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This paper examines progress and limitations in the transition from
current dependence on carbon-based energy toward clean,
renewable, and socially just energy in the Hindu Kush Himalaya
and the Andes. Focusing on electricity production from sustainable
hydropower, solar, and wind energy, the assessment does not
cover biomass energy, although this is recognized to be an
important energy source in these regions. Using meta-analysis
methods, a set of 68 peer-reviewed publications was reviewed to
systematically address 2 research questions: (1) Which electricity
generation options in mountains can address local demands and
adaptation needs while supporting broader decarbonization
efforts? (2) What technical innovations, policy, and governance
mechanisms can aid this transition? Considering governance,
finance, individual and collective action, and science and
technology dimensions of the transition challenge,

recommendations for policymakers, mountain communities, and
practitioners are made. These include setting up clear and

effective policy measures, programs, and incentives to support

energy transition plans and help mountain communities and

energy practitioners to fully embrace the transition. Strong political
commitment supported by international cooperation for a

transition agenda centered on mountain people will enable

community participation, stimulate technological innovation, and
establish mechanisms to monitor and enforce social and

environmental impact remediation.

Keywords: energy transition; climate change; hydropower;
renewable electricity production; mountain development.
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Introduction

The impact of climate change is heightened in mountain
regions (Beniston and Stoffel 2014; Gobiet et al 2014; Palomo
2017) and is visible in glacial retreat (Immerzeel et al 2020;
Adler et al 2022) and ecological disturbance (Ruiz-
Labourdette et al 2013), with changes in vegetation patterns
(Telwala et al 2013; Ingty 2017; Fadrique et al 2018). The
resulting ecosystem service effects (Viviroli et al 2007; Habit
et al 2019) include altered provisioning and regulation of
renewable energy sources. Energy transitions toward lower
carbon energy (Lucena et al 2018) in mountains can be
constrained because of inadequate infrastructure,
remoteness, and reliance on traditional energy sources
(Dhakal et al 2019). This paper addresses a subset of climate
adaptation pathways for mountain regions, focusing on
renewable energy use and transitions from conventional
sources in the Hindu Kush Himalaya (HKH) and the Andes.
The findings complement the Intergovernmental Panel on
Climate Change Sixth Assessment Report’s ‘‘Mountains’’
cross-chapter paper (Adler et al 2022). The analysis and

discussion are focused on people-centric socioeconomic
development and just energy transitions under climate
change in mountain regions, primarily the HKH and Andes,
while, in some cases, evidence from the Alps, Central Asia,
and the Rockies is also discussed.

Methods

This meta-analysis (Mengist et al 2020) is based on a review
of peer-reviewed journal articles and book chapters
addressing 2 research questions: (1) Which electricity
generation options in mountains can address local demands
and adaptation needs while supporting broader
decarbonization efforts? (2) What are the technical
innovations, policy, and governance mechanisms that can
aid this transition? Emphasis is placed on empirical case
studies published in the past 10 years. Searches were
conducted in Google Scholar for energy (generation, supply,
demand, renewable$, hydropower, solar, wind, biomass), climate
(change, impact$, adaptation, adaptive capacity, mitigation, water
resource$, seasonality, flood, drought), mountain$, livelihood$,
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agriculture, industries, urban, and economic development. Relevant
sources were reviewed and their references consulted for
additional publications. Energy sources reviewed include
hydropower, solar, wind, and biomass, noting also fossil fuels
(gas, etc). Vulnerability, adaptive measures, and
recommendations were identified for urban and rural
populations and for economic sectors (food, water supply,
sanitation, energy supply, and other). A total of 95
publications were systematically coded. Omitting those not
addressing the research questions, a final set of 68 references
was used.

The coded publications focus on the HKH (22), Alps (14),
Andes (11), Central Asia (5), Rockies (3), and, in some cases,
multiple regions. The meta-analysis assessed hydropower
(36.3% of energy sources coded for), solar (15.6%), wind
(14.8%), biomass (11.1%), fossil fuels in transition (6.7%),
and unspecified energy sources (15.6%). Climate change
impacts included altered seasonality of river flows, including
from temperature-induced glacial melt, glacial lake outburst
floods (GLOFs), and drought (29.1% of multiple impacts
coded for); variable or declining precipitation and runoff
(23.4%); increased flooding (11.3%); altered wind patterns
(7.1%); severe or extreme weather (6.4%); and other (22.7%).
The energy system adaptation responses to these impacts are
discussed below.

Energy systems

Energy transitions are vital especially for developing nations
in meeting the United Nations Sustainable Development
Goals (SDGs), including SDG 7 for energy (UN 2015; IEA
2022). There is broad consensus that clean energy transitions
will be centered on electricity generated with renewable
energy (Bogdanov et al 2021). Thus, having an electricity grid
connection to households is also considered a part of energy
transition, regardless of the energy source (Liao et al 2021).

Climate change is expected to change the demand and
supply of electricity (Chandramowli and Felder 2014; Ciscar
and Dowling 2014). Along with increasing population, rapid
industrialization, urbanization, rural–urban migration,
exploitation of resources, and lack of rural infrastructure
(Rawat and Tiwari 2014), climate change is expected to
create impediments to the development (Kusters and
Wangdi 2013) of renewable energy in developing-country
mountain regions. As many mountain communities in the
HKH and Andes depend on agriculture, conflicts over water
allocation for agriculture and hydropower generation
(Chevallier et al 2011; Buechler et al 2016; Crootof et al 2021)
or rights over common pool resources (Carey et al 2012) may
be exacerbated with increasing demand for resources (Jalilov
et al 2013).

Mountain communities use a diversity of energy sources
for cooking and space heating (Ershad et al 2016; Gould et al
2020). Mountain communities in developing countries rely
heavily on wood and manure biomass for energy. Although
these are beyond the scope of the present analysis, it is useful
to briefly set the context for the transition toward renewable
electricity in the Andes and HKH. In the Andes, despite
some transition to cleaner energy sources, reliance on solid-
biomass-based energy remains high (Martinez et al 2020). In
the HKH, wood and manure remain popular because of
availability and relatively low cost (Rahut et al 2017). With

climate change, tree lines have shifted upward (Liang et al
2016; Gatti et al 2019), increasing the potential for more
vegetation and the availability of biomass resources, but can
also be nonuniformly spread spatially (Fadrique et al 2018).
However, high consumption of fuelwood can harm fragile
mountain ecosystems (Bhatt et al 2016). In the HKH, for
women, the drudgery of collecting firewood and black
carbon from in-home biomass burning have negative health
outcomes (Malla 2013; Nautiyal 2013), necessitating a shift
toward fuel-efficient stoves and electricity from renewable
sources (Dhakal et al 2019).

In the HKH region, hydropower accounts for the
majority of power generation, especially in Nepal, Bhutan,
and mountains of India. Yet India and Pakistan continue to
be highly dependent on fossil fuel energy. However,
distributed solar power combined with pumped storage is
now being explored, and adopted if appropriate, as an
alternative to fossil fuel energy to provide clean energy to
households, agriculture, and businesses. This combination of
solar and pumped-storage hydro is an example of the
hybridization of multiple forms of renewable energy
(Mahmud et al 2022) that is becoming more prominent in
government policies and initiatives in the HKH.

Access to low-carbon energy sources to alleviate energy
poverty in the mountains has numerous barriers, chiefly cost,
technical capacity, cultural values, and, increasingly, reduced
reliability and heightened risk of climate change (Nasirov et
al 2015; Ghimire and Kim 2018). Transitioning to clean
renewables, both on and off-grid, is one means of alleviating
energy poverty (Katsoulakos 2011).

Geographical isolation, unreliability of electricity or gas
supply, unaffordability, low income, and extra energy
demand during winter months are some of the factors that
contribute to energy insecurity in the mountains
(Katsoulakos 2011; Papada and Kaliampakos 2016). Thus,
many mountain populations are vulnerable to energy
poverty despite being rich in energy resources (Katsoulakos
and Kaliampakos 2014).

Energy demand may be slow to respond to price changes
in the short run (Labandeira et al 2017). This lack of
sensitivity is accentuated in mountain regions where energy
alternatives are limited (Malla 2013) and energy prices are
uncertain (Steinbuks and Hertel 2013). Clean energy
transitions can also be stimulated by competitive pricing of
renewable technologies in the long run, for example, for
solar photovoltaics (Victoria et al 2021), as consumption of
natural gas and fossil fuels seems to be more sensitive to
price increases over longer time frames.

Climate change impacts

Climate change impacts and energy-related adaptation
responses in mountains vary by location (including
regionally), by energy system, and by vulnerability of
different stakeholders (communities, infrastructure
operators, policymakers, etc). In Table 1, we broadly
synthesize responses as reported in the literature.

Water resources and extreme hydrometeorological events

If carbon dioxide and other greenhouse gas emissions are
not reduced in the next decade, warming is projected to
surpass 28C during the 21st century (IPCC 2021). It has been

A2Mountain Research and Development https://doi.org/10.1659/MRD-JOURNAL-D-21-00062

MountainAgenda

Downloaded From: https://bioone.org/journals/Mountain-Research-and-Development on 24 Jan 2025
Terms of Use: https://bioone.org/terms-of-use



estimated that a 1.58C global rise in temperature will lead to
warming of Asian mountain glaciers of 2.1 6 0.18C, with
major loss of Asian glaciers by the turn of the century
(Kraaijenbrink et al 2017). Similar trends are reported for

the Andes (Chevallier et al 2011), Central Asia (Vidadili et al
2017), East Africa (Said et al 2019), and New Zealand (Caruso,
King, et al 2017). Although change in glacier stock is one of
the most visible impacts of climate change (Beniston and

TABLE 1 Principal climate change impacts on energy systems in mountain regions, resulting vulnerabilities, and associated adaptation strategies, as derived from

review of 68 peer-reviewed publications.

Climate-change effect Impacts on energy systems Socioeconomic vulnerability Adaptation strategies

Altered seasonality and timing

of river flows, including from

temperature-induced glacial

melt and GLOFs

(þ) Increase in average annual
electricity supply from
hydropower plants due to
increase in river discharge from
melting glaciers

Population growth, urbanization,
and industrial demand for
electricity continue to outpace
aggregate hydropower supply

Use of storage and pumped
storage hydropower; reservoir
management strategy based on
water availability

(�) Risk to energy
infrastructure from GLOFs

Risks to economy and livelihood
from extreme events—both
GLOFs due to warming and
floods due to precipitation
change (see below)

Opposing adaptation measures:
mitigate risk of hydropower and
other clean renewable energy
through early warning, or reduce
hydropower dependency and
diversify energy sources

(�) Reduced water storage in
reservoirs, increased debris
flow, sedimentation

Competition for water and
energy result in irrigation–
hydropower trade-offs

Local water supply, rejuvenation
of springs and watershed
management; increase irrigation
efficiencies

(�) Increase in energy demands
for cooling during summer
months

Urban electricity demand in
summer may result in rural
power shortages, exacerbated
by remoteness, difficult access,
poor infrastructure

Energy sector regulation;
reliability in load shedding;
development of synergies among
urban, industrial, and rural
development policy frameworks
at national and regional levels

Precipitation variability

and change

(�) Decrease in electricity from
hydropower during dry season

Reduced social equity from
intermittent hydropower

Clean energy source
diversification from hydropower
to solar and wind

(�) Risk to energy
infrastructure from flooding
during wet season

Flood, landslide, and
infrastructure risk; economic/
livelihood loss in communities

Community disaster risk
resilience, planning,
diversification

(þ) Varying impacts on forests
and ecosystem, including
decreased biomass/fuel

Drought impacts on local
livelihoods, decreased biomass

Sustainable forestry, biochar,
climate-smart agrosilvipastoral
systems

Wind pattern change (�) Reduced wind energy
generation

Potential for off-grid clean
renewable energy

Improve design standard and
installation of new technologies

(þ/�) Changes in diurnal and
seasonal wind pattern

Local technical capacity limited Capacity building

(þ/�) Energy output
characteristics of mountain
wind farms are still unclear

Lack of data for robust planning,
reliable energy supply; visual
distraction

Strengthen hydrometeorological
data collection and public
availability

Solar radiation or

cloud cover change

(þ/�) Increase or decrease in
solar generation (location
dependent) due to change in
solar radiation and increased
ambient air temperature

Potential for off-grid renewable
energy

Improve reliability through
increased energy storage
(batteries, pumped storage,
etc); manage cost; capacity
building, shift to renewable
energy from fossil fuel, smart
infrastructure; integrate water–
energy–food nexus approach

PV panels are fragile, subject to
damage or theft, often not
possible to meet higher
amperage demand (heating,
refrigeration)

(�) In high latitudes, projected
increase in cloudiness will
decrease thermal heating
performance

Remote high-latitude mountain
communities that rely on solar
thermal heating will be affected

Insulation, diversification of
heating sources

Note: þ, positive impact, significant potential for adaptation; �, negative impacts; þ/�, no discernible change; PV, photovoltaic.
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Stoffel 2014), the entire mountain cryosphere (snow, ice, and
permafrost) will be impacted by climate change, causing a
cascading impact on the development and livelihoods of
communities, including energy choices as well as biodiversity
and ecosystem services (Mukherji et al 2018; Adler et al
2022).

Hydropower remains central to clean renewable energy
potential (IEA 2019) and is a major energy source for
mountains. Temperature-induced glacial melt will result in
short-term increases in water flows and medium- to long-
term loss of glacial water storage (Scott et al 2019), with
negative impacts on annual river flow and especially dry-
season runoff. This in turn will lead to reduction in
generation in both storage and run-of-river hydropower
(Caruso, Newton, et al 2017; Puspitarini et al 2020) and
severe energy uncertainty (Laghari 2013; Fan et al 2020), with
higher impacts in arid mountains (Rangecroft et al 2013).
GLOFs that result from melting glaciers, changing
permafrost, and altered precipitation patterns pose severe
risks to infrastructure including hydropower facilities
(Kumar and Katoch 2014; Schwanghart et al 2016; Poudel
and Duex 2017; Huber 2019).

Some of the adaptations proposed and practiced to
address the fluctuations in availability in water for energy
infrastructure (Turner et al 2017) are constructing and
managing storage and pumped-storage hydropower;
installing low-flow, high-head (large-elevation-drop)
hydropower (Shirsat et al 2021); managing headwater lakes;
and relocating energy infrastructure to safer sites (Schaeffer
et al 2012). Improved governance is also needed at local,
national, and regional levels (Scott et al 2019). Some
governance aspects include integrating the water–food–
energy–environment nexus (Momblanch et al 2019),
adopting flexible and iterative rules and plans (Hill 2013) to
address uncertainties (Ahlers et al 2015), using integrated
assessment of climate change impacts (Mishra et al 2020),
and so forth. Adaptations to reduce the risk to energy
infrastructure include diversifying the sources of clean
renewable energy by including energy from solar and wind
technologies where electricity grids are connected,
integrated planning for energy infrastructure, and improved
governance of energy systems. However, all these adaptive
measures may involve complexities and, at times, may have
to be dealt with on a case-by-case basis (Gaudard et al 2014).

Run-of-river hydropower is expected to be the most
vulnerable form of clean renewable energy because of erratic
rainfall patterns. While droughts may lead to a severe
undersupply of electricity from hydropower, unpredictable
water flows, especially during the wet season, may threaten
the energy infrastructure and render it economically
unviable (Majone et al 2016; Caruso, Newton, et al 2017).

Wind pattern alteration

The alteration of wind patterns with increased variability is
observed as the localized impact of climate change on wind
resources in mountain regions (Pryor and Barthelmie 2013;
Proietti et al 2017; de Jong et al 2019). Therefore, improving
estimations for wind energy generation (Dai et al 2019) is
essential to cope with the climate threats that would also
require upgrading management and operations (Watts et al
2016). For example, technical measures may include
dynamical adaptation of turbines, upgrading design

standards, and new installations (Pryor and
Barthelmie 2013).

Solar radiation and cloud cover

Climate impacts on solar radiation and cloud cover that
would have an impact on solar energy generation do not
show discernible trends. Nevertheless, solar photovoltaic
generation is seeing increasing adoption both globally
(Proietti et al 2017) and in the HKH specifically (Fang and
Wei 2013; Duan et al 2014; Ershad et al 2016), Central Asia
(Vidadili et al 2017), the Alps (Grilli et al 2016; Hastik et al
2016; Kahl et al 2019), the Andes (Nasirov et al 2015), and the
Rockies (Olson-Hazboun et al 2016). A promising solution is
decentralized solar projects with battery energy storage, now
being adopted on a pilot scale in HKH, especially in the
mountain regions of India. Solar thermal applications
continue to be adopted to reduce gas dependence
(Barragán-Escandón et al 2022).

Renewable electricity in mountain regions

Mountains provide unique opportunities for harnessing
hydropower. Because of climate change, hydropower
projects in mountain regions experiencing marked wet–dry
contrasts will face adaptation challenges (Majone et al 2016;
Patro et al 2018). Run-of-river hydropower systems without
water storage are particularly susceptible to climate impacts
(Kuriqi et al 2021). Some researchers advocate for water
storage to address these changes (Bj€ornsen Gurung et al
2016; Hunt et al 2020), while others emphasize water
management to adapt to climatic variability (Gaudard et al
2014; Caruso, King, et al 2017).

Solar energy remains a viable energy source for rural
mountain communities in remote off-grid areas (Bhandari et
al 2014; Proietti et al 2017). In urban areas, grid connections
can be provided through large solar farms or net metering to
add solar energy from home or commercial generation to
the grid. For photovoltaics to be more attractive, researchers
suggest policies that encourage incentives for solar adoption
(Fang and Wei 2013), as for example in Chile and India.

The discourse on solar energy is dominant in clean
energy transition narratives compared with climate change
impacts (Grilli et al 2016). However, the increasing use of
solar panels and batteries and the challenges of disposal of
solar equipment with often-hazardous content after its
useful life cycle can have impacts on public health and the
environment. These necessitate additional policies for reuse
and recycling of solar waste (Xu et al 2018).

Synthesis

Because economic growth and livelihoods are closely linked
with energy availability (Di Sbroiavacca et al 2016;
Labandeira et al 2017), development opportunities arise
from meeting energy demand with cleaner energy sources
and generating employment in the process.

Mountain communities in the HKH and Andes face
uneven access to conventional energy sources, often
entailing continued reliance on biomass (Malla 2013; Rasul
2014), because of remote and dispersed settlement patterns.
Research has shown that rural communities are less likely to
adopt renewable energy technologies compared with their
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urban counterparts; households with higher levels of
education and income, availability of credit and subsidies,
and higher levels of energy consumption and engagement
with energy-related organizations were positively associated
with adoption of renewable energy technologies (Liao et al
2021). While hydropower-led development offers solutions
for both energy storage and availability, the dependence on
climate-vulnerable water sources increases energy system
and community vulnerability (Postic et al 2017; Xenarios et
al 2019).

Hybrid systems (eg energy generation by combined
hydropower, wind, and solar) can reduce energy insecurity
(Bhandari et al 2014). However, technical solutions require
supportive institutions (Pfenninger et al 2014; Xenarios et al
2019). Energy mix optimization is most feasible when based
upon technical innovation, citizens’ support (Volken et al
2018), acceptance of energy infrastructure in local social
contexts and landscapes (Salak et al 2022), regional
cooperation, and coordinated economic policies, as
indicated below.

In the HKH and Andes, transitions to cleaner renewable
energies will be led by hydropower (Hussain et al 2019).
Although some positive steps toward energy transitions have
been documented, this shift is slow in most mountain regions
globally (Cronin et al 2018; Dhakal et al 2019).

Conclusions: toward a people-centered agenda

Adaptation to climate impacts and the imperative of carbon
mitigation through renewable energy technologies are
inextricably linked (Postic et al 2017). Energy transitions to
cleaner, low- (or zero-) carbon sources meet both adaptation
and mitigation imperatives in such a way as to address local,
in this case mountain people’s, needs.

Hydropower has the greatest potential for the clean
renewable energy transition in mountains but requires
significant investment and measures to address social and
environmental impacts. Yet this is also the energy source
with the greatest impacts from climate change, especially
unpredictable precipitation and river flows, GLOF disasters,
and seasonal downstream flooding when surplus reservoir
storage is released. Additionally, upstream–downstream
water sharing, especially related to hydropower in
transboundary river basins, remains a challenge (Hanasz
2014; Huda and McDonald 2016; Llamosas and Sovacool
2021) but also presents an opportunity in the HKH for water
and energy security (Saklani et al 2020; Murshed 2021).

Wind energy is nascent but has considerable
opportunities for growth, given both its major potential in
mountain regions, where wind resources are abundant, and
rapidly declining costs. However, climate and extreme-event
impacts pose risk to wind energy, while grid connection
problems and the need to address environmental impacts on
migrating birds and bats pose challenges.

Solar photovoltaics show major promise in terms of price
and scalability. However, there are landscape impacts, and
the public needs to be made aware of the health and
environmental risks of disposing of hazardous battery and
panel materials. Policymakers and development
practitioners must address this.

Based on this analysis of published sources and our
collective field experience in the HKH and Andes, 3 main

emphases were noted for the transition to renewable
electricity production in mountain regions in the context of
climate change.

1. Technical innovation usually predates, but requires,
supporting policies for development and adaptability
assessment of new technologies for energy generation and
storage. These should consider spatiotemporal assessment
of climatic conditions, seasonality, and stakeholders’
capacity to adopt technological improvements.

2. Regional cooperation calls for collaborative national
efforts across countries with similar energy matrix
characteristics in mountain regions to assess technical
suitability, policy-support needs, linkages of energy with
other sectors (especially water and food), and adaptive
capacity to climate change.

3. Economic and development policy involves both public-
and private-sector interests, requiring robust political
commitment, policy coordination, and equity between
upstream and downstream communities, as well as
countries with transboundary rivers. This involves
regional and international agreements for energy pricing,
financial support for renewable energy transitions, and
fiscal benefits for public–private partnerships.

Recommendations

Our recommendations for transformative energy transitions
in the mountains are in line with levers identified by the UN
(2019) for achieving SDG 7, which include governance,
finance, individual and collective action, and science and
technology. We have discussed the regional and energy
system technology dimensions of the challenge above, and
below we seek to generalize the findings for policymakers in
government and civil society organizations and members of
mountain communities, giving particular attention to the
HKH and Andes, and practitioners including scholars and
implementation agency personnel.

Policymakers
1. Removal of policy barriers for new renewable

technologies will promote mountain-relevant
technological innovations, prioritize mitigation of climate
change impacts, and create robust markets for investors.

2. In larger countries that contain mountain regions with
specific needs (to address risk and marginalization),
attention must be paid to location-specific energy policies
and long-term plans. Policies on renewable electricity
infrastructure must strengthen stringent social and
environmental impact assessments. Specifically for the
case of hydropower, current and future vulnerabilities of
water resources to climate change must be planned for,
and mountain-specific policies and plans are needed for
pumped-storage hydropower in locations where
population relocation and cultural sites are concerned.

3. Fostering international cooperation is vital to provide
technical support and funding to aid local transition
efforts. Government agencies, nongovernment
organizations, and local populations will embark on
energy transitions when strategies prioritize clean energy
through legislation, economic incentives including
progressive reallocation of fossil fuel subsidies to
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renewables, improved information availability supported
by research, and communication of climate impacts and
hazards.

Mountain communities

1. Enabling community participation in energy planning
through open forums will support both policy and the
development goals addressed in these recommendations.
Furthermore, social mobilization and awareness
generation are also recommended as effective tools to
influence personal and community choices for efficient
and clean energy use. It is also useful to demonstrate the
energy savings from efficient use and consumption. This
entails providing awareness training and financial
incentives for solar energy adoption by communities.

2. Since both rural and urban mountain communities in the
HKH and Andes experience unacceptably high social and
environmental impacts of energy development
exacerbated by climate change, mountain communities
must be integral to the process of transitioning to clean
energy security and autonomy. Thus, energy
infrastructure should also provide access and benefits to
these communities.

3. Advancing transitions from fossil fuel to clean renewable
electricity may leave some community members behind if
adequate incentives (subsidies, capital), training, and
other capacity building are not supported. The promise
of renewable energy jobs, including for efficiency retrofits
and local skilled technicians, especially in household and
community solar and wind, must be intentionally
developed to ensure individual and community benefits
beyond access to clean energy.

Practitioners

1. Mountain-specific challenges and opportunities for policy
and planning should be emphasized when addressing SDG
7 in meeting the 2030 agenda.

2. Energy SDG 7 and its targets cannot be addressed in
isolation, as energy accessibility and reliability are
dependent on progress toward other SDGs. Practitioners
should advocate for innovative financial incentives that
are appropriate for the mountains as an economic lever
for transitioning to renewable electricity in the
mountains. Unlike in most lowlands, energy access and
reliability in the mountains are influenced by remoteness
and climate impacts that can accentuate energy poverty.

3. Science and technology can play an integral role in
improving accessibility to clean energy by enabling newer
business models through digitizing data dissemination.
Increasing application of new information technology
tools in the operation and maintenance of clean
electricity generation plants will allow greater
deployment of distributed power projects in remote
regions, which are often characterized by restrictions to
mobility and a limited skilled workforce.

Vigorously pursuing these recommendations in a holistic
manner by supporting just and sustainable energy
transitions will contribute to transforming economic growth
and development in the mountains.
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