
Evolution of the Vertebrate Cranium: Viewed from
Hagfish Developmental Studies

Authors: Kuratani, Shigeru, Oisi, Yasuhiro, and Ota, Kinya G.

Source: Zoological Science, 33(3) : 229-238

Published By: Zoological Society of Japan

URL: https://doi.org/10.2108/zs150187

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.

Downloaded From: https://bioone.org/journals/Zoological-Science on 23 Jan 2025
Terms of Use: https://bioone.org/terms-of-use



© 2016 Zoological Society of JapanZOOLOGICAL SCIENCE 33: 229–238 (2016)

[REVIEW]

Evolution of the Vertebrate Cranium: Viewed from Hagfish 
Developmental Studies

Shigeru Kuratani1*, Yasuhiro Oisi2, and Kinya G. Ota3

1Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
2Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience,

One Max Planck Way, Jupiter, FL 33458-2906, USA
3Marine Research Station, Institute of Cellular and Organismic Biology,

Academia Sinica, Yilan 26242, Taiwan

Our knowledge of vertebrate cranium evolution has relied largely on the study of gnathostomes. 
Recent evolutionary and developmental studies of cyclostomes have shed new light on the history 
of the vertebrate skull. The recent ability to obtain embryos of the hagfish, Eptatretus burgeri, has 
enabled new studies which have suggested an embryonic morphological pattern (the “cyclostome 
pattern”) of craniofacial development. This pattern is shared by cyclostomes, but not by modern 
jawed vertebrates. Because this pattern of embryonic head development is thought to be present 
in some stem gnathostomes (ostracoderms), it is possible that the cyclostome pattern represents 
the vertebrate ancestral pattern. The study of cyclostomes may thus lead to an understanding of 
the most ancestral basis of craniofacial development. In this review, we summarize the develop-
ment of the hagfish chondrocranium in light of the cyclostome pattern, present an updated com-
parison of the cyclostome chondrocranium, and discuss several aspects of the evolution and 
development of the vertebrate skull.
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INTRODUCTION

The vertebrate cranium is characterized by its compli-
cated and functionally sophisticated morphological pattern, 
and the cranium per se represents one of the major traits 
that define the vertebrate body plan. The developmental and 
evolutionary origins of the cranium have, therefore, long 
been intriguing questions in comparative morphology and 
evolutionary developmental biology. To date, our under-
standing of the vertebrate skull has relied mainly on the 
comparative morphology and development of gnathostome 
skulls based on numerous descriptive and experimental 
studies (Parker and Bettany, 1877; Goodrich, 1930; de 
Beer, 1937; Hanken and Hall, 1993).

Classical comparative morphology sought to provide an 
archetypical model of the vertebrate skull, from which all the 
variety among vertebrate skulls was derived. In this model, 
the cranium was divided into several components or mod-
ules: the dorsally located neurocranium which encases the 
brain, and a ventral moiety, or the viscerocranium that sup-
ports the pharynx. Of these, the neurocranium often 
included sensory capsules for head-specific sensory organs 
(eyes, nose, and inner ear), which are often regarded as 

modules more or less independent from the rest of the neu-
rocranium. These major cranial components are formed of 
endoskeletal elements that arise primarily from cartilage dur-
ing development. In addition to these, the exoskeletal ele-
ments form an outer shield called the dermatocranium (de 
Beer, 1937; Romer and Parsons, 1977; Portmann, 1976; 
Hirasawa and Kuratani, 2015).

Regarding the ancestral type of the cranium, the verte-
brate head was once assumed to be segmented along the 
anteroposterior axis, in a manner akin to that of vertebrae in 
the trunk (reviewed by Goodrich, 1930; Sewertzoff, 1931; de 
Beer, 1937; Jollie, 1977). Near the end of 19th century, this 
traditional concept was largely substantiated by elasmo-
branch embryology, in which somite-like coeloms do arise in 
the preotic region of the head (Gee, 1996; reviewed by 
Kuratani and Adachi, 2016). These coelomic cavities, or 
head cavities, were thus homologized with somites (Balfour, 
1877; van Wijhe, 1882; reviewed by Wedin, 1949; Kuratani, 
2003, 2008b, 2015; Adachi and Kuratani, 2012; Adachi et 
al., 2012).

The cyclostome cranium, on the other hand, contributed 
little to the morphological concept of the vertebrate head or 
skull in traditional comparative morphology. This was due in 
part to the difficulty of histological observation of lamprey 
embryos and the inaccessibility of embryos of hagfish, 
another group of cyclostomes (reviewed by Ota and 
Kuratani, 2006, 2008; Ota et al., 2007; Kuratani and Ota, 
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2008; also see Dean, 1899). In addition, the adult hagfish 
cranium was often believed to be either highly modified from 
its ancestral form, or to represent a state more ancestral 
than the rest of vertebrates (reviewed by Janvier, 1996). 
However, it is now clear that cyclostomes constitute a mono-
phyletic group, with gnathostomes as an outgroup (Mallatt 
and Sullivan, 1998; Kuraku et al., 1999, 2008, 2009; Delarbre
et al., 2002; Takezaki et al., 2003; Mallatt and Winchell, 
2007), and they may have acquired derived features that 
gnathostomes have not. Hagfish embryos have become 
available since 2007 in RIKEN, Japan (Ota and Kuratani, 
2007, 2008; Ota et al., 2007), and this, in conjunction with 
the advancement of molecular-level developmental studies 
on the lamprey, has greatly increased our understanding of 
cranial evolution in vertebrates. Thus, the goal of the pres-
ent review is to summarize hagfish cranial development, and 
to propose an updated scenario to explain the development 
and evolution of the vertebrate cranium.

Evolution of the craniofacial pattern in vertebrates
As was first pointed out by Haeckel (1874), the most 

conspicuous difference between the jawed and jawless ver-
tebrates is not the presence or absence of the biting jaw, but 
the number of nostrils: jawed vertebrates have two nostrils 
(diplorhiny), whereas the other vertebrates possess only a 
single median nostril (monorhiny) (Janvier, 1996). This idea 
is consistent with evolutionary changes in the distribution of 
the craniofacial ectomesenchyme as well as the ectodermal 
placodes, including the stomodeum, during transition from 
the jawless to jawed condition (Shigetani et al., 2002; 
Kuratani, 2005, 2012; Oisi et al., 2013a; for development of 
the cyclostome placodes, see also McCauley and Bronner-
Fraser, 2003, 2003; Uchida et al., 2003; Modrell et al., 
2014). Importantly, diplorhiny is linked to the positional shift 
of the adenohypophysis to open in the oral cavity (Kuratani, 
2005), and the premandibular ectomesenchyme that formed 
the dorsal part of the oral apparatus of the cyclostomes now 
provides the prechordal part of the neurocranium (the rostral 
half of the neurocranium is exclusively of neural crest-origin 
in modern gnathostomes; Couly et al., 1993). In addition, the 
position of the mouth opening shifted slightly caudally prior 
to jaw acquisition (Shigetani et al., 2002, 2005). Thus, the 
placodal evolution is concomitant with the evolution of the 
ectomesenchyme, the source of the major part of the gna-
thostome cranium.

In the above scenario, the mono- to diplorhiny shift in 
the acquisition of the jaw is consistent with the fossil evi-
dence (Kuratani, 2005, 2012; Gai et al., 2011; Dupret et al., 
2014). Cyclostomes as well as some of stem gnathostomes, 
often called ostracoderms, were devoid of jaws and often 
had only one nostril (Janvier, 1996). Curiously, galeaspids, 
one of the advanced lineages of ostracoderms, is reported 
to have possessed bilaterally separated nasal sacs and a 
posteriorly separated adenohypophysis opening to the oral 
cavity, not to the nasal duct, possibly exhibiting a transitional 
state to jawed vertebrates (Gai et al., 2011). However, this 
explanation is not entirely consistent with the phylogeny of 
stem gnathostomes. Namely, the nasohypophysial pattern 
of galeaspids may resemble that of jawed vertebrates, many 
other characters including cellular bone, paired fins, epicer-
cal tail, shoulder girdle, braincase anatomy, suggest that 

osteostracans, not galeaspids, are more closely related to 
jawed vertebrates. The transition from ‘ostracoderms’ to 
jawed vertebrates may be more complicated than the above 
scenario.

The evolutionary polarity of the nostril number is 
directed from one to two, and the stem gnathostomes had a 
cyclostome-like pattern of craniofacial morphology. There-
fore, it seems likely that the primitive craniofacial pattern of 
vertebrates could be sought in cyclostome developmental 
patterns. Our recent finding of a cyclostome pattern would 
be relevant to this issue (Oisi et al., 2013a). Namely, 
embryos of hagfish and lampreys pass through a stage dur-
ing which morphological patterns of the embryonic head 
look quite like each other, indicating the presence of the 
conserved developmental stage that defines cyclostome 
morphology (Oisi et al., 2013a). At that stage of develop-
ment, both lamprey and hagfish embryos show two distinct 
processes, the anterior and posterior processes, in the pre-
mandibular domain, rostral and caudal to the median pla-
code, the nasohypophyseal plate (Fig. 1).

Of the above two processes, the rostral process forms 
the posterior wall of the nasohypophyseal opening (gener-
ally called the nostril or external nares) in the lamprey, 
whereas in the hagfish the equivalent process forms the roof 
of the anteroposteriorly elongated nasohypophyseal duct 
(Fig. 1). This difference is consistent with the direction of the 
nostril, which opens dorsally in the lamprey and rostrally in 
the hagfish (Fig. 1).

In lamprey development, the posterior process grows 
dorsally and rostrally to differentiate into the upper lip, 
thereby pushing the nostril towards the dorsal aspect of the 
head (Fig. 1, left). The transformation process has been well 
documented by several authors (Sewertzoff, 1931; Strahan, 
1960; Heintz, 1963; Kuratani et al., 2001; reviewed by 
Goodrich, 1909). Developmental modification of the poste-
rior process in the hagfish clearly illustrates the morpholog-
ical uniqueness of the hagfish head, as typically shown in 
the formation of the oronasal septum (Fig. 1, right; Oisi et 
al., 2013a). This anlage grows anteriorly to make a septum 
dividing the oronasal cavity dorsoventrally, as well as the 
ventral margin of the nostril rostrally, and the posterior root 
of this process later disappears, thereby making the naso-
hypophyseal duct and pharynx confluent with each other 
(Oisi et al., 2013a). By this penetration of nasopharyngeal 
passage, the hagfish head acquires a unique anatomical 
topography, not directly comparable to that of the lamprey.

Each part of the head in cyclostomes can be develop-
mentally reduced to the identical set of craniofacial primor-
dia; namely, the anterior and posterior processes and the 
pharyngeal arches, enabling the homologization of anatom-
ical components in both animals (Fig. 2). In particular, it has 
been shown that the trigeminal nerve branching and inner-
vation patterns precisely coincide with each other in lamprey 
and hagfish; however, this not comparable to those in gna-
thostomes (Lindstrom, 1949; Oisi et al., 2013a; Higashiyama 
and Kuratani, 2014). Thus, the craniofacial morphotype 
shared by the modern cyclostomes cannot be applied to the 
patterns in jawed vertebrates. This suggests that an evolu-
tionary event overrode the ancestral developmental con-
straints before the establishment of the morphotype of the 
jawed vertebrate head. As documented in several textbooks, 
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the crown gnathostome morphotype can be formulated by 
the derivatives of frontonasal process (= medial nasal prom-
inence), lateral nasal prominence, maxillary process, and 
mandibular process. Of these, the maxillary and mandibular 
processes can be equated to the cyclostome mandibular 
arch, which may be dorsoventrally specified, but not articu-
lated to form a jaw (see below). However, medial and lateral 
nasal prominences in jawed vertebrates cannot be directly 
compared to the anterior process in the cyclostome 
embryos, if they occupy a similar position in the head pri-
mordium (Oisi et al., 2013a). The cyclostome posterior pro-
cess is rather similar to the anlage of trabecular cartilage in 
the cyclostomes, the homology of which will be further dis-
cussed below.

Comparison of the lamprey and hagfish crania
Several studies attempted to compare cranial elements 

between the lamprey and hagfish (Marinelli and Strenger, 

1954, 1956; Parker, 1883a, b; Holmgren and Stensiö, 1936; 
Neumayer, 1938; Holmgren, 1946; Heintz, 1963). However, 
homologization of cartilaginous elements has not always 
been as straightforward, and has been accomplished by 
topographical relationships of the elements and other ana-
tomical structures. The only exception was the comparative 
morphology of the lingual apparatus, for which Yalden 
showed a very accurate one-to-one correspondence for 
skeletal and muscular elements (derived from the mandibu-
lar arch) between adult lampreys and hagfishes (Yalden, 
1985).

Previously, we postulated a new method of comparison, 
based on a cyclostome-conserved pattern of craniofacial 
development, to compare systematically the whole cranial 
morphological patterns in the cyclostomes. Such a compar-
ison reveals that lamprey and hagfish embryos both develop 
the same set of craniofacial processes, the anterior process, 
posterior process, and the mandibular arch, during the 
pharyngular stage (Oisi et al., 2013a, b). Thus, the posterior 
process-derivatives are comparable between lamprey and 

Fig. 1. Developmental pathways of lamprey and hagfish craniofa-
cial patterns. The cyclostome pattern (second from the top) is sche-
matically illustrated. This pattern appears after the establishment of 
the neural crest-derived ectomesenchyme.

Fig. 2. Cyclostome chondrocranium. Updated version of Fig. 10 in 
Oisi et al. (2013b). Homologies of cartilaginous elements are shown 
by different colors based on embryonic origins and morphology. The 
cornual plate-homologs appear to belong either to the mandibular or 
hyoid arches.
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hagfish embryos as a module (Figs. 1, 2). This schematiza-
tion makes it evident that the anterior process-derivatives in 
hagfish and lamprey exhibit considerable differences. On 
the other hand, the posterior process-derivatives differenti-
ate into rostral neurocranium and oral apparatus in both the 
animals, resembling the developmental role of the preman-
dibular ectomesenchyme of jawed vertebrate embryos.

In our previous comparison, we proposed a module 
(craniofacial anlage)-level homologization in the cyclostome 
chondrocrania; however, during this procedure, we found an 
inaccurate identification regarding a cartilaginous element at 
the level of the hyoid arch (Oisi et al., 2013b; for morpholog-
ical modules for homologization see Kuratani, 2009). As 
shown in Fig. 2, an updated version of the cranial compari-
son, there is a plate-like cartilage beneath the extrahyale in 
the adult hagfish chondrocranium. With respect to the posi-
tion of other cartilaginous elements, as well as facial nerve 
branches, we found that a possible homologue of this carti-
lage, or the cornual plate of the hagfish, may be found below 
the extrahyale of the adult lamprey. Otherwise, it is not pos-
sible to homologize each viscerocranial element between 
the hagfish and lamprey.

Basic composition of the neurocranium
Based on construction of chimeric avian embryos, Couly 

and others made a precise map of neural crest- and meso-
derm-derived parts of the neurocranium, and defined 
chordal and prechordal portions, as anterior and posterior 
subdivisions of the neurocranium (Couly et al., 1993). In the 
mouse, a genetic approach produced a developmental map 
that is nearly identical to that of the avian cranium (McBratney-
Owen et al., 2008). Thus, the chordal cranium is coexten-
sive and associated with the notochord medially, and 
derived from the paraxial mesoderm, whereas the pre-
chordal cranium arises in the region that is devoid of the 
notochord and differentiates from the neural crest-derived 
ectomesenchyme (see Wada et al., 2011 for development of 
trabecula in amniotes; for cyclostomes see Kuratani et al., 
2004, 2013). Similar distinction of the neurocranium was 
recognized in classical comparative embryology. For example, 
Rathke (1839) was among the first to recognize the differ-
ence between the rostral part of the early embryonic neuro-
cranium of jawed vertebrates, represented by trabecula, and 
more posterior parts of the cranium.

Thus, the boundary was positioned at the level where 
the hypophysis develops, and the early chondrocranium of 
jawed vertebrates consists of the trabecula that lies rostral 
to the hypophysis, and the parachordal posterior to it. This 
distinction corresponds to the difference between the verte-
bral and prevertebral regions postulated by Gegenbaur 
(1871, 1872). The vertebral region of the head is accompa-
nied by the notochord, whereas the more rostrally located 
evertebral region is devoid of the notochord. This distinction 
should not be confused with another distinction of the neu-
rocranium, namely the cephalic mesodermal part and 
somite-derived (occipital) part. Huxley (1858) first did not 
recognize this boundary. It was only after Froriep (1882, 
1883, 1886, 1905a, b) and Stöhr (1881) that embryologists 
started to recognize a boundary between cephalic meso-
derm and rostral somites (unsegmented prespinal portion 
and segmented spinal portion of the neurocranium) and that 

the latter forms the occipital part of the skull.
In the cyclostome cranium, a similar anteroposterior dis-

tinction of cranium has been recognized, although there is 
no occipital homologue in their crania. The key to identifying 
the boundary was the origin of the so called “trabecula” of 
the cyclostomes (in the sense of Sewertzoff, 1913; Langille 
and Hall, 1988; also see de Beer, 1937 for the hypothetical 
premandibular arch in the lamprey). As described above in 
connection with the heterotopic theory of jaw acquisition, in 
a functional sense the neurocranium is mostly formed by 
parachordals and their derivatives in the cyclostomes. 
Therefore, the prechordal (neuro)cranium is minor; the 
cyclostome premandibular ectomesenchyme is primarily 
employed for the formation of the oral apparatus (Fig. 3). 
Exceptionally, the hagfish nasal cartilage is expanded; how-
ever, it belongs to the sensory capsule.

Several studies have suggested that the trabecula in the 
lamprey does not represent the similarly named cartilage in 
jawed vertebrates, but rather a mesoderm-derived neurocra-
nial part (parachordals) that has elongated rostrally to support 
the forebrain. In particular, the latter idea was substantiated
by detailed observation of staged embryos (Johnels, 1948), 
as well as the experimental labeling of the head mesoderm 
(at the mandibular arch level) that differentiated into the tra-
becula (Kuratani et al., 2004; but also see Newth, 1956; 
Langille and Hall, 1988). The same is presumably also true 
for the hagfish chondrocranium (Oisi et al., 2013b). Impor-
tantly, a similar distribution pattern of mesodermal and neu-
ral crest-derived mesenchyme is expected in the hagfish 
embryo, which is suggested not only by the morphological 

Fig. 3. Cell lineage origins of the cyclostome cranium. Based on 
the homologies of skeletal elements and developmental observa-
tions. As typically seen in the larval lamprey, rostral ectomesen-
chyme is mostly involved in the formation of the oral apparatus, and 
the rostral part of the neurocranium is provided by the rostrally elon-
gated parachordal (blue).
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patterns of development (identification of the premandibular 
mesoderm in cyclostome embryos, e.g., the rostralmost 
mesodermal element; Koltzoff, 1901; Wedin, 1949; Kuratani 
et al., 1999; Oisi et al., 2013a), but also by cephalic meso-
derm-associated gene expression patterns (Oisi et al., 
2013b). Notably, there is no direct evidence of the neural 
crest or mesodermal derivation of the cyclostome cranium, 
except for that obtained from primitive labeling experiments 
(Kuratani et al., 2004; for mesodermal origin of vestigial ver-
tebral elements in hagfish see Ota et al., 2011, 2013, 2014; 
for extirpation of the cephalic neural crest see Newth, 1956; 
Langille and Hall, 1988).

With the identification of the lamprey trabecula, the posi-
tion of prechordal/chordal boundary of the hagfish is found 
in the rostral end of the parachordal (Oisi et al., 2013b). This 
corresponds to the position of the original head mesoderm 
that is not segmented, as had been suggested previously 
(Koltzoff, 1901; Damas, 1944; reviewed by Kuratani et al., 
1999; Kuratani, 2008b). The cartilage forming the otic cap-
sule appears to be derived from the head mesoderm, but 
some crest cells may also contribute to its formation, as in 
jawed vertebrates (Noden, 1988; Couly et al., 1993). Rostral 
to the parachordals, all the cartilaginous elements in the 
hagfish derived from the above noted craniofacial anlagen 
(pharyngeal arches plus anterior and posterior processes) 
should be of crest origin. In the precartilaginous stage of the 
hagfish, the rostralmost mesodermal element can be seen 
in the prechordal plate. This structure, occupying a position 
identical to the premandibular mesoderm in the lamprey, 
produces a pair of dense chords of cells laterally, possibly 
representing a vestigial premandibular mesoderm (or cavity?)
in hagfish (Horigome et al., 1999; Kuratani et al., 1999; Oisi 
et al., 2013a, b). Possessing only degenerate eyes, the 
hagfish does not develop extrinsic eye muscles, which pre-
sumably differentiate from the premandibular mesoderm 
(Koltzoff, 1901; Suzuki et al., 2016).

By extrapolating the data obtained from jawed verte-
brates, the suggested cell lineage origins of the cyclostome 
cranium is shown in Fig. 3. It was once believed that a pha-
ryngeal arch(es) rostral to the mandibular arch (premandib-
ular arches) was secondarily incorporated in the formation of 
the prechordal neurocranium in gnathostomes, and thus the 
trabecula was assumed to represent the vestigial skeleton 
belonging to such arches (reviewed by de Beer, 1937). In 
the development of the cyclostome cranium, no evidence 
can be found to show the presence of the premandibular 
arch (also see Janvier, 1996 for ostracoderms). The trans-
formed ectomesenchymal element in the agnathan to 
gnathostome transition appears to be the prechordal 
(premandibular) ectomesenchyme (Kuratani et al., 2013), 
forming the dorsal oral apparatus in agnathans. The para-
chordals are more extensive in cyclostomes and play roles 
like that of gnathostome trabecula as the floor of the fore-
brain.

The parachordals have long been recognized in the 
cyclostomes (Parker, 1883a, b; Neumayer, 1938; Holmgren, 
1946). Their presence in the hagfish suggests that this car-
tilaginous element arose simultaneously with the vertebrae. 
Because both the vertebral elements and parachordals arise 
from paraxial mesoderm, possibly under the same noto-
chord-derived signaling, these two mesodermal elements 

may have evolved as an initial skeletal component surround-
ing the central nervous system, whereas the neural crest 
elements functioned exclusively as supporting tissue of the 
oro-pharyngeal system or the sensory organs in the ances-
tral vertebrate. This is consistent with the recent finding of 
Dupret et al. (2014) that basal placoderms possessed a 
neurocranium that more closely resembled that of cyclos-
tomes, lampreys in particular. It thus appears that the pre-
chordal/chordal distinction of the neurocranium is a newly 
acquired feature of the neurocranium specific to crown gna-
thostomes.

From jawless to jawed states of evolution
Numerous studies have attempted to explain the origin 

of gnathostome jaws, which consists of upper and lower 
jaws under several different scenarios. Classical theories 
assumed that the jaw was simply obtained by the dorsoven-
tral division of one of the rostral visceral arches that we rec-
ognize now as the mandibular arch. This theory, however, 
is not supported by fossil evidence (undivided mandibular 
arch forming the oral apparatus). Importantly, the jawless 
vertebrates, including ostracoderms and cyclostomes pos-
sess an oral apparatus that is well differentiated dorsoven-
trally, and incorporates premandibular ectomesenchymal 
components in its dorsal part (Cerny et al., 2004). In that 
sense, both the cyclostomes and gnathostomes have similar 
oral apparatuses, although not homologous to each other. 
The neo-classical theory of Mallatt (2008) also takes the 
developmental role of premandibular component into con-
sideration in jaw formation, but only heterotopy is capable of 
explaining the simultaneous acquisition of prechordal cra-
nium (trabecular cartilage) and jaw (Shigetani et al., 2002, 
2005; reviewed by Kuratani, 2012).

From the molecular developmental perspective, evolu-
tion of the visceral arch skeleton depends of the regulation 
of Dlx genes. Namely, the nested expression of the Dlx 
genes, or the Dlx code, specify the pharyngeal arch 
ectomesenchyme along the dorsoventral axis in jawed ver-
tebrate embryos (Depew et al., 2002). Based on this dors-
oventral specification, a part of the upper jaw and the entire 
lower jaws can arise from the mandibular arch. The Dlx code 
appears to be an ancestral trait for jawed vertebrate devel-
opment (Gillis et al., 2013), but cyclostome embryos do not 
show the same nested pattern (Myojin et al., 2001; Neidert 
et al., 2001; Cerny et al., 2010; Kuraku et al., 2010; Fujimoto 
et al., 2013; Oisi et al., 2013b).

In the fossil record, the dorsoventrally differentiated type 
of the visceral arch skeleton, typically observed in osteich-
thyans, appears to represent the ancestral type that was 
obtained before the divergence of chondrichthyans and 
osteichthyans, and was likely present in placoderms (Fig. 4; 
Pradel et al., 2014). With respect to the mandibular arch, it 
appears that the Dlx code is responsible for the dorsoventral 
specification of the arch (Depew et al., 2002; Sato et al., 
2008; Kitazawa et al., 2015), but it is unknown whether the 
code is a prerequisite for segmentation and articulation of a 
visceral arch skeleton (Fig. 4). It may be that the nested Dlx 
code was established after the segmentation of the visceral 
arch skeleton, which initially would have been patterned in 
a dorsoventrally symmetrical manner, as suggested by 
Sewertzoff (1928, 1931) (Fig. 4). Importantly, the branchial 
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arch skeleton of the lamprey, and possibly of the hagfish as 
well, develops in a dorsoventrally symmetrical pattern, con-
sistent with the expression patterns of their Dlx genes 
(Cerny et al., 2010; but see Yao et al., 2011 for the dors-
oventral polarity of the lamprey mandibular arch). Thus, 
before the heterotopic shift of the oral ectomesenchyme 
permitted by the acquisition of diplorhiny, the visceral arch 
skeleton may have been dorsoventrally specified. Unfortu-
nately, however, anatomical pattern of the visceral arch 
endoskeleton is not well understood in stem gnathostomes 
(reviewed by Janvier, 1996).

Another change in the cranial pattern that gnathostomes 
have experienced was the incorporation of the occipital 
somites. As has previously been discussed, the cartilaginous
vertebral column was an ancestral trait for all the verte-
brates, and hagfish appear to have lost it except for the tail 
region (Neumayer, 1938; Ota et al., 2011). If this is the case, 
the vertebral column was possessed by the common ances-
tor of vertebrates, and the acquisition of the occipital was 
one of the first evolutionary changes introduced into the 
gnathostome vertebral column. Because the occipital and 
hypobranchial muscles innervated by the spinal nerve aris-
ing at the same segmental level as the occipital appeared 
simultaneously in evolution, these phenomena may have 
been developmentally coupled to each other. Although 
these morphological inventions are seen as position-specific 
modifications of somitic derivatives and spinal nerves, they 
may not be Hox code-dependent transformations. For exam-
ple, like the fin muscles, the hypobranchial muscles differ 
from other trunk muscles in that these are formed through a 

specific cellular and molecular event. 
These muscles do not form in the body 
wall, but are positioned in close associa-
tion with visceral structures and develop 
from Lbx1-expressing myoblasts that 
migrate over long distances (migrating 
muscle progenitor: see Alvares et al., 
2003 and Dietrich et al., 1999; reviewed 
by Sambasivan et al., 2011). Lampreys 
also develop hypobranchial-like muscles, 
but they lack some of the properties of 
typical gnathostome hypobranchial 
muscles (for the hypobranchial muscle-
homologue in the lamprey see; Kuratani et 
al., 2002; Kusakabe and Kuratani, 2007; 
Kuratani, 2008a; Kusakabe et al., 2011; 
for the hagfish hypobranchial-like muscle 
see Oisi et al., 2015). For example, the 
‘lamprey hypobranchial muscle’ arises in 
superficial position of the pharyngeal wall 
(arches), not in the oropharyngeal floor, 
and its precursors migrate more dorsally 
than those of gnathostome embryos, in 
which the hypoglossal cord grows within 
the dorsal portion of the pericardial wall. 
The embryonic developmental pattern of 
the hypobranchial-like muscle of the 
hagfish is even more unlike that of gna-
thostomes (Oisi et al., 2015). It is 
unknown whether the lamprey hypobran-
chial muscle, which is comparatively more 

similar to gnathostomes, represents an ancestral pattern for 
cyclostomes. The occipital-hypobranchial system may be a 
gnathostome-specific novelty, involving a topographical shift 
of morphological patterns and change in gene regulation. 
Functionally, mandibular arch-derived lingual apparatus in 
cyclostomes would serve similar oropharyngeal appara-
tuses, which may not have led to the invention of the tongue, 
a derivative of the hypobranchial musculature.

Peculiarity of the hagfish?
In our report on the cyclostome pattern of hagfish and 

lamprey embryos, we proposed that hagfish would be more 
diverged than lamprey with respect to the anatomical pattern 
of adults (Oisi et al., 2013a, 2015; see also Kuratani, 
2008a). This is supported by the fact that the lamprey has 
long been regarded as closer to gnathostomes in a number 
of morphological traits than is the hagfish (reviewed by 
Janvier, 1996). Indeed, hagfish were once classified outside 
the vertebrates due to the absence of vertebrae (but, see 
Ota et al., 2011, 2013, 2014). However, it should be noted 
that the apparent resemblances between lampreys and 
modern gnathostomes are often superficial and subjective. 
For example, the resemblance of upper and lower lips of 
ammocoete larvae of lampreys to the upper and lower jaws 
in gnathostomes does not represent a homology, but a sys-
tematic topographical shift of craniofacial ectomesenchyme 
as assumed in the transition from jawless to jawed states 
(Shigetani et al., 2002, 2005; reviewed by Kuratani et al., 
2013). Thus, it is hard to determine whether the oral appa-
ratus of hagfish or lamprey is more similar to that of the 

Fig. 4. Hypothetical evolutionary sequence of the craniofacial developmental pattern of 
vertebrates. The gray region represents distribution of the cyclostome craniofacial pattern 
on the phylogenetic tree. This developmental pattern extends into stem gnathostomes with 
single nostrils and adenohypophysis opening into the nasal cavity. The craniofacial mor-
photype for crown gnathostomes is thought to have been established in a stepwise man-
ner, involving the acquisition of diplorhiny, shift of adenohypophyseal opening into the oral 
cavity, etc., before the acquisition of the jaw.
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common ancestor of cyclostomes.
Similarly, although the branchial arch cartilages appear 

to be quite differentiated in the hagfish, presence of external 
and internal skeletal elements may also be shared by the 
elasmobranchs (Mallatt, 1984); however, the internal 
branchial arch skeletons are entirely absent in the lamprey. 
Rostral shift of the esophagus during lamprey metamorpho-
sis also represents a lamprey-specific trait. For the reasons 
stated above, it is safer to state that lampreys and hagfish 
are both highly specialized and to recognize that determin-
ing which of the two groups more closely represents the 
ancestral condition is difficult, given all the peculiar traits that 
have been recognized in the hagfish.

The difficulty to determine whether the hagfish or 
lamprey is morphologically more plesiomorphic is partly 
attributable to the paucity of information about the develop-
mental patterns of ostracoderms, the most suitable outgroup 
to be compared. It is also true that the molecular back-
ground of the cyclostome pattern is very limited, as com-
pared to the experimental model vertebrates, which are all 
crown gnathostomes. In addition, molecular evolutionary 
studies suggest that hagfish and lampreys share several 
evolutionary events that took place after the latest common 
ancestor of vertebrates (Kuraku et al., 1999; Ota and 
Kuratani, 2010; Pancer et al., 2005; Fujimoto et al., 2013). 
For example, the topology of collagen and Dlx genes phylo-
genetic trees indicate that these genes were duplicated in 
the lineage of extant cyclostomes species, suggesting the 
cyclostome genomes experienced totally different evolution-
ary events, which did not occur in the gnathostome genome 
(Ota and Kuratani, 2010; Fujimoto et al., 2013). This 
genomic evolutionary evidence may explain potential devel-
opmental constraints where cyclostomes may not be able to 
possess a dorsoventrally articulated and differentiated vis-
ceral arch skeleton. A similar cyclostome genomic event 
was also reported in the evolution of the immune system 
(Pancer et al., 2005). Thus, the plesiomorphic nature of the 
cyclostome morphotype should also be questioned.

In the traditional comparative morphological framework, 
cyclostomes and crown gnathostomes were explained to 
possess two different morphotypes that diverged from each 
other (Sewertzoff, 1931; Jollie, 1977). The latter scenario 
suggests that the two morphotypes (cyclostomes and crown 
gnathostomes) are defined by their own derived features. 
However, it is noteworthy that some monorhinous stem gna-
thostomes (especially osteostracans) developed crania that 
more closely resembled the lamprey (not necessarily cyclos-
tomes) than the crown gnathostomes (Fig. 4). The realistic 
question, therefore, is whether the cyclostome pattern of 
craniogenesis depends on a cyclostome-specific develop-
mental program, or can also be seen as an ancestral 
(plesiomorphic) program, as suggested above. To clarify 
this, further comparative genome analysis between hagfish 
and lampreys is needed (see Smith et al., 2013). After find-
ing the molecular entity, the evolutionary process of the 
highly specialized cranial morphology of cyclostomes will be 
further clarified by detailed molecular developmental study, 
which will allow us to elucidate the evolutionary sequence of 
the vertebrate cranium.
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