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Mapping Wildfire Burn Severity in the Arctic Tundra
from Downsampled MODIS Data
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downsampled Moderate-resolution Imaging Spectroradiometer (MODIS) were processed
to spectral indices and correlated to observed metrics of surface, subsurface, and compre-
hensive burn severity. Spectral indices were strongly correlated to surface severity (maxi-
mum R2 � 0.88) and slightly less strongly correlated to substrate severity. Downsampled
MODIS data showed a decrease in severity one year post-fire, corroborating rapid vegeta-
tion regeneration observed on the burned site. These results indicate that widely-used
spectral indices and downsampled coarse-resolution data provide a reasonable supplement
to often-limited ground data collection for analysis and long-term monitoring of wildfire
effects in arctic ecosystems.
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Introduction

Wildfires are historically rare in the arctic tundra (Wein,
1976), but new evidence of more frequent fires during Holocene
warm periods suggests wildfire activity may increase significantly
due to relatively rapid climate change (Higuera et al., 2008). Ob-
served warming trends over the past 50 years have impacted the
high latitudes (�60�) more rapidly than elsewhere on earth (Serreze
et al., 2000; Hinzman et al., 2005; IPCC, 2007), fostering concerns
over the fate of ecosystems and endangered species in those regions
(e.g., O’Neill et al., 2008; Durner et al., 2009), and the one-third
of global terrestrial carbon stocks that are sequestered in boreal
biomes (Apps et al., 1993; Kasischke, 2000).

Across the North American Arctic, surface air temperature
increased 1.09 �C per decade (�0.22 �C) from 1981 to 2000 (Cos-
imo, 2006). In Alaska, this warming trend is attributed to the ad-
vance of spring snowmelt (by 9.1 days per decade for the Arctic
coastal plain, referred to as the ‘North Slope’) (Chapin et al., 2005),
an observed 6% increase in tall shrub cover across the North Slope
over the last 50 years, which lowers surface albedo (Chapin et al.,
2005; Sturm et al., 2005), and an observed treeline advance into
the Alaskan tundra (Lloyd and Fastie, 2003). The feedbacks pro-
duced by these observed changes, including increasing wildfire
activity, thawing permafrost, and further shrub expansion, are ex-
pected to amplify general warming trends and changes in the tundra
environment (Chapin et al., 2005; Hinzman et al., 2005).

Only 20 wildfires had been recorded prior to 2007 on Alaska’s
North Slope, and research addressing wildfire effects on tundra has
primarily been limited to Alaska’s western coastline and on the
Seward Peninsula. In 2007, four wildfires occurred on the North
Slope, including the record 103,000 ha Anaktuvuk River Fire. This
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event provided dramatic evidence supporting the hypothesis of in-
creased wildfire activity resulting from climate change (Jones et
al., 2009). Alaska land managers, concerned with fire effects on
wildlife conservation efforts, carbon sequestration, and natural re-
source management, concurrently expressed a need for reproduci-
ble methods to monitor wildfire impacts in remote regions (Allen
and Sorbel, 2008; Murphy et al., 2008) where growing seasons
span less than 4 months and ground data collection in roadless
areas is challenging and expensive (Bogdanov et al., 2005).

Remotely sensed data have been widely utilized to character-
ize wildfire regimes in ecotypes with characteristics similar to tus-
sock tundra. For example, fire histories have been mapped using
remotely sensed data in grasslands dominated by tussock-building
species (Curry, 1996; Allan, 1993; Russell-Smith and Yates, 2007),
but fire effects in tussock tundra have not been quantified from
spaceborne imagery (but see Allen and Sorbel, 2008). In Alaska,
efforts have focused on utilizing remotely sensed data to map var-
ious fire effects metrics in black spruce (Picea mariana) forests
(Epting et al., 2005; Hudak et al., 2007; Hoy et al. 2008; Kasischke
et al., 2008, Murphy et al.; 2008), but have largely ignored tundra
wildfires, since most (94%) of area burned in Alaska during the
historic period was located in the boreal forest interior region (AFS,
2009). Much recent wildfire research has been devoted to burn
severity mapping and, specifically, developing methods and indices
for delineating burn severity from remotely sensed data (White et
al., 1996; Rogan and Yool, 2001; Rogan and Franklin, 2001; Miller
and Thode, 2007), but these methods have not yet been tested for
the arctic tundra. As there is no agreed-upon definition of burn
severity at present time (Keeley, 2009), we define it for this study
as the proportional fire-induced ecological change aggregated
across and captured by the multispectral reflectance of a pixel.
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In Alaska, it is challenging to collect ground ecological obser-
vations, resulting in relatively small sample sizes and difficulty
accurately classifying remotely sensed data. Classification accu-
racy is further reduced by errors in geometric registration (Verbyla
and Boles, 2000), a short (2–4 months) growing season (Stow et
al., 2004), topographic shadowing due to steep terrain and low sun
angles (Verbyla et al., 2008), and significant Landsat data gaps
prior to the construction of a receiving station in 2005 (French et al.,
2008). An additional challenge specific to burn severity mapping is
that the advancement of the growing season can vary by several
weeks (Markon, 2001; Stow et al., 2004), and vegetation regenera-
tion can occur within days after a fire and before post-fire imagery
can be acquired (French et al., 2008; Allen and Sorbel, 2008).
More complex burn severity mapping approaches (i.e. Rogan and
Franklin, 2001; De Santis and Chuvieco, 2009) have produced more
accurate burn severity maps than those derived from linear indices
alone. However, linear spectral indices continue to be the most
desirable to land managers due to their reproducibility and low
processing requirements (Zhu et al., 2006; Murphy et al., 2008).
As such, the differenced Normalized Burn Ratio (dNBR) was se-
lected for development of a national burn severity atlas in the
U.S.A. (Eidenshink et al., 2007).

To date, the dNBR is the only spectral reflectance index that
has been assessed for its ability to reflect ground observations of
wildfire burn severity in the tundra and was only tested for represen-
tation of a composite measure of burn severity (Allen and Sorbel,
2008) with moderately good correlation (R2

adj � 0.81). The dNBR
and other burn severity mapping indices produce higher correla-
tions to ground measurements of burn severity data when indices
are derived from relatively high-resolution spectral data, (e.g.,
Landsat Thematic Mapper [TM]) rather than lower resolution data
[i.e., Moderate resolution Imaging Spectroradiometer (MODIS)]
(Walz et al., 2007; Boelman et al., 2011). However, the short grow-
ing season (Stow et al., 2004) and 93–100% cloud cover during
the growing season months (Intrieri et al., 2002) limit Landsat data
acquisition in the Arctic.

The primary objective of this study was to address the collec-
tive challenges of mapping burn severity on the arctic tundra by
testing published spectral indices and assessing the utility of a high-
temporal, moderate-spatial resolution sensor in conjunction with a
recently developed downsampling method in order to characterize
the historic 2007 Anaktuvuk River wildfire that occurred on the
North Slope of Alaska at high resolution (i.e., 30 m). MODIS is
widely used to monitor fire occurrence and fire effects due to its
daily temporal resolution (Kaufman et al., 2003) and recent efforts
have produced data fusion techniques that downsample 500 m
MODIS data to the spatial resolution of higher resolution sensors
(Gao et al., 2006). The goals of this study were to (1) correlate
established spectral indices to ground observations of tundra burn
severity; (2) demonstrate downsampled MODIS as an alternative
to Landsat for mapping and monitoring wildfire characteristics in
a data-poor region; and (3) characterize the burn severity of the
historic Anaktuvuk River Fire in the context of other tundra wild-
fires.

Wildfire in the Arctic Tundra
Wildfires are a primary ecological disturbance in boreal eco-

systems (Wein and MacLean, 1983; Kasischke and Stocks, 2000;
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Chapin et al., 2006), but wildfire impacts on wildlife habitat, vege-
tative trajectories, and carbon cycles are poorly understood in the
arctic tundra due to their historical infrequency and a lack of empiri-
cal research studies (Wein, 1976; Jones et al., 2009). The Alaska
Fire Service (2009) recorded only 24 wildfires on the North Slope
region from 1950 to 2008 (20 from 1950–2006, plus 4 in 2007)
with the fires burning a mean area of 6240 ha, but a median area
of only 115 ha (i.e., an anomalous 103,000 ha wildfire in 2007
skewed the mean value). Historic North Slope fire frequency is
unknown since only large fires (�400 ha) were recorded prior to
1989 (AFS, 2009), but mean fire frequency was 144 years (�90)
during the early Holocene between 10,000 and 14,000 years BP
(Higuera et al., 2008), and at two sites in the Anaktuvuk River Fire
area, there is no evidence of wildfires to 5000 years BP (Hu et al.,
2010).

Previous research on tundra wildfire impacts focused solely
on a spate of 1977 and 2002 wildfires on the western Alaska Coastal
Plain and in the Noatak River watershed (Racine et al., 1987, 2004;
Liljedahl, et al., 2007). The western coastal region is climatically
distinct from the North Slope of Alaska in that it receives two to
three times as much annual precipitation, is an average of 5–10
�C warmer than the North Slope, and is subject to a different synop-
tic pattern more conducive to lightning during fire season (Shulski
and Wendler, 2007; Murphy and Witten, 2008; WRCC, 2009).
Despite similar vegetation types, the North Slope has a history
of significantly fewer and less frequent fires. However, projected
warming trends for the North Slope (IPCC, 2007) suggest that fire
occurrence and extent on the North Slope may increase, and studies
are needed to assess the differences in fire regimes and fire impacts
between the two regions, which span nearly 1000 km from the
western edge of the Seward Peninsula across the North Slope.

Data and Methods
STUDY AREA

In 2007, the 103,000 ha Anaktuvuk River Fire burned across
the arctic tundra on Alaska’s North Slope. The fire burned in
Brooks Range foothills, a region dominated by cold winters (�25
�C mean high in January), cool summers (20 �C mean high in July),
and 14 cm average annual precipitation. Discovered on 16 July,
the lightning-ignited fire burned for an estimated 3 months. The
peak burning period occurred during a 3-week, anomalous, late-
season drought in early September, when annual herbaceous vege-
tation had already senesced and temperatures were 5–10 �C above
normal (Jones et al., 2009).

The Itkillik River and the Anaktuvuk and Nanushuk Rivers
confined the fire to the east and west, respectively (Fig. 1). More
than 80% of the fire burned vegetation identified by the National
Land Cover Database (NLCD) as dwarf scrub, more commonly
referred to as ‘tussock tundra’ due to the dominance of the sedges
that form tussocks and low shrubs (Viereck et al., 1992). The domi-
nant vegetation types include willow (Salix spp.), Labrador tea
(Ledum palustre), blueberry (Vaccinium spp.), and birch (Betula
nana) that grow as shrubs, and cottongrass (Eriophorum spp.) and
other sedges (Carex spp.) that form thick, dense tussocks. Rhizoma-
tous tussock-building sedges cover the tundra uplands and can re-
generate within weeks after burning (Allen and Sorbel, 2008), while
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FIGURE 1. Location and dominant land cover (Homer et al., 2007) of the Anaktuvuk River and Kuparuk River wildfires of 2007.

shrubs regenerate to pre-fire levels within 10–25 years (Racine et
al., 2004). Lichen species comprising critical winter forage for the
Central Arctic Caribou Herd can take up to 120 years to recover
from wildfire, depending upon climate variability (Jandt and
Myers, 2000). Depth of organic horizon soil consumption by wild-
fire also determines post-fire permafrost dynamics, which Racine
et al. (2004) linked to post-fire vegetation regeneration.

THE ANAKTUVUK RIVER FIRE SCENE MODEL

Strahler et al. (1986) described the utility of developing a
scene model for analysis of remotely sensed data: a precise descrip-
tion of what the sensor ‘‘sees’’ at the time of image acquisition.
Efforts to map burn severity in the U.S.A. have focused on two
temporal periods (Zhu et al., 2006). The ‘Initial Assessment’ is
the period following fire containment but prior to any vegetation
regeneration. Ideally, post-fire image acquisition for this period
occurs immediately following containment, but in Alaska fire con-
tainment usually occurs too late in the year for imagery acquisition
due to snowfall and low sun angles. In this case, imagery for the
Initial Assessment is acquired after snowmelt but prior to green-
up the year following the fire. The ‘Extended Assessment’ occurs
after green-up, preferably at peak phenology, one year post-fire.

66 / ARCTIC, ANTARCTIC, AND ALPINE RESEARCH

Using both of these assessments in combination allows land man-
agers to assess both primary fire effects (i.e., vegetation and fuel
consumption) and secondary fire effects (i.e., resprouting, invasion,
erosion).

Here, we describe the scene for three temporal periods: the
pre-fire period, the Initial Assessment post-fire (pre-green up), and
the Extended Assessment post-fire (post-green up). The pre-fire
scene described the landscape at peak phenology during the middle
of the growing season. As the Anaktuvuk River Fire was not con-
tained until the first snowfall in late September 2007, the Initial
Assessment period for this fire occurred in June of 2008, after
snowmelt but prior to green-up. The Extended Assessment scene
model is for the peak of phenology in early July 2008 and coincides
with the collection of ground burn severity observations.

The pre-fire scene consisted of low-lying herbaceous material
(including grass tussocks) on less productive sites or continuous
dwarf shrub canopy normally �1 m in height on more productive
sites (Fig. 2, part a). Bare soil is not a component of the pre-fire
scene in this ecotype, as an organic horizon of decomposing bio-
mass covers the mineral soil. The Initial Assessment (June 2008)
post-fire scene (Fig. 2, part b) corresponds with the first available
post-snowmelt 2008 Landsat image, and was acquired one year
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FIGURE 2. Arctic tundra burn se-
verity scene model components for
the fire include: (a) unburned pre-
fire, (b) post-fire but pre-green-up,
(c) low severity plot with unburned
inclusions, (d) moderate severity
with elements of char and non-pho-
tosynthetic vegetation (NPV), (e)
post green-up, with tussock regener-
ation, and (f) high severity with ex-
ample of oxidized soils. Photos cour-
tesy of R. Jandt, Alaska Fire Service.

a) b) 

c) d) 

e) f) 

after the fire but before the 2008 green-up due to a colder-than-
normal June (WRCC, 2009). Observations prior to and during field
data acquisition were of standing water, burned and saturated char
and black soil surfaces, and patches (sub-meter to several meters
in area) of unburned or only partially consumed non-photosynthetic
vegetation (NPV), consisting primarily of grasses from prior grow-
ing seasons. The organic horizon was consumed in a spatially vari-
able pattern up to a meter in depth (Jandt, 2008).

Some tussock regeneration had occurred by the Extended As-
sessment (July 2008), adding photosynthetic vegetation (PV) to the
scene. On lower severity sites, the fire consumed �20% of the
tussock basal area, and unburned mosses interspersed scorched her-
baceous cover (Fig. 2, part c). On moderate severity sites, most of
the surface was charred, minimal litter was present, the organic
duff layer had been irregularly consumed in patches, and the fire
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had burned 20–60% of the tussock basal area, leaving irregular
remnants (Fig. 2, part d). On higher severity sites, �60% of the
tussock basal area was consumed, leaving columnar ‘‘stumps’’ and
deep duff consumption. These sites comprised mostly of char, but
some tussock sedges regenerated by early July (Fig. 2, part e). In
some sites, all organic material had been consumed to mineral soil,
which oxidized to a reddish color (Fig. 2, part f).

DATA

Field Data

The Bureau of Land Management (BLM) established 17 Com-
posite Burn Index (CBI) (Key and Benson, 2006) plots during the
first week of July 2008 in the area burned by the Anaktuvuk River
Fire and 2 in the smaller (740 ha), nearby Kuparuk River Fire
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burned area. The latter 2 plots were established to ensure that lower
severity plots were included in the observations (Jandt, 2008). Each
plot was located using a preliminary assessment of homogeneity
(Jandt, 2008) to be representative of a larger (minimum 90 � 90
m) area of homogeneous burn severity, and were located �500 m
apart for all but 2 plots. The plots were sampled using a modified
CBI protocol for Alaskan tundra (Allen and Sorbel, 2008). Three
measurements of severity were correlated to spectral indices: sur-
face severity (SURF), substrate severity (SUB), and composite se-
verity (CBI). While the number of ground plots is too small to be
considered an adequate representative sample that will produce
significant correlations, it is representative of the considerable chal-
lenge faced by researchers attempting to collect surface data in
Alaska.

Sensor Data

Since the ecological scene model is quite different for the
Initial (June 2008) versus Extended (July 2008) assessments for
the Anaktuvuk River Fire, it was imperative that remotely sensed
data be acquired to best represent each time period of the scene
model. Ideally, the Initial Assessment would have utilized June
2007 pre-fire and June 2008 post-fire imagery, while the Extended
Assessment would have utilized July 2007 pre-fire and July 2008
post-fire imagery. However, few relatively cloud-free Landsat
scenes were available during the growing season for the region for
either the pre- or the post-fire periods. A pre-fire image was ac-
quired for World Reference System 2 (WRS-2) path 74, row 11,
on 14 July 2001 by the Landsat-7 Enhanced Thematic Mapper-
Plus (ETM�) sensor. A June post-fire image (corresponding to
Initial Assessment) was acquired for WRS-2 path 75, row 11, on
14 June 2008 by the Landsat-5 Thematic Mapper (TM) sensor.
Data were pre-processed to 30 m resolution by U.S. Geological
Survey (USGS) EROS data center to Level 1T, including geomet-
ric, terrain, and radiometric correction to top-of-the-atmosphere
reflectance (USGS, 2011). Each image was corrected for atmo-
spheric scattering using dark object subtraction (Chavez, 1996),
and converted to at-surface reflectance (Chander and Markham,
2003).

MODIS data were acquired both contemporaneous to the two
Landsat acquisition dates, and also corresponding to the ‘‘missing’’
optimal time periods that were not covered by available Landsat
imagery (Table 1). MOD09A1 8-day 500 m at-surface reflectance
data (Vermote and Kotchenova, 2008) were acquired for July 2001
and June 2008 as inputs to the downsampling algorithm, for June
2007 to represent the optimal pre-fire date for the Initial Assess-
ment, and for July 2007 and 2008 to represent the optimal pre-
and post-fire dates for the Extended Assessment, following best
practices for image selection (i.e., cloud-free, anniversary-date, sun
angle, and peak phenology) as described by Key (2006). MODIS
data were downsampled to 30 m Landsat spatial resolution using
the Spatial and Temporal Adaptive Reflectance Fusion Model
(STARFM) (Gao et al., 2006). STARFM is used to develop a quan-
titative link between a 30 m Landsat image and a concurrent 500
m MODIS image, and downsample the MODIS scene down to the
finer 30 m resolution for a date when no Landsat scene exists using
that relationship. Quirino et al. (2008) demonstrated the applicabil-
ity of STARFM for deriving finer resolution Normalized Differ-
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TABLE 1

Image dates and pairings created to test the utility of downsampled
MODIS data modeled from the STARFM algorithm (Gao et al.,

2006).

Pair ID Pre-fire Data Post-fire Data

Landsat-only Landsat ETM� Landsat TM
14 July 2001 14 June 2008
Path/Row 74/11 Path/Row 75/11
(Concurrent MODIS (Concurrent MODIS

for STARFM input: for STARFM input:
Tile h12v02, 2001- Tile h12v02, 2008-
193*) 169*)

Inital STARFM-MODIS Landsat TM
Assessment 2007-161* 14 June 2008

Tile h12v02 Path/Row 75/11
Extended STARFM-MODIS STARFM-MODIS
Assessment 2007-185* 2008-185*

Tile h12v02 Tile h12v02

*Julian day 161 � 10 June; 169 � 18 June; 185 � 4 July; 193 �
12 July.

enced Vegetation Index (NDVI) products, but the method has not
yet been assessed for burn severity mapping. Due to the significant
change between the pre-fire and the post-fire scene, pre-fire
MODIS images (June and July 2007) were downsampled using the
July 2001 pre-fire Landsat image, while the post-fire MODIS image
was downsampled using the June 2008 post-fire Landsat image
(Table 1).

For both the Initial Assessment and the Extended Assessment,
10 bi-temporal, differenced spectral metrics of burn severity were
produced. Some previous Alaska burn severity studies have found
single-date, post-fire only indices (e.g., NBR) to produce strong
correlations to ground observations (Epting et al., 2005; Hudak et
al., 2006; Hoy et al., 2008; Boelman et al., 2011). These studies,
however, neglected the primary reason for using a differenced
index: the misclassification of non-flammable features. Water sur-
faces (of high abundance on the North Slope), bare soil, and rock
outcroppings often appear as high burn severity in a post-fire image,
but fall into the unchanged/unburned category in differenced im-
ages (Key, 2006). Since validation plots are never placed in water
features, correlations between plots and indices fail to capture this.

Nine bi-temporal, differenced indices (denoted by ‘d’) and
one bi-temporal, relative difference index (denoted by ‘Rd’) were
calculated for three image combinations (Table 2) using the best
practices for production and normalization of bi-temporal change
indices outlined in Key (2006) and Zhu et al. (2006). For each
index, pre-fire and post-fire images were produced, and the post-
fire subtracted from the pre-fire to calculate the difference. Indices
included two SWIR/NIR band ratios involving Landsat TM bands
7, 5, and 4 (d7/5 and d7/4) and the Normalized Burn Ratio (dNBR
and RdNBR). The differences in individual scene components were
also assessed utilizing the Kauth-Thomas tasseled cap transforma-
tion using coefficients from Mather (1989) and Huang et al. (2001)
to transform TM and ETM� data, respectively, into brightness
(dKTB), greenness (dKTG), and wetness (dKTW).

Linear Spectral Mixture Analysis (SMA) was utilized to calcu-
late the fraction and subsequent change of each pixel covered by
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TABLE 2

Spectral indices assessed for correlation with burn severity metrics. Equations for the production of the single date transforms or indices
are listed first, then the equation given below for the bi-temporal spectral index.

Single-Date Product Identifier How Produced (Landsat TM/ETM� bands where applicable)

Band 7/Band 4 Ratio 7/4 Ratio (B7) � (B4)
Band 7/Band 5 Ratio 7/5 Ratio (B7) � (B5)
Char fraction of SMA CHAR Fraction of pixel area from SMA
Green vegetation fraction of SMA GV Fraction of pixel area from SMA
Non-photosynthetic fraction of SMA NPV Fraction of pixel area from SMA
Kauth-Thomas Brightness Tranform KTB TM coefficients from Mather (1989); ETM� coefficients from Huang et al. (2002)
Kauth-Thomas Greenness Transform KTG
Kauth-Thomas Wetness Tranform KTW
Normalized Burn Ratio NBR (B4 � B7) � (B4 � B7) * 1,000
Bi-temporal Spectral Indices Metric ID Form
Change in 7/4 Ratio d7/4 (Pre-Fire) � (Post-fire)
Change in 7/5 Ratio d7/5
Change in CHAR fraction dCHAR
Change in GV fraction dGV
Change in NPV fraction dNPV
Change in KTB dKTB
Change in KTG dKTG
Change in KTW dKTW
Change in NBR dNBR

Relative Change in NBR RdNBR
(Pre-Fire NBR) � (Post-Fire NBR)

SQRT (ABS(Pre-fire NBR � 1,000))

the scene components char (dCHAR), photosynthetic vegetation
(dPV), and non-photosynthetic vegetation (dNPV). In both forested
and non-forested ecotypes where components of a burn severity
scene occur at sub-pixel resolution, SMA has been shown as a
more robust method for enhancing change than traditional ap-
proaches such as pixel-based vegetation indices or tasseled cap
transforms (Rogan and Franklin, 2001; Rogan et al., 2002; Hudak
et al., 2007). The SMA technique utilizes spectral angle mapping
to calculate the fraction of each ‘‘pure’’ end member present in a
given pixel via disaggregating distinct spectral reflectance signa-
tures (Roberts et al., 1998). This study follows Hudak et al. (2007)
in using three end members to represent the primary components
of the scene: PV, NPV, and CHAR.

To derive reference end-member spectra, indices were used to
identify large groups of potential candidates that were then thinned
using purification techniques and compared to published reference
spectra. The KTG transform and an Enhanced Vegetation Index
image were used to identify highly photosynthetic pixels, and the
B7/B5 and a B5/B4 ratio image were utilized to define areas of
high NPV. An image summing reflectance across bands and a
dNBR image were used to delineate CHAR as the pixels where
the lowest sum reflectance but the highest dNBR were found. A
principal components analysis was performed to further refine ho-
mogeneous target areas for training polygons. A pixel purification
technique using a Mahalanobis distance typicality threshold (Clark
Labs, 2010) was used to remove pixels and reduce training polygon
variance, and a mean reflectance signature calculated for each poly-
gon. Library spectra were used to further thin candidates and derive
a mean-reflectance spectral signature for the three end members,
and each single-date pre- and post-fire image was spectrally un-
mixed into fraction images of PV, NPV, and CHAR.
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The 10 spectral metrics were derived from three sets of image
pairs in order to compare Landsat to downsampled MODIS (both
30 m resolution) (Table 1). The Landsat-only pair utilized the July
2001 Landsat image for pre-fire and the June 2008 Landsat image
for post-fire. The Initial Assessment pair utilized the downsampled
June 2007 MODIS image for pre-fire and the June 2008 Landsat
image for post-fire. The Extended Assessment pair utilized the
downsampled July 2007 MODIS image for pre-fire and the
downsampled July 2008 MODIS image for post-fire.

METHODS

Since the small number of CBI plots (19) is less robust and
resistant to outliers as compared to a larger data set, two types of
correlation were utilized to assess links between the plot data and
the spectral data. Both Pearson product moment coefficients of
correlation (ordinary correlation) and the Spearman rank correla-
tion coefficients (rank correlation) were calculated between the 3
CBI metrics (SURF, SUB and CBI) and the 10 spectral metrics
(Table 2). Spearman rank correlation is more robust and resistant
to outliers and is often used for assessment of small data sets (Wilks,
1995).

To assess the utility of MODIS downsampling in delineating
Initial versus Extended Assessments, correlations of CBI metrics
were made to the 10 spectral metrics derived for each of the three
image pairs: the Landsat-only pair, the Initial Assessment pair, and
the Extended Assessment pair. Additionally, the dNBR image for
each of the three image pairs (Landsat-only, Initial, and Extended
Assessment) was classified into 5 severity classes: Unburned
(UNB), Low (LOW), Moderate (MOD), High (HIGH), and Ex-
treme (EXT) severity using a statistical approach that identified
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class thresholds as standard deviations from a median value for
the entire Landsat scene (as opposed to the arbitrary thresholds
identified by MTBS). Since most of the Landsat scene was un-
burned, the median dNBR value for the Landsat-only pair was
normalized to 0 (s.d. � 244). The UNB class included pixels with
a dNBR of �244 to �244 (1 s.d.), LOW from 245 to 488 (2 s.d.),
MOD from 489 to 732 (3 s.d.), HIGH from 733 to 976 (4 s.d.), and
EXT for all pixels greater than 976. These classes were compared to
the CBI data and found to match the generalized severity observa-
tions made on the CBI plots, and the resulting severity map con-
firmed as representative of the fire more broadly by the BLM fire
ecology expert who had made several flights over the region in the
months following the fire (R. Jandt, personal communication).
Once each of the 3 image pairs was classified, a confusion matrix
was produced to compare the Initial and Extended Assessment
pairs to the Landsat-only pair. This confusion matrix describes the

TABLE 3

Correlations (R2) between the 10 spectral metrics and the 3 metrics of burn severity: Surface (SURF), Substrate (SUB), and Composite
Burn Index (CBI). Correlations with p-values less than 0.001 are considered highly significant.

SUB SURF CBI

R2 p R2 p R2 p

Landsat-only pair
d7/4 Ratio 0.553 0.0003 0.663 0.0000 0.625 0.0001
d7/5 Ratio 0.565 0.0002 0.678 0.0000 0.630 0.0000
dKTB 0.514 0.0006 0.677 0.0000 0.600 0.0001
dKTG 0.812 0.0000 0.873 0.0000 0.863 0.0000
dKTW 0.021 0.5521 0.083 0.2307 0.044 0.3899
dCHAR 0.454 0.0016 0.541 0.0003 0.504 0.0007
dPV 0.031 0.4697 0.056 0.3300 0.042 0.3988
dNPV 0.536 0.0004 0.610 0.0001 0.583 0.0001
dNBR 0.772 0.0000 0.880 0.0000 0.847 0.0000
RdNBR 0.775 0.0000 0.864 0.0000 0.839 0.0000

Initial Assessment

d7/4 Ratio 0.547 0.0003 0.658 0.0000 0.619 0.0001
d7/5 Ratio 0.502 0.0007 0.626 0.0001 0.570 0.0002
dKTB 0.514 0.0006 0.677 0.0000 0.600 0.0001
dKTG 0.812 0.0000 0.872 0.0000 0.863 0.0000
dKTW 0.021 0.5522 0.083 0.2307 0.044 0.3900
dCHAR 0.059 0.3175 0.164 0.0853 0.101 0.1849
dPV 0.055 0.3322 0.005 0.7823 0.026 0.5059
dNPV 0.306 0.0141 0.446 0.0018 0.372 0.0055
dNBR 0.745 0.0000 0.860 0.0000 0.823 0.0000
RdNBR 0.773 0.0000 0.861 0.0000 0.836 0.0000

Extended Assessment

d7/4 Ratio 0.528 0.0004 0.501 0.0007 0.532 0.0004
d7/5 Ratio 0.465 0.0013 0.456 0.0015 0.475 0.0011
dKTB 0.461 0.0014 0.668 0.0000 0.563 0.0002
dKTG 0.566 0.0002 0.590 0.0001 0.589 0.0001
dKTW 0.026 0.5076 0.130 0.1302 0.067 0.2847
dCHAR 0.340 0.0087 0.432 0.0022 0.389 0.0043
dPV 0.073 0.2630 0.116 0.1533 0.090 0.2118
dNPV 0.423 0.0026 0.505 0.0007 0.474 0.0011
dNBR 0.740 0.0000 0.789 0.0000 0.783 0.0000
RdNBR 0.776 0.0000 0.835 0.0000 0.823 0.0000
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change in burn severity associated with one year of regeneration
post-fire.

Results
CORRELATIONS BETWEEN CBI METRICS AND SPECTRAL
INDICES

Several spectral metrics were significantly correlated to the
three metrics of burn severity (Table 3). The Surface (SURF) metric
of severity produced the strongest correlations to spectral indices,
with a peak R2 value of 0.880 between dNBR produced from the
Landsat-Landsat (L-L) image pair and SURF (p � 0.0001). The
Substrate (SUB) metric was less strongly correlated, and the CBI
(summary metric) correlations fell in between SURF and SUB.
The dKTG spectral index produced the strongest correlations to
the SUB metric for both the L-L image pairs and the Initial Assess-
ment (IA) image pair (R2 � 0.812, p � 0.0001), but RdNBR
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produced the strongest correlation to the Extended Assessment
(EA) SUB (R2 � 0.776, p � 0.0001). The same pattern emerged
for the CBI metric, with R2 � 0.863 (p � 0.0001) between dKTG
and CBI for the L-L and IA pairs, and R2 � 0.823, (p � 0.0001)
between RdNBR and the EA pair. In comparison, dKTG produced
the strongest correlation to SURF only for the IA pair (R2 � 0.872,
p � 0.0001), with dNBR most strongly correlated to SURF for the
L-L pair (R2 � 0.880, p � 0.0001) and RdNBR most strongly
correlated for the EA pair (R2 � 0.835, p � 0.0001).

The Spearman rank correlation found weaker links between
spectral indices and burn severity metrics, but found the same gen-
eral correlations to be significant at the p � 0.001 level. The strong-
est rank correlation was produced between RdNBR and the SURF
metric of severity (R2 � 0.639, p � 0.0001) for the L-L image
pair. All relationships between the 3 severity metrics and both the
dNBR and RdNBR metrics were significant at the p � 0.001 level,
excepting the EA pair dNBR correlation to the CBI (R2 � 0.423,
p � 0.0013). The dKTG produced the strongest correlations to

TABLE 4

Spearman rank correlations (R2) between the 10 spectral metrics and the 3 metrics of burn severity: Surface (SURF), Substrate (SUB),
and Composite Burn Index (CBI). Correlations with p-values less than 0.001 are considered highly significant.

SUB SURF CBI

R2 p R2 p R2 p

Landsat-only pair
d7/4 Ratio 0.436 0.0010 0.641 0.0000 0.517 0.0003
d7/5 Ratio 0.315 0.0060 0.464 0.0007 0.348 0.0039
dKTB 0.145 0.0536 0.313 0.0064 0.185 0.0327
dKTG 0.469 0.0006 0.523 0.0002 0.489 0.0004
dKTW 0.038 0.2118 0.134 0.0618 0.051 0.1753
dCHAR 0.104 0.0898 0.189 0.0315 0.119 0.0734
dPV 0.000 0.4764 0.003 0.4142 0.394 0.3990
dNPV 0.177 0.0366 0.177 0.0366 0.155 0.0527
dNBR 0.459 0.0007 0.625 0.0000 0.532 0.0002
RdNBR 0.450 0.0008 0.639 0.0000 0.525 0.0002

Initial Assessment

d7/4 Ratio 0.438 0.0010 0.641 0.0000 0.517 0.0003
d7/5 Ratio 0.247 0.0152 0.430 0.0012 0.284 0.0093
dKTB 0.145 0.0537 0.313 0.0064 0.185 0.0327
dKTG 0.469 0.0006 0.523 0.0002 0.489 0.0004
dKTW 0.038 0.2118 0.134 0.0618 0.051 0.1753
dCHAR 0.007 0.3690 0.180 0.0352 0.038 0.2118
dPV 0.080 0.1196 0.001 0.4568 0.031 0.2347
dNPV 0.000 0.4843 0.083 0.1159 0.004 0.3952
dNBR 0.454 0.0008 0.613 0.0000 0.520 0.0002
RdNBR 0.459 0.0007 0.639 0.0000 0.531 0.0002

Extended Assessment

d7/4 Ratio 0.469 0.0006 0.412 0.0015 0.439 0.0010
d7/5 Ratio 0.306 0.0070 0.176 0.0373 0.303 0.0073
dKTB 0.163 0.0432 0.435 0.0011 0.263 0.0125
dKTG 0.174 0.0380 0.281 0.0097 0.207 0.0250
dKTW 0.015 0.3049 0.164 0.0432 0.059 0.1565
dCHAR 0.072 0.1330 0.138 0.0586 0.084 0.1141
dPV 0.000 0.4647 0.004 0.4028 0.002 0.4219
dNPV 0.121 0.0722 0.112 0.0799 0.105 0.0868
dNBR 0.447 0.0009 0.466 0.0006 0.423 0.0013
RdNBR 0.469 0.0006 0.412 0.0015 0.439 0.0010
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SUB for both the L-L and IA image pairs, but the EA pair dKTG
was not significantly correlated to any of the severity metrics.

ASSESSMENT OF DOWNSAMPLED MODIS DATA

Spectral indices produced from both the Initial and Extended
Assessment image pairs were significantly correlated to CBI data
with similar correlation coefficients (Tables 3 and 4), with d7/4,
dKTG, dNBR, and RdNBR producing the strongest correlations
depending on image pair and metric. A confusion matrix cross-
tabulating dNBR classes between the Initial Assessment and the
Extended Assessment reveals class changes consistent with the
vegetation regeneration observed on the tundra (i.e., green-up)
(Table 5). A decrease in severity class was observed across 41.5%
of pixels, including decreases in severity from extreme to high
(25.4%), extreme to moderate (1.1%), high to moderate (7.7%),
high to low (0.2%), moderate to low (4.4%), moderate to unburned
(0.4%), and low to unburned (2.3%). We calculated that 51.6% of
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TABLE 5

Confusion matrix indicating the proportional change by class in burn severity across the landscape between the Initial and Extended
Assessments.

Initial Assessment

UNB LOW MOD HIGH EXT Total

UNB 0.009 0.023 0.004 0.000 0.000 0.036
LOW 0.002 0.066 0.044 0.002 0.000 0.114
MOD 0.000 0.004 0.049 0.077 0.011 0.141
HIGH 0.000 0.000 0.009 0.119 0.254 0.382
EXT 0.000 0.000 0.000 0.008 0.318 0.327

Total 0.011 0.093 0.106 0.206 0.584 1
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the area was unchanged from the Initial to the Extended Assess-
ment, while 2.3% was classified as more severe in the Extended
Assessment than in the Initial. In the Initial Assessment, nearly
80% of the area within the fire perimeter was classified as High
to Extreme Severity, while only 20% was classified as Low or
Moderate Severity. By the Extended Assessment in July, only 71%
of the area was classified as High to Extreme Severity, while 25%
was classified as Low to Moderate Severity, and less than 4% was
classified as Unburned (up from �1% in the Initial Assessment).

Discussion
Several spectral indices tested here showed significant correla-

tions to the plot data, with the strength of the correlation depending
on the metric and the index. Correlations to spectral data were
strongest with the Surface metric, and weakest with the Substrate
metric, with CBI balancing the two. This supports previous findings
in boreal Alaska ecosystems that spectral indices perform poorly
representing consumption of substrate organic horizons (Kasischke
et al., 2008; Hoy et al., 2008), and that CBI relationships to spectral
indices are primarily surface relationships with vegetation con-
sumption (Miller et al., 2009). This is well-demonstrated in the
correlations to dKTG across the three image pairs; dKTG is signifi-
cantly correlated to CBI metrics for the L-L and the IA image pairs,
which utilize the June post-fire image, captured before the summer
2008 green-up began. The dKTG is poorly correlated to CBI for
the EA, however, which is consistent with ground observations that
many burned areas had begun to regenerate (i.e., re-green) by the
July EA. Spectral metrics for d7/4 and dKTG were both signifi-
cantly correlated to some components of the assessment, but only
the dNBR and RdNBR were consistently significantly correlated
across all image pairs and metrics.

While the number of CBI points was less than would normally
be desired for like studies, the small n of field observations this
study (19) illustrates well the challenges faced by researchers col-
lecting field data in the most remote portions of Alaska. Research-
ers were only able to collect these data at a considerable expense,
and the rapid green-up of the short arctic growing season severely
limits the amount of time available to collect consistent field obser-
vations not reflecting a significant vegetation change over the time
required to obtain them (e.g., a week’s worth of rapid vegetation
growth between first and last plots collected). Based on the small
size of the CBI data set, and the clustering of the data into an
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unburned to low severity group and a high to extreme severity
group (with no plots found in the moderate severity range of CBI),
the authors acknowledge that a larger data set may reveal different
links between tundra fire effects and spectral indices. However,
we also suggest that the more robust Rank Correlation still shows
significant relationships between CBI and spectral indices, and we
additionally compare our results to another study of tundra fire
severity to further assess the utility of the dNBR.

Our dNBR correlation with CBI (R2 � 0.82 for Initial Assess-
ment) complements previous work in Alaskan tundra that found
strong correlations (R2 � 0.77 to 0.78) between dNBR and CBI on
3 predominantly low-severity fires in the Bering tundra of western
Alaska (Allen and Sorbel, 2008). CBI values occur along a scale
of 0 to 3, and most of the Anaktuvuk River Fire burned at higher
severity (all associated burned area CBI values exceeded 1.5)
(Fig. 3). In an assessment of tundra burn severity presented by
Allen and Sorbel (2008), the majority of their CBI points had a
value below 1.5. Allen and Sorbel (2008) specifically noted that
their high CBI-dNBR correlations might have resulted from their
3 tundra fires burning primarily at low severity, and that higher
severity fires might yield a lower correlation to dNBR. However,
when the CBI data from Allen and Sorbel (2008) are combined
with the CBI plots from this study to represent the entire spectrum
of tundra burn severity from low to high (n � 112), the combined
CBI values are significantly correlated to dNBR (R2 � 0.69, p �

0.0001) (Fig. 4). The strength of this correlation between CBI and
dNBR across 2 distinct tundra regions is further evidence of the
utility of dNBR for mapping surface burn severity on Alaskan
tundra sites. It also further justifies the classification of the dNBR
image for assessing the downsampled MODIS data.

CBI correlations to spectral indices were strongest for the
L-L image pair, reaffirming that the use of Landsat data is the
most preferable for mapping and monitoring fire impacts. However,
when Landsat data are not available for all desired periods, the
relationships between CBI and the EA spectral indices, as well as
the patterns of dNBR classification revealed in the confusion matrix
(Table 5) indicate that MODIS downsampling can provide supple-
mental information. The decrease in severity across over 40% of
pixels (as compared to an illogical increase in severity for �3%
of pixels) is consistent with both the ecology of the tussock tundra
and the observations of rapid vegetation regeneration in the first
growing season following the fire (Jandt, 2008). Cottongrass sedge
has been observed to rapidly resprout after fire in Alaska (Racine
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FIGURE 3. Final Initial Assessment dNBR (differenced Normal-
ized Burn Ratio) map for the Anaktuvuk River Fire, with Kuparuk
Fire (also burned in 2007) for comparison.

et al., 2004), and observations of cottongrass sedge tussocks in the
burned area during the Initial and Extended Assessments indicated
that while all of the leafy foliage burned, the tightly bundled roots
at the center of the tussock retained too much moisture to be entirely
consumed by the fire (Jandt, 2008). As described in the scene model
section above, these root bundles rapidly resprouted after the June
2008 thaw and were contributing a significant green element to the
scene by the July EA, lowering the severity of two-fifths of the
burned area. That this change was captured by the downsampled

FIGURE 4. All Composite Burn Index (CBI) plots from Anaktu-
vuk River Fire (solid circles) and three fires from Allen and Sorbel
(2008) (open squares) regressed to dNBR value for associated pixel,
with regression line (y 	 0.0023x 
 0.3144).
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July MODIS data, when no cloud-free Landsat images were avail-
able, signifies the utility of downsampled MODIS for temporal
monitoring of fire effects.

These results come on the heels of findings from Boelman et
al. (2011), who analyzed the same wildfire using the same ground
observation points with the goal of assessing single-date imagery
for mapping burn severity in a region where anniversary-date im-
ages are often difficult to acquire. They suggest that a potential
solution to the inherent challenges of producing dNBR from
matched-date imagery is to use the EVI2 spectral index with a
single, post-fire image from any sensor with bands in the visible
spectrum, and they also find that coarse-resolution MODIS data
are too coarse for accurate burn severity mapping. While the single-
date approach has been suggested previously in Alaska (e.g., Epting
et al., 2005; Hudak et al., 2007), it fails to account for unburned
inclusions such as rocks and small lakes that tend to be misclassified
as high severity burned area in single-date scenes and must be
mapped out in a labor-intensive process (Key, 2006). Since ground
observation plots are never established in lakes or on rocks, valida-
tion analyses fail to account for this misclassification. We show
here that by downsampling MODIS to the finer resolution of
Landsat (30 m), both the coarse-resolution problem and the infre-
quency of Landsat are solved, while minimizing classification er-
rors associated with single-date imagery.

Conclusions
The Anaktuvuk River Fire was a record fire that burned pri-

marily at high severity (Fig. 3) in contrast with previous tundra
fires in Alaska, provoking interest in the potential impacts of cli-
mate change on high-latitude fire regimes. The Anaktuvuk River
Fire also drew much attention from researchers addressing issues
of increased potential for carbon contributions from wildfires
(Mack et al., 2011), impacts on the Central Arctic Caribou Herd
and other wildlife, and impacts on the gas and oil extraction indus-
try. Given the need to address these issues in light of projections
that include further warming in the region, it is critical to explore
methods for measuring and monitoring wildfire characteristics in
this region, and to focus on developing methods that are accurate,
efficient, and accessible to fire managers.

The results of this study indicate that several Landsat metrics
easily produced by federal fire managers familiar with Geographic
Information Systems are highly correlated to ground measurements
of CBI. Bi-temporal spectral indices, including dKTG, dNBR, and
RdNBR, produced significant correlations with CBI metrics, with
the strongest correlations to the Surface metric. Downsampling of
MODIS data shows promise for mapping wildfire burn severity
where Landsat data are limited or not available, with the Extended
Assessment in this study produced entirely from downsampled
MODIS (i.e., both pre- and post-fire) and showing changes in sever-
ity from the Initial Assessment that are consistent with observations
and tundra ecology. Field data are always the most desirable ap-
proach to monitoring disturbance impacts, and are absolutely
necessary to interpreting the patterns identified in remotely sensed
imagery. Overall, we show that remotely sensed data can be used
in conjunction with field data to monitor impacts across the entire
extent of the disturbance event, and that existing methods can be
applied to characterize wildfire impacts from 2 different remotely
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sensed data platforms in tundra ecotypes. This fills a critical moni-
toring need in the rapidly changing Arctic.
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