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Introduction

Permafrost thawing, which is characterized by a thicken-
ing of the active layer, rising temperatures in the permafrost, 
the disappearance of permafrost, and other features, has been 
reported in different cold regions at high latitudes (e.g., Zhang 
et al., 1997; Jorgenson et al., 2006). Thawing permafrost may 
have a significant effect on ecosystem dynamics and carbon cy-
cling (Waelbroeck et al., 1997; Shur and Jorgenson, 2007; Schuur 
et al., 2009). Alpine grassland is the most common vegetation 
type on the Qinghai-Tibetan Plateau (QTP). In some parts of 
the QTP, alpine grassland (primarily alpine meadow and alpine 
steppe grassland) has degraded over the last few decades (Harris, 
2010), leading to the reverse succession of alpine grassland; spe-
cifically, a decrease in the number of plant families and species 
with hygrophytes and mesophytes gradually replaced by mesox-
erophytes and xerophytes, the release of soil organic carbon, and 
a reduction in vegetation cover (Wang et al., 2008; Yang et al., 
2010, 2013; Qin et al., 2014). Permafrost occupies nearly half 
of the total area of the QTP. Over the last few decades, some of 
the permafrost has thawed (Wu et al., 2006). Therefore, in ad-

dition to overgrazing, the thawing of permafrost is considered 
an important cause of alpine grassland degradation. It is hypoth-
esized that permafrost thawing increases permeability (Niu et al., 
2011), causing the water table to drop and shallow soil to dry, 
thus leading to the degradation of alpine grassland (Wang et al., 
2008). Due to the lack of long-term observational studies of al-
pine grassland dynamics in the permafrost regions of the QTP, 
most previous studies used the “space-for-time” method to inves-
tigate the potential consequences of permafrost thawing, that is, 
setting up plots on different types of permafrost and treating the 
spatial differences between the alpine grassland ecosystems as 
equivalent to chronological changes. The results of these studies 
supported the above-mentioned hypothesis (Yang et al., 2010). 
However, due to the difficulties of road accessibility, most of the 
plots were set close to a road and the representativeness of the 
plots was poor (Yi et al., 2011).

Yi et al. (2011) used the same “space-for-time” method, but 
at a basin scale, to investigate alpine grassland vegetation cover in 
zones with different types of permafrost. Their results showed that 
vegetation cover increases from the extreme stable permafrost zone 
(the coldest), is maximized in the transition permafrost zone, and 

Abstract
Alpine grassland and permafrost occupy about two thirds and one half of the total area 
of the Qinghai-Tibetan Plateau (QTP), respectively. Soil water, which can be affected by 
permafrost thawing and precipitation, is important for vegetation growth in this region. It 
is therefore vital to consider the effects of both thawing and precipitation when studying 
the effect of climate warming on alpine grassland on the QTP. In this study, we examined 
two adjacent basins, one semiarid and the other semihumid, in the northeastern section 
of the QTP. We used remote sensing data to compare fractional vegetation cover (FVC) 
and the relationships between FVC and land surface temperature (LST) in different types 
of frozen ground; the samples were analogous to a chronosequence of climate warming 
and permafrost thawing. Our analysis produced three significant results: (1) the FVCs of 
the semihumid basin were significantly greater than those of the semiarid basin for most 
types of frozen ground (p < 0.05); (2) the changes in FVC along the climate warming and 
permafrost thawing chronosequence were different in the two basins, with the maximum 
FVC occurring on the transition permafrost zone in the semiarid basin and on the seasonal 
frost zone in the semihumid basin; and (3) at the peak of the growing season, only the 
three warmest types of frozen ground in the semiarid basin had a negative relationship be-
tween FVC and LST, suggesting that vegetation growth was limited by water. Therefore, 
we concluded that the responses of alpine grassland to climate warming in the permafrost 
regions are complicated by precipitation and permafrost thawing; specifically, grasslands 
will not necessarily simply degrade as the climate warms, as suggested by previous plot-
scale studies.
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then decreases in the warmer soil types. Yi et al. (2011) suggested 
that this is because different stages of permafrost thawing have dif-
ferent effects on alpine grassland in semiarid basins. Wang et al. 
(2012) conducted a “space-for-time” study in both semiarid and 
semihumid regions at a plot scale and found that vegetation cover 
and biomass decreased in response to permafrost thawing in both 
regions. However, the reduction was more obvious in the semiarid 
region than in the semihumid region. Therefore, we hypothesized 
that the response of alpine grasslands in permafrost regions to cli-
mate warming should also be different in contrasting precipitation 
regimes at a basin scale. To test this hypothesis, we first compared 
the vegetation covers of alpine grasslands in zones with different 
types of frozen ground in two adjacent basins with contrasting pre-
cipitation regimes; then we compared the relationships between 
vegetation cover and the remote sensed land surface temperature 
in each zone.

Methodology
STUDY AREA AND FIELD WORK

The Shule River Basin (hereafter SR) and the Datong River 
Basin (hereafter DR) are located in the middle of the Qilian 
Mountains, on the northeastern edge of the QTP, China (Fig. 1). 
No meteorological station is available in these two basins. SR is 
in a semiarid region that is characterized by westerly winds. The 
mean annual air temperature (MAAT) is –2.2 °C, and the mean 
annual precipitation (MAP) is 309.7 mm, as measured at the 
nearest Tuole meteorology station (98.42°E, 38.82°N) over the 
1981–2010 period. The DR is characterized by westerly winds, 
southeastern and southwestern monsoons, and more precipita-
tion. Its MAAT and MAP are 1.4 °C and 415 mm, respective-
ly, as measured at the Qilian meteorology station (100.25°E, 
38.18°N).

Twenty and eleven boreholes were drilled in the SR and 
DR, respectively. To determine the frozen ground classification 
of both basins, the mean annual ground temperature (MAGT) 
at 15 m was taken from borehole measurements and then the 
temperatures were related to the topographical characteristics 
(elevation, aspect, and slope) of each basin; the relationships 
were extrapolated to get the MAGT at 15 m for each pixel at 
a 70 m resolution over each basin. Finally, the types of frozen 
ground were determined based on the MAGT at 15 m (Table 
1; Sheng et al., 2010; Li et al., 2012). The spatial distributions 
of permafrost in the two basins were comparable to those in a 
previous study by Li and Cheng (1996); there were only two 
categories in the study area: permafrost and seasonal frost. To 
our knowledge, these are the only two basins on the QTP with 
detailed permafrost mapping.

In both basins, the mean elevation and slope generally de-
crease with the change in permafrost zone from extremely sta-
ble, through stable, substable, transition, and unstable to seasonal 
frost (Table 1). The vegetation types are alpine vegetation, alpine 
steppe, and alpine meadow on the extreme stable, stable, and 
transition permafrost zones in both basins; they are alpine steppe 
and alpine meadow in the SR and DR, respectively, on the other 
zones (Table 1). Figure 2 shows the differences in the vegetation 
on the unstable permafrost zones in the two basins. Under dry 
conditions, alpine steppe is more prevalent than alpine meadow 
(Yang et al., 2010).

According to the normalized difference vegetation index 
(NDVI), values produced by a moderate-resolution imaging spec-
troradiometer (MODIS), vegetation growth peaked between late 

July and early August in most of the years in the 2001–2011 pe-
riod (figures not shown here) in both basins. Our field work was 
conducted between 28 July and 5 August 2011. We set up 25 and 
33 plots (30 m × 30 m) in different landscapes that had road ac-
cessibility throughout the SR and DR basins, respectively, where 
the landscape is visually flat and homogenous (Fig. 1). We set nine 
quadrats (50 cm × 50 cm) in each plot at 15 m intervals (see Yi et 
al., 2011). We took pictures with a conventional camera and with 
a multispectral camera (ADC, Tetracam, Chatsworth, California, 
U.S.A.; 2048 × 1536 pixels.) at a height of about 1.4 m, so that the 
pictures would cover the whole quadrat.

ESTIMATIONS OF FVC AT A QUADRAT SCALE

A previous study by Yi et al. (2011) accurately estimated the 
vegetation cover using the WinCAM software (Regent Instruments, 
Quebec, Canada); however, this method is time-consuming. In this 
study, we first randomly selected one of the nine quadrats from 
each plot, and then had two people separately derive the fractional 
vegetation cover (FVC) from the conventional pictures using the 
WinCAM software. With the mean of the two FVC values as the 
target, we calculated the threshold value of the NDVI iteratively, 
based on the multispectral picture of the same randomly selected 
quadrat using the following steps: (1) if the NDVI of a pixel in a 
picture is greater than the threshold value, it is considered a vegeta-
tion pixel, otherwise it is a nonvegetation pixel; (2) sum the whole 
picture to get the number of vegetation pixels, and divide this by 
the total number of pixels to get FVC; (3) if the FVC is greater 
than the target value determined from the WinCAM method, then 
increase the threshold value and vice versa; and (4) iterate through 
steps 1 to 3 until the difference between the FVC and target value 
is smaller than 0.01. For more details on this procedure, see Yi et al. 
(2011). Finally, we calculated the FVC of the other eight quadrats 
using the calculated NDVI threshold.

FVC AT A 30 M AND A 1 KM SCALE

We used HJ-1A (30 m spatial resolution, 2-day time resolution) 
data to match the 30 × 30 m plots. HJ-1A is a new generation of Chi-
nese environment satellites that have charge-coupled device cameras 
with the same bands as the first four bands of a Landsat thematic map-
per. We calculated the NDVI with the following equation: NDVI = 
(NIR – R) (NIR + R)–1, where NIR and R are the reflectances at the 
near-infrared and red bands, respectively. The HJ-1A data sets with 
the highest quality, namely with relatively little cloud cover, were se-
lected from the 29July–5 August period. The 58 plots were partitioned 
into two categories, one for establishing the relationships between the 
FVCs measured on the ground and the NDVIs of the corresponding 
pixels in the HJ remote sensing data, and the other for validating the 
established relationship. Then we applied the plot scale relationship to 
the HJ remote sensing data for the whole region in both basins.

We then used the MOD13A2 (NDVI 16-day synthesis) data set 
to calculate the FVCs at a 1 km scale by (1) resampling the 30-m-
scale FVCs to a 1 km scale using the “resample” spatial analyst 
tool of the ArcGIS 9.3 software; (2) compositing the NDVI imag-
es with maximum values from the 28 July–5 August period using 
the MOD13A2 data set at a 1 km scale; (3) sampling the FVC and 
NDVI from the field plot locations; (4) establishing the relationship 
between FVC and NDVI using some of the samples and validat-
ing it with the others; and (5) compositing the NDVI images with 
maximum values for every 16 days between 2001 and 2011, then 
calculating the FVC with the established relationship at a 1 km scale.
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Figure 1. Types of frozen ground and locations of boreholes and remote sensing plots in the semiarid basin (Shule River basin [SR]) and 
semihumid basin (Datong River basin [DR]). Note: the scale bar is related to the main map.

FIGURE 2. Pictures of the unstable permafrost landscapes of (a) the semiarid basin (SR), which is relatively dry; and (b) the semihumid 
basin (DR), which is relatively wet.
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Using the 1 km FVC data set, we calculated the FVC statistics 
for each type of frozen ground and on each basin using SPSS 17.0. 
As the time series of the FVC samples was too short to be used for 
climate change studies, we followed previous studies and used the 
“space-for-time” method, that is, differences in the FVC of differ-
ent types of frozen ground were used to represent changes in FVC 
when permafrost is transformed from one type to another. The re-
mote sensing method can only retrieve the aboveground charac-
teristics of vegetation; therefore, we used the term degradation to 
describe the reduction in alpine grassland vegetation cover.

FVC–LST RELATIONSHIPS

Using the 16-day measurements, we created a composite 
LST from the MOD11A2 (LST 8-day synthesis ) data set and a 
composite NDVI from the MOD13A2 data set. We then calculated 
the 11-year means of the LST and NDVI at different points in the 
growing season, which is from 25 May to 14 September. Finally, 
we compared the relationships between the FVC and LST on dif-
ferent types of frozen ground in both basins.

Results
FVC ESTIMATIONS AT DIFFERENT SCALES

The relationships between the observed FVCs and the corre-
sponding NDVIs from the HJ-1A data set can be described using 
a linear equation (Fig. 3, part a). The comparisons between the cal-
culated and observed FVCs were reasonably good (Fig. 3, part b). 

The correlation between FVCs, upscaled from a 30 m to a 1 km 
scale, and the NDVIs of MODIS are presented in Figure 4, part a. 
An accuracy test of these data had high precision (Fig. 4, part b). The 
FVC calculated for different types of frozen ground at a 1 km scale 
in the two basins showed that in the SR basin, the greatest FVC was 
in the transition permafrost zone, and that the average FVC in the 
transition permafrost zone was significantly different from the aver-
age FVC in the unstable and substable permafrost zones (p < 0.05, 
Fig. 5). The vegetation cover was minimized on the extreme stable 
zones, and its average in these zones was significantly different from 
the average vegetation cover in the stable permafrost and seasonal 
frost zones (p < 0.05, Fig. 5). In contrast, the FVC of the DR basin 
increased gradually from the extreme stable permafrost through the 
seasonal frost zones (Fig. 5). Except for the FVCs of the unstable 
permafrost and seasonal frost zones, there were significant differenc-
es between the different types of permafrost zones in the DR. There 
were significant differences between the two basins for all of the 
zones except the extreme stable and stable permafrost zones (Fig. 5).

FVC–LST RELATIONSHIPS DURING THE PEAK GROWING 
SEASON

During the peak growing season, the slopes of the relationships 
between the FVC and LST in the SR changed from positive in the 
extreme stable and stable permafrost zones, to relatively weakly 
positive in the substable permafrost zones, and to negative in the un-
stable and seasonal frost zones (Fig. 6, part a). In the DR, the slopes 
altered from positive in the extreme stable and stable permafrost 
zones, to weakly positive in the other zones (Fig. 6, part b).

TABLE 1

Definition of each type of frozen ground, and the mean elevation and major vegetation type of each type of frozen ground in two basins  
(SR: Shule River; DR: Datong River). MAGT: mean annual ground temperature at 15 m depth; AV: alpine vegetation; AS: alpine steppe; 

and AM: alpine meadow.

Frozen ground Basin
Elevation 

(m)
Slope 

(°)
Vegetation 

type

Extreme stable permafrost

(MAGT < –5 °C)

SR 4586 7.55 AV

DR 4550 7.85 AV

Stable permafrost

(–5 °C < MAGT < –3 °C)

SR 4342 5.35 AS

DR 4293 5.95 AS

Substable permafrost

(–3 °C < MAGT < –1.5 °C)

SR 4141 3.08 AS

DR 4087 2.87 AM

Transition permafrost

(–1.5 °C < MAGT < –0.5 °C)

SR 3971 1.84 AM

DR 3873 1.53 AM

Unstable permafrost

(–0.5 °C< MAGT < 0.5 °C)

SR 3861 1.78 AS

DR 3701 1.62 AM

Seasonal frost

(MAGT > 0.5 °C)

SR 3713 2.59 AS

DR 3592 1.36 AM
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SEASONAL VARIABILITY OF THE FVC–LST RELATIONSHIPS

In the SR (Fig. 6, part a), throughout the growing season, the 
slopes of the relationships between FVC and LST in the extreme 
stable, stable, and substable permafrost zones were positive, whereas 
the slopes in the seasonal frost zone were negative or almost zero. 
For the other types of frozen ground zones, the slopes were positive 
at the beginning of the growing season, became negative in midsum-
mer, and were positive again at the end of the growing season. In the 
DR (Fig. 6, part b), the slopes were always positive at the beginning 
of the growing season, especially in the extreme stable permafrost 
zone. During midsummer, the slopes were still positive, but less so 
than at the beginning and end of the growing season.

Discussion
FVCS ESTIMATION AND UPSCALING

FVC is one of the most important characteristics of grass-
lands. It is widely used in ecological studies as an indicator of 
vegetation growth (e.g., Wandwei et al., 2013; Yang et al., 2013; 
Qin et al., 2014). Changes in FVC are minimal within a single 
day, and even over a few days, especially during the peak growing 

season. This feature makes FVC a promising variable in ground 
studies that use remote sensing applications. The challenge is to 
estimate ground FVC quickly, accurately, and in a nondestructive 
way and to upscale it to the scales used in satellite remote sens-
ing data sets.

It takes 5 to 10 minutes to derive the “true” FVC using the 
WinCAM software with a high precision conventional picture 
(Yi et al., 2011). By using the threshold method, we were able to 
quickly process a multispectral picture (less than 1 second). In Yi et 
al. (2011), the FVCs of 10 quadrats, randomly selected from all of 
the plots, were first estimated based on conventional pictures, then 
the corresponding NDVI thresholds were calculated, and finally, 
the average of the 10 thresholds was used as the threshold. Howev-
er, the pictures were taken at different times of day and on different 
dates. It is well known that NDVI is affected by solar zenith angle, 
so it is not accurate to apply an averaged NDVI threshold to mul-
tispectral pictures. In this study, we randomly selected one out of 
the nine quadrats in each plot, determined the NDVI threshold for 
the quadrat, and applied it to the other eight quadrats. Compared to 
Yi et al. (2011), our method solved the problem of overestimation 
for high FVC quadrats and underestimation for low FVC quadrats 
(figures not shown here).

Figure 3. (a) Relationship 
between fractional vegetation 
cover (FVC_Obs) and normalized 
difference vegetation index (NDVI_
HJ) at the plot scale (30 m). (b) 
Comparisons between calculated 
FVC (FVC_Cal) and observed FVC 
(FVC_Obs).

Figure 4. (a) Relationship 
between fractional vegetation 
cover (FVC) upscaled from a 30 
m scale (FVC_HJ) and the NDVI 
of a moderate-resolution imaging 
spectroradiometer (MODIS) 
(NDVI_MODIS) at a 1 km 
scale. (b) Comparisons between 
calculated FVC (FVC_MODIS) 
and upscaled FVC (FVC_HJ).
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In this study, we upscaled the FVC from a quadrat scale to a 
plot scale, and then from a plot scale to a 1 km scale. Traditional 
methods usually calculate FVC using

 FVC = (NDVI – NDVI
min

) (NDVI
max

 – NDVI
min

)–1, (1)

where NDVI
max

 and NDVI
min

 are the maximal and minimal NDVI 
of a scene (Barlage and Zeng, 2004). This method has never been 
tested with ground data. Our method is more suitable.

RESPONSES OF ALPINE GRASSLAND TO CLIMATE WARMING 
AND PERMAFROST THAWING

According to the traditional “space-for-time” method, climate 
warming will cause an increase in FVC in extreme stable, stable, 
and substable permafrost zones in semiarid basins and in most 
zones in semihumid basins.

The slope of the relationship between FVC and LST can be 
used to identify the factors that limit vegetation growth, with a pos-
itive slope indicating limited thermal energy and a negative slope 
indicating limited water (Karnieli et al., 2010). In the semihumid 
basin, the vegetation growth was not limited by water in any of the 
frozen ground zones during the peak growing season (late July and 
early August). Furthermore, at the beginning and end of the grow-
ing season, vegetation growth was limited by energy. Therefore, 
future warming would relieve the thermal energy constraint and 
be conducive to alpine grassland growth. In the semiarid basin, 
vegetation growth in the transition, unstable, and seasonal frozen 
zones was limited by water. Vegetation growth in the extreme sta-
ble frozen zones in both basins was limited by thermal energy. 

Figure 5. Mean and one standard deviation (error bar) of the 
fractional vegetation cover (FVC) using the MODIS data set for 
different types of frozen ground in the semiarid basin (SR) and 
the semihumid basin (DR). Different letters indicate significant 
differences (p < 0.05) in the FVCs of different types of frozen ground; 
the lower and upper cases are for SR and DR, respectively; ns, *, 
and ** indicate no significant differences, significant differences 
with p < 0.05, and significant difference with p < 0.01, respectively, 
in the FVCs of the same type of frozen ground between the two 
basins.

Figure 6. The slope of relationship between the fractional 
vegetation cover and land surface temperature during the growing 
season in different types of frozen ground in (a) the semiarid basin 
(SR) and (b) the semihumid basin (DR).

Therefore, future warming might increase vegetation growth in 
zones in which vegetation was limited by available thermal energy. 
However, in zones limited by water, warming would exacerbate 
water constraints and prohibit alpine grassland growth.

The “space-for-time” method at a plot scale usually focuses 
on the effects of soil drying (due to warming) on vegetation growth 
(Baumann et al., 2009; Yang et al., 2010; Wang et al., 2012; Qin 
et al., 2014). However, drying soil could be partially or fully offset 
by increased precipitation, and it is likely that warming would also 
increase nutrient availability and promote vegetation growth (Du et 
al., 2004; Zhuang et al., 2010). Therefore, the responses of alpine 
grassland in permafrost regions to warming are complicated by the 
stages of permafrost thawing and changes in precipitation.

LIMITATIONS AND FUTURE DIRECTIONS

The widely used “space-for-time” method suffers from several 
shortcomings when used at a plot scale. For example, the study by 
Qin et al. (2014) had the following limitations: (1) due to limitations 
in manpower and logistics, only six plots were used; (2) all of these 
plots were set along roads and no plots were set on stable or extreme 
stable permafrost zones; and (3) the selected plots did not represent 
the typical vegetation and soil of a permafrost region. In this study, 
a combination of field work at a plot scale and remote sensing data 
was used to retrieve FVC at a basin scale. In future studies, the re-
lationships between other vegetation characteristics (e.g., vegetation 
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biomass, community type, etc.) and remote sensing spectral indices 
should be established to provide more in-depth data at a basin scale. 
Both temperature and precipitation play an important role in alpine 
grassland growth. Changes in both temperature and precipitation 
may occur together. This study only investigated the effects of thaw-
ing permafrost, without considering changes in precipitation. To 
quantify further the responses of alpine grassland to climate change 
(both temperature and precipitation) and permafrost thawing, it is 
desirable to use a process-based ecosystem model (e.g., Zhuang et 
al., 2010). The thawing of permafrost is a consequence of climate 
warming; but the thawing of permafrost may in turn affect climate, 
for example, by releasing carbon dioxide or methane (Koven et al., 
2011). It is therefore important to incorporate the carbon dynamics 
from an ecosystem model into the global climate model to investi-
gate these complex feedbacks.

Conclusions
In this study, we estimated the FVC of quadrats using multi-

spectral pictures, then upscaled first to a 30 m and then to a 1 km 
scale, using remote sensing data. We studied the spatial distribution 
of the FVC and the relationships between the FVC and LST in dif-
ferent types of frozen ground in two adjacent basins with different 
precipitation regimes, both located on the northeast ridge of the 
QTP. Our results indicated that the responses of alpine grassland in 
permafrost regions to climate warming were different at different 
stages of permafrost thawing and under different precipitation re-
gimes. Climate warming might promote the growth of alpine grass-
land in some zones in semiarid basins and in all zones in semihu-
mid basins. These differences should be considered when making 
proper mitigation and adaptation policies.
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