this

category) dictates that the distribution of maxima cannot be

normal (Fig. 1) but instead must follow a specific distribution (the

Generalized Extreme Value distribution), whenever the sample

size is large enough. This mathematical result has been used in

many fields since the pioneering work of Gnedenko (1943) but has

rarely been applied to lichenometry (e.g. Bull and Brandon, 1998;

Karlen and Black, 2002). (A detailed description of this theory, as

well as a list of references, will be given in the section MODELING

MAXIMUM DIAMETERS.) An immediate consequence of this

mathematical constraint is that past computations of confidence

intervals based on the assumption of normality are at best

questionable and at worst flawed. To illustrate the importance of

the appropriate choice for the distribution of maxima, we plot in

Figure 1 the histogram of the maximum lichen diameters from the

Charquini glacier in Bolivia (the same result has been obtained for

different moraines and regions). From the histogram shapes, it is

very clear that the distributions of maxima are rarely symmetric,

and the fit by a Gaussian density distribution (dotted line) is too

restrictive to represent accurately maximum lichen sizes (e.g.

Fig. 1a). In comparison, the fit by a Generalized Extreme Value
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(GEV) density distribution (solid line) that is presented in detail in

MODELING MAXIMUM DIAMETERS provides a much better

agreement with the data, because the GEV spans a much wider

range of distribution shape and it is specially adapted to deal with

maxima. In the past, other authors have noticed this discrepancy

between the maximum distribution and a Gaussian fit. Bull and

Brandon (1998) and Karlen and Black (2002) made use of the

Gumbel distribution to model the maximum diameters density,

but these authors did not take full advantage of the extreme value

theory. The Gumbel density is only a special case of the GEV

density which is a larger class of distribution (see MODELING

MAXIMUM DIAMETERS). In addition, no statistical model

based on the Gumbel distribution was implemented to derive

estimation errors and confidence intervals. A few past studies (e.g.

O’Neal and Schoenenberger, 2003) attempted to associate

confidence intervals and/or p-values with specific growth curves.

However, the hypothesis to derive these confidence intervals, when

implementing linear or nonlinear regression models, was formu-

lated as: maximum diameter 5 l(age) + noise, where l is the growth

curve and the noise Gaussian. This last assumption, as seen in

Figure 1, is not satisfied.

One of our main goals in this paper is to introduce a sound

statistical model based on extreme value theory, which is more

appropriate to model the distribution of the raw material of

lichenometry: the largest lichen diameters.

This paper is organized as follows. In the next section, a model

specifically tailored for analyzing maxima and based on the

statistical extreme values theory is presented. A full description of

the field site (Cordillera Real, Bolivia) can be found in the section

AREA OF INTEREST. The observation collection process is

detailed in the section FIELD WORK. This field study is a part of

a larger French program (Great Ice) dedicated to the study of

climate and environmental variability in the Andes and during the

Little Ice Age (Solomina et al., 2007). To our knowledge, no

previous lichenometry studies have been undertaken in Bolivia,

and consequently there is no growth curve for this region. The

section Conclusions and Future Work summarizes our results.

A General Statistical Model for Lichen Diameters Analysis

To develop a statistical model for analyzing lichen diameters,

we first need to identify the main sources of randomness. In our

approach, we focus on two main sources of uncertainty: the error in

modeling lichen diameters, and the error of associating a date with

a moraine. Consequently, we model a bivariate random vector, say

(Xi, Ti), the date of the i-th moraine Ti and the lichen diameters

associated to this moraine Xi, where the moraine index i varies from

1 to m, the total number of moraines. With these notations, Xi 5

{Xi,1, …, Xi,ni} is a vector whose length ni corresponds to the

number of sampled blocks on the i-th moraine. Apart from a few

cases for which the date of the moraine is known, the variable Ti is

not observed and has to be estimated from the lichen diameters.

Deriving this date is one of the most important questions in the

analysis of lichen diameters. To solve this problem, we propose

a statistical model that has the advantage of being global, i.e. the

lichen information (the measured diameters and the moraine dates

when available) is pooled into one data set. In past studies, two

distinct data sets were considered; lichens with known dates were

analyzed separately from lichens with unknown dates (e.g. McCar-

roll, 1994). Then, these two groups were linked by the growth curve.

We argue that all parameters describing the temporal evolution of

lichen diameters should be estimated simultaneously. The two main

reasons for such a position are the following: (1) Separating the

lichens into two groups is statistically arbitrary because it is

typically assumed that the distribution of lichen diameters comes

from the same family of distribution (otherwise it would not be

possible to make inference from dated moraines to undated ones).

(2) Past two-step procedures have the disadvantage of propagating

the error generated from the first step into the second stage of the

estimation of dates. In comparison, a global pooling of all data

allows us to maximize a global criteria to estimate the parameters of

our statistical model, and consequently it reduces the estimation

error.

Another difference with past studies is that the dates Ti are

not necessarily considered as real numbers but are viewed as

FIGURE 1. Distribution of
maxima lichen diameters (mm)
on six moraines of the Charquini
south glacier. The black boxes
corresponds to the histogram of
the data. The dotted line shows
the fit by a Gaussian density
distribution. The solid line indi-
cates the fit by a Generalized
Extreme Value (GEV) density
distribution. The number of lichen
per panel is about 20.
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random variables, i.e. realizations from a common distribution

function. This approach allows us to measure the second source of

uncertainty, the error in dating the lichens. For example, carbon

dating does not provide a unique date but instead proposes a range

of values for the moraine date. To the best of our knowledge, the

integration of these two uncertainties into a global framework is

novel in most lichenometry studies. Note that capital letters (e.g.,

X and T) are used to denote random variables, and lowercase

letters (e.g., x and t) correspond to realizations, i.e. specific

outputs for the random variables.

MODELING MAXIMUM DIAMETERS

Extreme value theory has been applied to a variety of

problems in finance (Embrechts et al., 1997), hydrology (Katz et

al, 2002), and ecology (Gaines and Denny, 1993). In recent years,

the statistical methodology for extremes has also been used for

a wide range of problems in climate studies. Extreme climate

events due to their large economic and human impacts are

becoming more and more studied in geophysics. For example,

Kharin and Zwiers (2000) examined changes in climate extremes

from coupled atmosphere-ocean GCM outputs, while Naveau and

Moncrieff (2003) investigated the role of extremes on upward mass

fluxes. To learn more about extreme value theory, the book by

Leadbetter et al. (1983) is recommended. For more recent and

applied work, we refer to Coles (2001), Smith (1992), Naveau et al.

(2005), and Reiss (1997). But what is exactly extreme value theory?

Its basic principles come from an asymptotic probabilistic result.

The original focus of the theory was to describe the behavior of

maxima when the sample size became larger and larger. To better

understand this approach, we will first recall in the next paragraph

a classical asymptotic result for the sample mean and then we will

describe what happens for the sample maxima.

Most statistical inference methods are concerned with the

center of a probability distribution (mean) and the deviation from

it (variance). One reason for the popularity of such methods is that

the assumed distribution is Gaussian, which is uniquely charac-

terized by its mean and its variance. This assumption is justified by

a famous theorem in probability, the Central Limit Theorem

(CLT), which states the distribution of the sample mean is

approximately Gaussian for large samples (whenever the variance

is assumed to be finite). The advantage of assuming a Gaussian

distribution for the sample mean is that confidence intervals can

be then easily derived. Unfortunately, the sample maximum rather

than the sample mean has been the primary variable of interest in

many recent lichenometry studies (Solomina et al., 2007; McCar-

roll, 1994). Hence, the CLT can not be applied to approximate the

distribution of the maximum (see Fig. 1).

As an alternative, we use a less-known but nevertheless

similar result to the CLT. The difference is that this asymptotic

result is specially tailored for maxima, and it can be summarized in

the following way. The distribution of the maximum in large

random samples is known and follows a specific distribution called

the Generalized Extreme Value distribution (GEV). The GEV

cumulative distribution function is equal to

G(x; m; s; j) ~

exp � 1 z j
x{m

s

h i{1=j

z

� �
, when j = 0 and az ~ max(0,a)

exp { exp � x { m

s

� �n o
, when j ~ 0

8>><
>>:

where m, s . 0 and j are the location, scale, and shape parameters,

respectively. The shape parameter drives the tail behavior of G.

For example, the classical Gumbel distribution corresponds to j 5

0. If j . 0 (Fréchet type), then the distribution is heavy tailed, i.e.

the right tail of the distribution decreases at a much slower rate

than a Gaussian tail, and higher moments like the variance may

not be finite. If j , 0 (Weibull type), it has a bounded upper tail.

For example, the solid lines in Figure 1 correspond to GEV

densities with different shape parameters. Hence, the sign and

value of the shape parameter is very important when modeling the

behavior of the maximum. At this juncture, we stress that the

distribution of maximum diameters is not chosen arbitrarily;

rather the GEV is the unique distribution derived theoretically for

modeling the maxima. It is important to note that the GEV fits

maxima not only from a Gaussian sample, but also from all

classical continuous distributions (e.g., exponential, uniform,

Cauchy, etc.). We refer to the book by Embrechts et al. (1997)

for an in-depth discussion about the conditions of this conver-

gence. Hence, this methodology is very general and independent of

specific numerical values. Note that the case j 5 0 in Equation (1)

can be viewed as the limiting result: lim G(x; m, s, j) 5 G(x; m, s,

0) as j goes to zero. Hence, in the rest of this paper, we will only

present our mathematical derivation for the case j ? 0; the case j

5 0 can be obtained by letting j go to zero.

In this paper, we denote the maxima as

Xi,j ~ max
k ~ 1,...,ni,j

Xi,j,k

 �
,for i ~ 1, . . . ,m,j ~ 1, . . . ,ni

with ni,j ~
X

k

ni,j,k and ni ~
X

j

ni,j ,

where Xi,j,k are the ni,j,k lichen diameters on the jth block from the

ith moraine, and m is the number of moraines. We suppose that

the lichen diameters on a block are independent and follow the

same distribution. Between blocks, the lichens are assumed to be

independent but they do not have the same distribution. Although

we do not necessarily know the value of ni,j,k and Xi,j,k, we assume

that the maximum Xi,j comes from a sample of lichen diameters

whose size is relatively large.

From the aforementioned extreme value theory, i.e. Equa-

tion (1), it is logical to assume that the probability density function

of the maximum lichen diameter Xi,j follows a GEV density,

g x;misi,jið Þ~ 1

si

1 z ji

x { mi

si

� �{1=ji{1

z

| exp � 1zji

x { mi

si

� �{1=ji

z

( )
,

ð2Þ

for all i 5 1, …, m and j 5 1, …, ni. Compared to Equation (1) in

which the parameters m, s, and j were fixed, Equation (2) shows

that the parameters describing lichen diameter distributions can now

vary in time through the index of the moraine i (we suppose that the

moraine index i is ordered in time, i 5 1 representing the youngest

moraine and i 5 m corresponding to the oldest one). The reason for

such a choice stems from the very nature of lichenometry, which

studies the temporal evolution of large lichen diameter properties

from moraine to moraine. Consequently, the behavior of mi, si and/

or ji should capture the temporal variation of the lichens. For our

case study, which will described later in this paper, Figure 2 displays

the variation of the location, log-scale, and shape parameters in

function of the moraines’ order. This graph clearly shows that the

location parameter varies linearly in function of the moraines’ ages,

while the scale and shape parameters behave more randomly. In the

case study, we will describe how such information can be taken into

account in a global statistical model.

(1)
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DISTRIBUTION OF LICHEN AGES

In lichenometry, there are two categories of dated surfaces.

The first one is characterized by the presence of a confidence

interval. For example a date computed with a 14C carbon dating

procedure is classically associated with lower and upper bounds.

For this category, we can assume that Ti follows a Gaussian

variable with mean ai and standard deviation bi; the latter

parameter being inferred by the 14C carbon dating procedure. In

this case, the density of Ti is given by

f tið Þ~
1ffiffiffiffiffiffiffiffiffiffi

2pb2
i

q exp {
1

2b2
i

ti { aið Þ2
" #

: ð3Þ

The second category corresponds to the situation in which the

estimated moraine date is not associated with any error analysis, for

example a date inferred from a historical map or a human-made

structure. In this case, we have two options: either we assume that

the estimated date of the moraine is perfect, or we arbitrarily choose

to fix a small standard deviation b that characterizes the a priori

error. For example, even a surface dated from a historical map can

be tainted with an error of 63 years with a confidence of 95% (it is

difficult to argue that the age of the moraine can be below this error

range). Because we prefer to overestimate rather than underestimate

the error for our undated surfaces, we opt for the second solution in

this study. In this case, the Gaussian density defined by

Equation (3) can be used with b 5 3 years/1.96 , 1.5.

LINKING THE MAXIMUM LICHEN DIAMETERS AND THE

MORAINE AGES

The last step in our construction is to relate the distribution of

the maximum lichen diameters with the moraine ages (the dated and

the undated ones). We assume that the joint distribution of (Xi,j, Ti)

can be written as the product of a GEV and Gaussian distribution,

and the parameters of the two distributions are linked through the

relationship ai 5 l(mi) for some growth function l. In other words,

we suppose that lichen diameters and moraine ages are independent

variables (in distribution) but are linked through their parameters.

Equations (1) and (2) yield to the joint density function:

fh xi,j ,ti

� �
~

1

si

1 z ji

xi,j { mi

si

� �� �{ 1
ji
{1

z

| exp { 1 z ji

xi,j { mi

si

� �� �{ 1
ji

z

( )

|
1ffiffiffiffiffiffiffiffiffiffi

2pb2
i

q exp {
1

2b2
i

ti { aið Þ2
" #

, with ai ~ l mið Þ,

ð4Þ

and where h represents the vector of all parameters: h 5 [(m1, m2, …),

(s1, s2, …), …]. The above formula is very general and, depending

on the case under study, it can be simplified.

ESTIMATION OF OUR MODEL PARAMETERS

The next stage is to describe a procedure for estimating the

unknown parameters represented by the vector h whenever a set of

data has been obtained. Suppose that all moraine dates are

available. The likelihood function that is defined as the probability

of observing our data for a given set of parameters h is equal to

l(h) ~ P
m

i ~ 1
P
ni

j ~ 1
fh xi,j ,ti

� �
, because of the assumed independence

among all measurements,

~ P
m

i ~ 1
P
ni

j ~ 1

1

si

�
1 z ji

xi,j { mi

si

� �� �{ 1
ji

{ 1

z

| exp � 1 z j
xi,j { mi

si

� �� �{ 1
ji

z

( )

|
1ffiffiffiffiffiffiffiffiffiffi

2pb2
i

q exp � 1

2b2
i

ti { aið Þ2
" #!

,because of (4):

ð5Þ

FIGURE 2. Exploratory study
of the maximum lichen diameters
measured on ten moraines of
Charquini south glacier in Bolivia.
The upper, middle, and lower
panels correspond to the log-scale,
location, and shape GEV param-
eters [see Equation (2)] in func-
tion of the moraine order, re-
spectively, called m, log s, and j.
The moraine M1 represents the
youngest one and moraine M10
the oldest. The vertical dotted
lines show the 95% confidence
intervals. Note that these intervals
are very small for the parameter
1a and that they are missing for
moraines M2 and M5 due to
numerical instabilities.
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Under the assumption that all ti’s are observable, the optimal

parameter vector h is the one that maximizes l(h). In practice, we

only know the ti’s for the dated surfaces. To fill in the missing

dates, we implement the Expectation-Maximization (EM) algo-

rithm, a recursive process for obtaining maximum likelihood

estimates with incomplete data (McLachlan and Thriyambakam,

1997; Dempster et al., 1977). On each iteration of the EM

algorithm, there are two steps called the E-step (Expectation) and

the M-step (Maximization). This algorithm is closely related to the

ad hoc approach to estimation with missing data, where the

parameters are estimated after filling in initial values for missing

values. The latter are then updated by their predicted values using

these initial parameters. The parameters are then re-estimated, and

so on, proceeding until convergence. The M-step involves only

complete-data maximum likelihood estimation, which is compu-

tationally simple [see Equation (5)]. The E-step deals with the

expectation of the complete-data log likelihood given the observed

data (see McLachlan and Thriyambakam, 1997, for more details).

A Case Study: the Charquini Glacier in Bolivia

AREA OF INTEREST

The field work was conducted in the Huayna Potosi–Condoriri

massifs (Fig. 3) in the Cordillera Real (16u219S, 68u079W) on the

eastern part of the Andean chain, about 50 km north of La Paz,

Bolivia. To complement our data set, isolated observations were

also taken in the northern part of Bolivia in the Cordillera

Apolobamba. These areas are dominated by summits reaching 5000

to 6100 m a.s.l. (Huayna Potosi, 6088 m a.s.l.) and comprised of

massive batholiths (granite) and metamorphic rock (quartzites).

The climate in this region is defined by the position of the

Intertropical Convergence Zone (ITCZ), the oscillation responsible

for a marked rainy seasonal variability in the eastern Andean area

(Aceituno, 1988; Ribstein et al., 1995; Vuille at al., 1998; Garreaud,

1999). The southern winter (May to September) produces a dry and

cold season generated by the northward displacement of the mid-

and upper tropospheric westerlies. The southern summer (Novem-

ber to March) is warm and wet. This area within the ITCZ is

characterized by low seasonal variations in solar radiation and

temperature and by a marked seasonality in precipitation. Pre-

cipitation was measured on the Plataforma Zongo, 2 km from

Charquini, where the annual average precipitation from 1971 to

2000 was about 835 mm at 4800 m a.s.l. (Caballero et al., 2002).

Around 65% of the rain falls from December to February. Monthly

average temperature variations do not present a large amplitude.

The 0uC isotherm remains above 4900 m throughout the year. A

recent study of the snow cover duration near the glacier studied

therein showed that snow represents around 26% of precipitation

and that the snow cover at 4900 m during the rainy season stays on

the ground rarely more than three days, with a modal value of one

day and a maximum of six days (Chevallier, 2002). The Equilibrium

Line Altitude of glaciers is between 5200 and 5400 m a.s.l. The

periglacial environment is relatively spread in altitude, and

permafrost may exist locally from 5400 m a.s.l. (Francou et al.,

2001; Ramirez et al., 2001).

FIELD WORK

Our data set of lichenometric measurements of Rhizocarpon sp.

(ex Rhizocarpon geographicum) was divided into two groups: 10

FIGURE 3. The Bolivian region of interest for this study (Cordillera Apolobamda and Cordillera Real). The numbering on this map refers
to Table 1.
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dated surfaces and 10 undated moraines. The latter group

constituted the main focus of our investigation, the undated

moraines on the Charquini glacier. All measurements on this

glacier were made on the external side of lateral moraines on both

sides of the valley (see Table 2 for the sampling characteristics). We

selected at least 180 blocks per moraine with 90 on either side of the

valley. For each block, the single largest lichen was measured. The

lichen size ranged from 10 to 50 mm, while the block position with

respect to the moraine axis was noted. We were not able to detect

any significant spatial variation from block to block.

For the second group, different dating techniques (historical

documents, aerial photos, carbon dating, etc.) were employed to

derive associated dates. Table 1 summarizes the results of this

dating procedure; the fact that the same date could be obtained by

different techniques explains the redundancy of a few dates in our

table. Geographically, six dated moraines from four glaciers were

located in the Huyana Potosi Massif (Charquini, Chacaltaya, Janqu

Uyu, and Zongo).The oldest moraine of our sample was carbon

dated (14C from peat samples; see Table 1 and Stuiver at al.,

1998).The known spread was included in our statistical analysis by

fixing the dating range for this moraine. Otherwise we assumed that

the standard deviation b in Equation (3) of all the other dated

surfaces in Table 1 was fixed and equal to 1.5 years. In Table 1,

there was also a category of surfaces comprised of a variety of

human-made structures such as archeological monuments, rock-

wall cut, stonewalls during the construction of a road, artificial

dams, and irrigation canals. For these diverse surfaces, the sampling

was performed in the following way. In the case of rocky slopes, the

single largest lichen was selected inside an area of 1 m2. This

procedure was repeated on 60 different sampled surfaces. In the case

of housing walls, measurements were taken on inside walls as well

as outside ones, but no difference was identified between them.

Similar measurements were performed on the Milluni dam that was

constructed from stones of 30–50 cm length along the a-axis. We

also tried to take measurements on walls of old buildings like

colonial churches but all these trials were unsuccessful. Finally, all

measurements were taken with a flexible, transparent plastic rule

with an accuracy of 1 mm. The smallest measured diameter was

2 mm. Anomalous lichen shapes were rejected to reduce the risk of

coalescence. At the end of this field campaign, around 6800

measurements were obtained, i.e. 4156 for dated surfaces and 2600

on the Charquini glacier.

STATISTICAL ANALYSIS OF THE BOLIVIAN DATA

Exploratory Analysis of the GEV Fit with Respect to the

Moraine Order

As a preliminary step before modeling all the elements of the

likelihood function defined by Equation (5), it is interesting to

have a crude idea of the temporal variation of the three GEV

parameters. For each of the 10 moraines found on the Charquini

south glacier, the maximum diameter lichen distribution is

independently fitted by maximizing the likelihood obtained from

Equation (2). Figure 2 displays estimates of the GEV location,

shape, and log-scale parameter for each moraine. The vertical

dotted lines correspond to the 95% confidence intervals. Each of

the three panels is discussed separately in the following

paragraphs.

The GEV location parameter mi in Equation (2) corresponds

to the main temporal trend in maximum lichen diameters. For

example, a linear trend should fit adequately our Bolivian data

(see the middle panel of Fig. 2). In general, the mi’s play an

equivalent role of the growth curve. After a rapid increase during

the earlier part of the lichen life caused by competitive stress, the

growth curve follows a roughly linear trend, and finally its value

converges to a plateau which reflects the slowing down of the

lichen growth. These different phases can be parameterized by

a mathematical formula depending on the time period under

study. For our Bolivian lichen diameters, the middle panel of

TABLE 1

Characteristics of the dated surfaces.

Sites in

Fig. 3 Surface

Lichen

numbers

Block

numbers z Exposition Age (A.D.) Type1 Reference

1 Rail road 153 41 4650 all 1915 OD Cobee company

2 Milluni Dam 174 20 4650 E 1911 OD Cobee company

3 Huayna moraine 218 10 4860 E 1956 AP Bolivian Military Lib

4 Zongo moraine 200 11 4880 E 1956 AP Bolivian Military Lib

Zongo moraine 200 11 4880 E 1963 AP Bolivian Military Lib

5 Chacaltaya moraine 229 10 4900 S 1948 AP Ramirez et al. (2001)

Chacaltaya moraine 234 10 4900 S 1941 P Ramirez et al. (2001)

6 Janqu Uyu moraine 1638 12 4800 W 1630–16702 14C Gouze et al. (1986)

7 Zongo road 60 12 4650 all 1928 OD Cobee company

Zongo road 60 4400 all 1935 OD Cobee company

8 Zongo Canal 158 4800 NE 1946 OD Cobee company

9 Charquini Canal 167 15 4800 NE 1941 OD Cobee company

10 Suchez houses 451 10 4800 all 1767 OD Herail et al. (1985)

11 Chacaltaya houses 214 10 4850 all 1935 OD Cobee company

1 Type: OD 5 old documents, AP 5 aerial photos, and P 5 photos.
2 Highest probability for two sigma obtained with Calib 4.4 (Stuiver et al., 1998)

TABLE 2

Characteristics of the lichen sampling for the Charquini
south glacier.

Moraine number Number of lichen z Number of blocks

M1 513 4762 30

M2 368 4765 16

M3 256 4766 16

M4 244 4776 16

M5 189 4800 12

M6 257 4825 30

M7 221 4837 15

M8 191 4842 27

M9 186 4872 16

M10 180 4905 15
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Figure 2 clearly shows that our data span the linear period of the

lichen growth.

In contrast to the location parameter, the GEV shape

parameter ji represents the large-scale behavior of lichen

distributions. For our particular case study in Bolivia, there is

no reason to think the moraines had been perturbed by large-scale

changes in the last few centuries. In addition, the lower panel of

Figure 2 clearly shows two features. First, the shape parameter

does not display a clear temporal pattern, and second, there is

a large variability among our individual estimated shape

parameter values. This last issue is due to the statistical difficulty

of estimating ji’s for small samples, i.e. estimating separately ji for

each moraine i. For moraines M2 and M5, it is not even possible

to compute confidence intervals due to numerical instabilities in

the likelihood estimation procedure of ji. These two reasons

justify our main model choice. We assume that ji is a constant for

all moraines found on the Charquini south glacier. Of course, if

there is geophysical or climate evidence that an abrupt temporal

change had occurred for a particular glacier, then this information

should be integrated in our model.

The scale parameter si has to obey a mathematical constraint;

it must be positive. For this reason, log si is classically

parameterized (instead of si). As seen in Figure 2, it may be

possible that log si follows a particular trend, but it is very difficult

to visually decide if such a possible trend is significant. To solve this

issue, we need to introduce a few concepts about model selection.

Model Selection

From Figure 2, we learned that a linear parameterization is

reasonable for modeling the location parameter. Hence, our

general likelihood function defined by Equation (5) can be

simplified as

l(h) ~ P
m

i ~ 1
P
ni

j ~ 1

1

si

�
1 z j

xi,j {am {bmai

si

� �� �{ 1
j { 1

z
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� �� �{ 1
ji

z

( )

|
1ffiffiffiffiffiffiffiffiffiffi
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where the bi’s are given by Calib 4.4 (Stuiver et al., 1998) from 14C

carbon dates.

To completely define our likelihood function, we still need to

propose a parameterization for the log-scale parameter log si in

Equation (6). In Table 3, we propose and compare three different

models for the log-scale parameter. The simplest one corresponds

to a linear model for log s and for the most complex, we suppose

a different log s for each moraine. As an intermediate step, we also

investigate a quadratic trend. An important issue related to the

choice of the appropriate model with respect to our data is the

problem of over-parameterization, fitting the data very well but

with a large number of parameters. For example, 10 data points

can be perfectly modeled by 10 parameters but the predictive value

of such an over-parameterized model is null. To compare the

models described by the first two columns of Table 3, we compute

the Akaike Information Criterion (AIC) (George, 2000) that is

defined by AIC 5 22 log l(h) + 2k, where k is the number of

parameters in our model (see Table 3). Heuristically, one can view

the first term, 22 log l(h), as a measure of lack of fit, while the

second term, 2k, can be interpreted as a ‘‘penalty’’ for increasing

the number or the size of the model (the penalty enforces

parsimony in the number of parameters). According to Table 3

and the AIC, the model with a different log si for each moraine is

the best one among our three investigated models.

Moraine Ages Estimates

Table 4 provides the estimated ages and their 95% associated

confidence intervals for model 1 in Table 3. As a supplement of

Table 4, Figure 4 displays the estimated ages in function of the

estimated location parameter m (see the horizontal lines). The

width of these horizontal segments shows the 95% confidence

interval length of the estimated ages. The vertical lines represent

the range of the dated surfaces. Again, we would like to stress that

these 95% intervals are not comparable to the ones obtained with

past lichenometric approaches. These past methods were based on

the false assumption of a Gaussian distribution despite the fact

that probability theory and practice (see Fig. 1) dictate that the

shape of the GEV distribution is more appropriate.

Conclusions and Future Work

Besides the small size of the computed errors in Figure 4, the

main improvement over past methods is that the proposed model is

more general and more theoretically sound. Still, a number of

important statistical questions remains in lichenometry. The model

we proposed here only works for block maxima. However, it may be

more statistically robust to sample not only the largest size per block

but the second or third largest lichens. Determining a mathematical

criterion for choosing the most appropriate sampling scheme

remains a fundamental question in lichenometry. We believe that

extreme value theory can be a valuable tool to perform such a task.

Another interesting challenge is determining how to pool data

coming from glaciers in the same vicinity. For example, one can

imagine that a large quantity of lichen diameters are measured on

moraines located on a glacier near the Charquini glacier. If these

two glaciers are geographically close, they should share a range of

TABLE 3

Charquini south glacier: Comparison among different GEV models
defined by Equation 5. Four models for the log-scale shape
parameter log si are compared in this table. The location mi

parameter is represented as a linear function, and the shape
parameter ji is assumed to be a constant.

mi log si ji

log-likelihood:

log l(h)

nb of

parameters: k

AIC:

22 log l(h) + 2k

am + bm i log si j 2741 2 + 21 + 1 5 24 1530

am + bm i as + bs i + cs i2 j 2826 2 + 3 + 1 5 6 1664

am + bm i as + bs i j 21084 2 + 2 + 1 5 5 2178

TABLE 4

Estimated ages, Charquini south glacier.

Moraine number Estimated age 95% confidence interval

M1 1720 24

M2 1736 23

M3 1752 22

M4 1784 20

M5 1800 19

M6 1816 18

M7 1832 17

M8 1848 16

M9 1864 15

M10 1896 13
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similar characteristics and this could improve the error analysis. In

the near future, we plan to investigate these two issues.

Due to the theoretical origin of the GEV distribution, it is

difficult to dispute our modeling of maximum diameters; however,

it is important to recognize that our proposed global model and

estimation strategy are not unique. One may prefer to construct

a different link between dates and diameters. For example,

a Bayesian approach could also be implemented or a hidden

Markov model could used to model this relationship. Our

objective in this paper was to show that a ‘‘simple’’ parametric

model could perform reasonably well for fitting our data set, but

other levels of complexity (if some of our assumptions are not true

or more information is available) could be added and lead to

a slightly different error analysis.

Finally, we are currently working on making available to the

lichenometry community a user-friendly program on the web that

will allow the practitioner to test our approach with their own data.
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